1
|
Khallaf WAI, Taha AEAH, Ahmed AS, Hassan MIA, Abo-Youssef AM, Hemeida RAM. Sildenafil abrogates radiation-induced hepatotoxicity in animal model: The impact of NF-κB-p65, P53, Nrf2, and SIRT 1 pathway. Food Chem Toxicol 2025; 200:115373. [PMID: 40086583 DOI: 10.1016/j.fct.2025.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Ionizing radiation has both beneficial and harmful effects on human health, prompting researchers to find ways to protect organs from its adverse impacts. Sildenafil (SIL) has gained attention in protective medicine due to its antioxidant, anti-inflammatory, and anti-apoptotic properties. AIM This study aimed to investigate SIL's protective mechanisms against radiation-induced liver damage. METHOD Forty adult male Wistar rats were divided into: control group, SIL group (2.5 mg/kg,p.o), irradiation group (rats were exposed to single shot at a dose of 10 Gy to induce liver damage), and SIL + irradiation group. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were evaluated. Liver samples were used to evaluate oxidative stress indicators, reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide(NO), Hepatic antioxidant nuclear factor erythroid 2-related factor 2(Nrf2), and apoptoticp53 upregulated modulator of apoptosis(P53) gene expression were determined by Western blot analysis. Immunohistochemical analysis for hepatic nuclear factor-kappa B (NF-κB) and silent information regulator-1(SIRT1) were performed along with histopathological examination. RESULTS SIL effectively diminished inflammation by reducing p-NF-κB-p65 and increasing Nrf2 and SIRT 1 expression. Additionally, SIL restrained apoptosis by reducing P53 protein expressions. Moreover, SIL significantly improved radiation-induced histopathological changes. SIGNIFICANCE SIL preventing hepatotoxicity associated with radiation exposure.
Collapse
Affiliation(s)
- Waleed A I Khallaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Abd Elmoneim A H Taha
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Ahmed S Ahmed
- Radiation Therapy and Nuclear Medicine Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mohamed I A Hassan
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minya, 61519, Egypt
| |
Collapse
|
2
|
Ye LS, Mu HF, Wang BL. Advances in flavonoid bioactivity in chronic diseases and bioavailability: transporters and enzymes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-29. [PMID: 40279202 DOI: 10.1080/10286020.2025.2493925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/27/2025]
Abstract
Flavonoids, abundant in the human diet, have been extensively studied for their therapeutic bioactivities. Recent research has made significantly advances in our understanding of the biological activities of flavonoids, demonstrating their therapeutic effects for various chronic diseases. However, the generally low bioavailability of flavonoids limits their effectiveness. Therefore, it is essential to explore the pharmacokinetics of flavonoids, paying particular attention to the roles of transporters and metabolizing enzymes. This paper reviews recent studies on the bioactivity of flavonoids, highlighting the importance of transporters and metabolic enzymes in their pharmacokinetics.
Collapse
Affiliation(s)
- Li-Sha Ye
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Hong-Fei Mu
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| | - Bao-Lian Wang
- Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100050, China
| |
Collapse
|
3
|
Dhiman A, Choudhary D, Mehan S, Maurya PK, Sharma AK, Kumar A, Mukherjee R, Gupta S, Khan Z, Gupta GD, Narula AS. Therapeutic potential of Baicalin against experimental obsessive compulsive disorder: Evidence from CSF, blood plasma, and brain analysis. J Neuroimmunol 2025; 403:578598. [PMID: 40168745 DOI: 10.1016/j.jneuroim.2025.578598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Obsessive-Compulsive Disorder (OCD) is a complex neuropsychiatric condition characterized by recurrent obsessions and compulsions, significantly impacting an individual's functionality and quality of life. This study aimed to explore the neuroprotective and therapeutic potential of baicalin, a flavonoid with known antioxidant, anti-inflammatory, and neurotropic properties, in an animal model of OCD induced by 8-OH-DPAT (8HPAT). The research utilized in silico docking studies and in vivo experiments to assess baicalin's interactions with key intracellular targets: SIRT-1, Nrf2, HO-1, and PPAR-gamma, and its effects on neurochemical, neurobehavioral, and histopathological parameters. In silico results indicated a strong binding affinity of baicalin for SIRT-1, Nrf2, HO-1, and PPAR-gamma, suggesting potential regulatory roles in antioxidant and anti-inflammatory pathways. In-vivo findings demonstrated that baicalin, administered at doses of 50 mg/kg and 100 mg/kg, significantly alleviated OCD-like behaviours, including excessive lever pressing, marble burying, and compulsive checking. Baicalin treatment normalized serotonin and dopamine levels and reduced glutamate levels in the brain, restoring neurotransmitter balance. Furthermore, baicalin decreased inflammatory cytokines (TNF-alpha and IL-1 beta), improved complete blood count profile, and gross morphological and histopathological alterations by restoring neuronal density and cellular integrity in affected brain regions. Combining baicalin with fluvoxamine (10 mg/kg) showed synergistic effects, further enhancing neuroprotective outcomes. These results suggest that baicalin holds promise as a potential therapeutic agent for OCD, warranting further clinical investigation to explore its efficacy and underlying mechanisms in human subjects. The findings underscore the importance of targeting intracellular pathways and neurotransmitter systems in developing effective treatments for OCD and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abhinay Dhiman
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Divya Choudhary
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India.
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Arun Kumar Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India (Affiliated to IK Gujral Punjab Technical University), Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
4
|
Nath R, Manna S, Panda S, Maity A, Bandyopadhyay K, Das A, Khan SA, Debnath B, Akhtar MJ. Flavonoid Based Development of Synthetic Drugs: Chemistry and Biological Activities. Chem Biodivers 2025; 22:e202401899. [PMID: 39462980 DOI: 10.1002/cbdv.202401899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The toxicity associated with synthetic drugs used for treating various diseases is common. This led to a growing interest in searching and incorporating natural functional core structures such as flavonoid and their derivatives via chemical modifications to overcome the toxicity problems and enhance their biological spectrum. Natural core structures such as flavonoids are accepted due to their safety to the environment and owing to their varieties of biological activities such as anti-Alzheimer, antimicrobial, anticancer, anti-inflammatory, antidiabetics, and antiviral properties. Based on their chemical structure, flavonoids are classified into various classes such as flavone, flavanol, flavanone, isoflavone, and Anthocyanin, etc. The present review focuses on the potential role of the flavonoid ring-containing derivatives, highlighting their ability to prevent and treat non-communicable diseases such as diabetes, Alzheimer's, and cancer. The pharmacological activities of the flavonoid's derivatives are mainly attributed to their antioxidant effects against free radicals, and reactive oxygen species as well as their ability to act as enzymes inhibitors. The review covers the synthetic strategies of flavonoid derivatives, structure activity relationship (SAR), and in silico studies to improve the efficacy of these compounds. The SAR, molecular docking analysis will enable medicinal chemists to search further, develop potent and newer therapeutic agents.
Collapse
Affiliation(s)
- Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Swarup Manna
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Arindam Maity
- Department of Pharmaceutical Technology, JIS University, Agarpara Campus, Nilgunj Road, Kolkata-109, Agarpara, KOL-81, India
| | - Krishnalekha Bandyopadhyay
- Department of Pharmacology, JSS College of Pharmacy, Mysuru, Bangalore-Mysore Road, Bannimantap, Mysuru, Karnataka, 570015, India
| | - Arijit Das
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Howrah, West Bengal, Uluberia, 711316, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC-130, Azaiba, Bousher, Muscat, PO-620, Sultanate of Oman
| |
Collapse
|
5
|
Xiong S, Xie J, Xiang F, Yu J, Li Y, Xia B, Zhang Z, Li C, Lin L. Research progress on pharmacological effects against liver and eye diseases of flavonoids present in Chrysanthum indicum L., Chrysanthemum morifolium Ramat., Buddleja officinalis Maxim. and Sophora japonica L. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119094. [PMID: 39532220 DOI: 10.1016/j.jep.2024.119094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysanthemum indicum L., Chrysanthemum morifolium Ramat., Buddleja officinalis Maxim., and Sophora japonica L. have the effects of "Clearing the liver" and "Improving vision". Flavonoids are their main active ingredients, but there are few reports on their simultaneous liver and eye protective effects. AIM OF THE STUDY Overview of the role of flavonoids of the four medicinal flowers (FFMF) in the prevention and treatment of liver and eye diseases. MATERIALS AND METHODS The Web of Science, PubMed, CNKI, Google Scholar, and WanFang databases were searched for FFMF. Using "hepatitis", "liver fibrosis", "liver cancer", "dry eye syndrome", "cataracts", "glaucoma", "age-related macular degeneration", and "diabetic retinopathy" as the keywords, we summarized the main pathological mechanisms of these diseases and the role of FFMF in their prevention and treatment. RESULTS We found that the four medicinal flowers contained a total of 125 flavonoids. They can maintain liver and eye homeostasis by regulating pathological mechanisms such as oxidative stress, inflammation, endoplasmic reticulum stress, mitochondrial dysfunction, glucose and lipid metabolism disorders, and programmed cell death, exerting the effect of "clearing the liver and improving vision". CONCLUSION FFMF have a series of beneficial properties such as antioxidant, anti-inflammatory, antiviral, and antifibrotic activity, and the regulation of angiogenesis, glycolipid metabolism and programmed cell death, which may explain the efficacy of the four traditional Chinese medicines for "Clearing the liver" and "Improving vision".
Collapse
Affiliation(s)
- Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Feng Xiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Jiahui Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Yamei Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Zhimin Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| | - Chun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
6
|
Alruhaimi RS, Hussein OE, Alnasser SM, Elbagory I, Alzoghaibi MA, Kamel EM, El Mohtadi M, Mahmoud AM. Haloxylon salicornicum Phytochemicals Suppress NF-κB, iNOS and Pro-Inflammatory Cytokines in Lipopolysaccharide-Induced Macrophages. Chem Biodivers 2025; 22:e202401623. [PMID: 39355861 DOI: 10.1002/cbdv.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Haloxylon salicornicum is traditionally used for the treatment of several disorders associated with inflammation. Despite it is a defense response against tissue injury and infections, inflammation can become a chronic condition that can negatively impact the body. This study investigated the effect of H. salicornicum phytochemicals nuclear factor-kappaB (NF-κB), inducible nitric oxide synthase (iNOS) and cytokines release by lipopolysaccharide (LPS)-challenged macrophages in vitro. The binding affinity of the tested phytochemical towards NF-κB and iNOS was investigated using molecular docking. Ten compounds (four coumarins, three sterols and three flavonoids) were isolated from the ethanolic extract of H. salicornicum. Treatment of LPS-challenged macrophages with the compounds resulted in remarkable decrease in NF-κB p65 and iNOS mRNA abundance. All compounds suppressed the production of nitric oxide (NO) and the pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-6) from macrophages challenged with LPS. Molecular docking revealed the ability of the isolated phytochemicals to bind NF-κB p65 and iNOS. In conclusion, H. salicornicum is a rich source of phytochemicals with anti-inflammatory properties. The anti-inflammatory efficacy of H. salicornicum phytoconstituents is mediated via their ability to modulate NF-κB and iNOS, and suppress the release of NO, TNF-α, and IL-6 from macrophages.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Omnia E Hussein
- Higher Technological Institute for Applied Health Sciences, Beni-Suef, Egypt
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Ibrahim Elbagory
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Emadeldin M Kamel
- Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
7
|
Zhang L, Tian Y, Zhang L, Zhang H, Yang J, Wang Y, Lu N, Guo W, Wang L. A comprehensive review on the plant sources, pharmacological activities and pharmacokinetic characteristics of Syringaresinol. Pharmacol Res 2025; 212:107572. [PMID: 39742933 DOI: 10.1016/j.phrs.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Syringaresinol, a phytochemical constituent belonging to lignan, is formed from two sinapyl alcohol units linked via a β-β linkage, which can be found in a wide variety of cereals and medicinal plants. Medical researches revealed that Syringaresinol possesses a broad spectrum of biological activities, including anti-inflammatory, anti-oxidation, anticancer, antibacterial, antiviral, neuroprotection, and vasodilation effects. These pharmacological properties lay the foundation for its use in treating various diseases such as inflammatory diseases, neurodegenerative disorders, diabetes and its complication, skin disorders, cancer, cardiovascular, and cerebrovascular diseases. As the demand for natural therapeutics increases, Syringaresinol has garnered significant attention for its pharmacological properties. Despite the extensive literature that highlights the various biological activities of this molecule, the underlying mechanisms and the interrelationships between these activities are rarely addressed from a comprehensive perspective. Moreover, no thorough comprehensive summary and evaluation of Syringaresinol has been conducted to offer recommendations for potential future clinical trials and therapeutic applications of this bioactive compound. Thus, a comprehensive review on Syringaresinol is essential to advance scientific understanding, assess its therapeutic applications, ensure safety, and guide future research efforts. This will ultimately contribute to its potential integration into clinical practice and public health. This study aims to provide a comprehensive overview of Syringaresinol on its sources and biological activities to provide insights into its therapeutic potential, and to provide a basis for high-quality studies to determine the clinical efficacy of this compound. Additionally, we explored the pharmacokinetics, toxicology, and drug development aspects of Syringaresinol to guide future research efforts. The review also discussed the limitations of current research on Syringaresinol and put forward some new perspectives and challenges, which laid a solid foundation for further study on clinical application and new drug development of Syringaresinol in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Yuqing Tian
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Lingling Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Huanyu Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Jinghua Yang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Yi Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Na Lu
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| | - Wei Guo
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| | - Liang Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
8
|
Li YM, Yan MM, Luo T, Zhu W, Jiang JG. Comparative hepatoprotective effects of flavonoids-rich fractions from flowers and leaves of Penthorum chinense Pursh in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118960. [PMID: 39426574 DOI: 10.1016/j.jep.2024.118960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Penthorum chinense Pursh is a traditional Miao ethnomedicine rich in bioactive components, widely recognized for its hepatoprotective properties. However, the hepatoprotective effects of its flowers and leaves have not been individually elucidated. AIMS OF THE STUDY The objective of this study was to isolate and purify flavonoids-rich fractions from the flowers (PFF) and leaves (PLF) of P. chinense, and to assess their potential protective effects against oxidative, alcohol-induced, and free fatty acid (FFA) induced injury in hepatic cells. MATERIALS AND METHODS The P. chinense flowers and leaves flavonoids-rich fractions were extracted by the method optimized by response surface methodology, and the extracts were subsequently purified using petroleum ether and microporous column. The physical characteristics and component composition of PFF and PLF were analyzed by FT-IR and UPLC-MS/MS. The hepatoprotective activities of PFF and PLF were evaluated by the alcohol, H2O2, and FFA-induced hepatocyte injury cellular model in vitro. The protective effects of PFF and PLF on the hepatic cells were evaluated by assessing cell apoptosis rate, enzymes activities, mitochondrial membrane potential, and mRNA expression in relevant signaling pathways. RESULTS The results revealed that PFF was mainly composed of pinocembrin, quercitrin and quercetin, while PLF was predominantly composed of quercetin, pinocembrin, and kaempferol and their derivatives. PFF and PLF exhibited distinct effects on increasing the cell proliferation rate, regulating the MDA, GOT and GPT levels, and modulating the mRNA expression in apoptosis and antioxidant pathways in alcohol damaged LO2 cells. PFF exhibited superior efficacy in reducing cell apoptosis in alcohol-damage cells compared to PLF. Both PFF and PLF alleviated mitochondrial stress in H2O2-induced LO2 cells. Additionally, the PFF and PLF attenuated lipid accumulation and activated mRNA expressions in PPARα/ACOX1/CPT-1 lipid metabolism pathways, as well as Nrf2/ARE oxidative stress pathways. CONCLUSION This study compared the hepatoprotective activities of flavonoids-rich fractions purified from the flowers and leaves of P. chinense. The results contribute to the enhanced development and utilization of various parts of P. chinense aimed at medical and health food applications.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Dermatology Hospital of Southern Medical University, Guangzhou, 510091, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Mao-Mao Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ting Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wei Zhu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China.
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
9
|
Hassanein EHM, Alotaibi MF, Alruhaimi RS, Abd El-Ghafar OAM, Mohammad MK, Atwa AM, Mahmoud AM. Diallyl disulfide prevents cadmium-induced testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 signaling and upregulating SIRT1 in rats. J Trace Elem Med Biol 2024; 86:127560. [PMID: 39536426 DOI: 10.1016/j.jtemb.2024.127560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cadmium (Cd) is a heavy metal environmental pollutant that can cause serious health problems. Cd can cause structural changes in the testes and exposure to this heavy metal is associated with the loss of sperms and male infertility. The role of oxidative stress and inflammation in Cd toxicity has been acknowledged. Diallyl disulfide (DADS), an organo-sulfur compound found in garlic, possesses antioxidant, anti-inflammatory, and cytoprotective effects. This study evaluated the protective effect of DADS against Cd reproductive toxicity in male rats, emphasizing the involvement of redox imbalance, TLR-4/NF-κB and JAK1/STAT3 signaling, and SIRT1. METHODS DADS (10 mg/kg body weight) was administered orally to rats for 14 days and a single dose of Cd (1.2 mg/kg) was injected intraperitoneally on day 7. Blood and samples from the testes were collected for analysis. RESULTS Cd caused testicular injury manifested by multiple histopathological changes and loss of sperms from seminiferous tubules. Circulating levels of gonadotropins and testosterone were decreased in Cd-administered rats. DADS prevented Cd-induced testicular injury and ameliorated serum levels of gonadotropins and testosterone. Cd increased testicular reactive oxygen species (ROS) and malondialdehyde (MDA) and upregulated TLR-4, NF-κB, pro-inflammatory cytokines, JAK1 and STAT3 phosphorylation, Bax and caspase-3, while decreased antioxidants and Bcl-2. DADS effectively decreased ROS and MDA, downregulated TLR-4, NF-κB, JAK1, STAT3, pro-inflammatory cytokines and pro-apoptosis markers in Cd-administered rats. In addition, DADS enhanced antioxidants, Bcl-2, SIRT1 and cytoglobin in the testis of Cd-administered rats. CONCLUSION DADS prevents Cd-induced testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 signaling, and upregulating SIRT1 and antioxidants.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt
| | - Mostafa K Mohammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Assiut, New Nasser City, West of Assiut, Assiut 71523, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
10
|
Musavi H, Shokri Afra H, Sadeghkhani F, Ghalehnoei H, Khonakdar-Tarsi A, Mahjoub S. A molecular and computational study of galbanic acid as a regulator of Sirtuin1 pathway in inhibiting lipid accumulation in HepG2 cells. Arch Physiol Biochem 2024; 130:877-885. [PMID: 38712991 DOI: 10.1080/13813455.2024.2336911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Sirtuin1 (SIRT1) plays a crucial role in the pathophysiology of non-alcoholic fatty liver disease. We investigated the mechanistic role of galbanic acid (Gal) as a regulator of SIRT1 in silico and in vitro. METHODS HepG2 cells were treated with Gal in the presence or absence of EX-527, a SIRT1-specific inhibitor, for 24 h. Sirtuin1 gene and protein expression were measured by RT-PCR and Western blotting, respectively. It has been docked to the allosteric reign of SIRT1 (PDB ID: 4ZZJ) to study the effect of Gal on SIRT1, and then the protein and complex molecular dynamic (MD) simulations had been studied in 100 ns. RESULTS The semi-quantitative results of Oil red (p < .03) and TG level (p < .009) showed a significant reduction in lipid accumulation by treatment with Gal. Also, a significant increase was observed in the gene and protein expression of SIRT1 (p < .05). MD studies have shown that the average root mean square deviation (RMSD) was about 0.51 Å for protein structure and 0.66 Å for the complex. The average of radius of gyration (Rg) is 2.33 and 2.32 Å for protein and complex, respectively, and the pattern of root mean square fluctuation (RMSF) was almost similar. CONCLUSION Computational studies show that Gal can be a great candidate to use as a SIRT1 ligand because it does not interfere with the structure of the protein, and other experimental studies showed that Gal treatment with SIRT1 inhibitor increases fat accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Hadis Musavi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hajar Shokri Afra
- Gut and Liver Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farideh Sadeghkhani
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hossein Ghalehnoei
- Department of Medical Biotechnology, Molecular and Cell Biology Research Center, Faculty of Advanced Technologist in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar-Tarsi
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soleiman Mahjoub
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
11
|
Alruhaimi RS, Hassanein EHM, Ahmeda AF, Atwa AM, Alnasser SM, Sayed GA, Alotaibi M, Alzoghaibi MA, Mahmoud AM. Farnesol attenuates cadmium-induced kidney injury by mitigating oxidative stress, inflammation and necroptosis and upregulating cytoglobin and PPARγ in rats. Tissue Cell 2024; 90:102526. [PMID: 39181090 DOI: 10.1016/j.tice.2024.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Heavy metals are environmental pollutants that can harm animals and humans even at low concentrations. Cadmium (Cd) is known for its serious health effects on different organs and its toxicity is associated with oxidative stress (OS) and inflammation. Farnesol (FAR), a sesquiterpene alcohol found in many vegetables and fruits, possesses promising anti-inflammatory and antioxidant activities. This study evaluated the effect of FAR on Cd-induced kidney injury, pinpointing its effect of the redox status, inflammation, fibrosis and necroptosis. Rats in this study received FAR for 14 days and Cd on day 7. Elevated serum creatinine, urea and uric acid, and several kidney histopathological alterations were observed in Cd-administered rats. Cd increased MDA, decreased antioxidants, downregulated PPARγ and upregulated NF-κB p65, IL-6, TNF-α, and IL-1β. Necroptosis mediators (RIP1, RIP3, MLKL, and caspase-8) and α-SMA were upregulated, and collagen deposition was increased in Cd-administered rats. FAR ameliorated kidney injury markers and tissue damage, attenuated OS, suppressed NF-κB and inflammatory mediators, and enhanced antioxidants. In addition, FAR suppressed RIP1, RIP3, MLKL, caspase-8, and α-SMA, and enhanced kidney cytoglobin and PPARγ. In conclusion, FAR protects against Cd nephrotoxicity by suppressing OS, inflammatory response and necroptosis, effects associated with enhanced antioxidants, cytoglobin, and PPARγ.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Meshal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafar Al Batin 39524, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
12
|
Sultan WS, Mahmoud AM, Ahmed SA, Alruhaimi RS, Alzoghaibi MA, El-Bassuony AA, Hasona NA, Kamel EM. Phytochemical Analysis and Anti-dyslipidemia and Antioxidant Activities of Pluchea dioscoridis: In Vitro, In Silico and In Vivo Studies. Chem Biodivers 2024; 21:e202400842. [PMID: 38884416 DOI: 10.1002/cbdv.202400842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Pluchea dioscoridis (L.) DC. is a flowering wild plant used traditionally in the treatment of rhematic disorders. This study investigated the phytochemical and in vitro radical scavenging activity (RSA), and in vivo anti-hyperlipidemic, antioxidant and anti-inflammatory properties of P. dioscoridis. The antihyperlipidemic efficacy was determined in a rat model of dyslipidemia. The extract and fractions of P. dioscoridis showed RSA with the ethyl acetate (EA) fraction exhibiting the most potent activity. The phytochemical analysis of P. dioscoridis EA fraction (PDEAF) led to the isolation of five compounds (lupeol, quercetin, lupeol acetate, stigmasterol, and syringic acid). To evaluate its anti-hyperlipidemic effect, three doses of PDEAF were supplemented to rats for 14 days and poloxamer-407 was administered on day 15 to induce dyslipidemia. All doses of PDEAF decreased plasma triglycerides, cholesterol, low-density lipoprotein-cholesterol (LDL-C) and very low-density lipoprotein-cholesterol (vLDL-C), and increased plasma lipoprotein lipase (LPL). PDEAF upregulated hepatic LDL receptor and suppressed 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, decreased lipid peroxidation and tumor necrosis factor (TNF)-α and enhanced reduced glutathione (GSH) and enzymatic antioxidants in dyslipidmeic rats. In silico findings revealed the binding affinity of the isolated compounds towards LPL, HMG-CoA reductase, and LDL receptor. In conclusion, P. dioscoridis is rich in phytoconstituents, exhibited RSA and its EA fraction effectively prevented acute dyslipidemia and its associated oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Wageha S Sultan
- Department of Chemistry, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Shimaa A Ahmed
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Ashraf A El-Bassuony
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Nabil A Hasona
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
13
|
Elsaid FH, Hussein AM, Eid EA, Ammar OA, Khalil AA. Effect of intermittent fasting on adriamycin-induced nephropathy: Possible underlying mechanisms. Tissue Cell 2024; 88:102360. [PMID: 38489913 DOI: 10.1016/j.tice.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/16/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE Intermittent fasting (IF) has been shown to induce a well-organized adaptive defense against stress inside the cells, which increases the production of anti-oxidant defenses, repair of DNA, biogenesis of mitochondria, and genes that combat inflammation. So, the goal of the current investigation was to identify the effects of IF on rats with adriamycin (ADR)-induced nephropathy and any potential underlying mechanisms. METHODS Four groups of 40 mature Sprague-Dawley male rats were allocated as follow; control, fasting, ADR, and ADR plus fasting. After 8 weeks of ADR administration urine, blood samples and kidneys were taken for assessment of serum creatinine (Cr), BUN, urinary proteins, indicators of oxidative damage (malondialdehyde (MDA), reduced glutathione (GSH) and Catalase (CAT) levels), histopathological examinations, immunohistochemical examinations for caspase-3, Sirt1, aquaporin2 (AQP2) and real time PCR for antioxidant genes; Nrf2, HO-1 in kidney tissues. RESULTS IF significantly improved serum creatinine, BUN and urinary protein excretion, oxidative stress (low MDA with high CAT and GSH), in addition to morphological damage to the renal tubules and glomeruli as well as caspase-3 production during apoptosis. Moreover, IF stimulates significantly the expression of Sirt1 and Nrf2/HO-1 and AQP2. CONCLUSION AQP2, Sirt1, Nrf2/HO-1 signaling may be upregulated and activated by IF, which alleviates ADR nephropathy. Enhancing endogenous antioxidants, reducing apoptosis and tubulointerstitial damage, and maintaining the glomerular membrane's integrity are other goals.
Collapse
Affiliation(s)
- Fathy H Elsaid
- Department of Medical Physiology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| | - Abdelaziz M Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Elsayed A Eid
- Department of Internal Medicine and Endocrinology, Faculty of Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Omar A Ammar
- Department of Basic Science, Faculty of Applied Health Science and Technology, Delta University for Science and Technology, Gamasa, Egypt
| | - Ali Ali Khalil
- Department of Medical Physiology, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
14
|
Mohamed GA, El-Agamy DS, Abdallah HM, Sindi IA, Almogaddam MA, Alzain AA, Andijani YS, Ibrahim SR. Kaempferol sophoroside glucoside mitigates acetaminophen-induced hepatotoxicity: Role of Nrf2/NF-κB and JNK/ASK-1 signaling pathways. Heliyon 2024; 10:e31448. [PMID: 38813141 PMCID: PMC11133934 DOI: 10.1016/j.heliyon.2024.e31448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
APAP (Acetaminophen)-induced hepatic injury is a major public health threat that requires continuous searching for new effective therapeutics. KSG (Kaempferol-3-sophoroside-7-glucoside) is a kaempferol derivative that was separated from plant species belonging to different genera. This study explored the protective effects of KSG on ALI (acute liver injury) caused by APAP overdose in mice and elucidated its possible mechanisms. The results showed that KSG pretreatment alleviated APAP-induced hepatic damage as it reduced hepatic pathological lesions as well as the serum parameters of liver injury. Moreover, KSG opposed APAP-associated oxidative stress and augmented hepatic antioxidants. KSG suppressed the inflammatory response as it decreased the genetic and protein expression as well as the levels of inflammatory cytokines. Meanwhile, KSG enhanced the mRNA expression and level of anti-inflammatory cytokine, IL-10 (interleukin-10). KSG repressed the activation of NF-κB (nuclear-factor kappa-B), besides it promoted the activation of Nrf2 signaling. Additionally, KSG markedly hindered the elevation of ASK-1 (apoptosis-signal regulating-kinase-1) and JNK (c-Jun-N-terminal kinase). Furthermore, KSG suppressed APAP-induced apoptosis as it decreased the level and expression of Bax (BCL2-associated X-protein), and caspase-3 concurrent with an enhancement of anti-apoptotic protein, Bcl2 in the liver. More thoroughly, Computational studies reveal indispensable binding affinities between KSG and Keap1 (Kelch-like ECH-associated protein-1), ASK1 (apoptosis signal-regulating kinase-1), and JNK1 (c-Jun N-terminal protein kinase-1) with distinctive tendencies for selective inhibition. Taken together, our data showed the hepatoprotective capacity of KSG against APAP-produced ALI via modulation of Nrf2/NF-κB and JNK/ASK-1/caspase-3 signaling. Henceforth, KSG could be a promising hepatoprotective candidate for ALI.
Collapse
Affiliation(s)
- Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed A. Almogaddam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, 21111, Sudan
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, 21111, Sudan
| | - Yusra Saleh Andijani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, 30078, Saudi Arabia
| | - Sabrin R.M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
15
|
Alruhaimi RS, Hassanein EHM, Bin-Jumah MN, Mahmoud AM. Cadmium-induced lung injury is associated with oxidative stress, apoptosis, and altered SIRT1 and Nrf2/HO-1 signaling; protective role of the melatonin agonist agomelatine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2335-2345. [PMID: 37819390 DOI: 10.1007/s00210-023-02754-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Cadmium (Cd) is a hazardous heavy metal extensively employed in manufacturing polyvinyl chloride, batteries, and other industries. Acute lung injury has been directly connected to Cd exposure. Agomelatine (AGM), a melatonin analog, is a drug licensed for treating severe depression. This study evaluated the effect of AGM against Cd-induced lung injury in rats. AGM was administered in a dose of 25 mg/kg/day orally, while cadmium chloride (CdCl2) was injected intraperitoneally in a dose of 1.2 mg/kg to induce lung injury. Pre-treatment with AGM remarkably ameliorated Cd-induced lung histopathological abrasions. AGM decreased reactive oxygen species (ROS) production, lipid peroxidation, suppressed NDAPH oxidase, and boosted the antioxidants. AGM increased Nrf2, GCLC, HO-1, and TNXRD1 mRNA, as well as HO-1 activity and downregulated Keap1. AGM downregulated Bax and caspase-3 and upregulated Bcl-2, SIRT1, and FOXO3 expression levels in the lung. In conclusion, AGM has a protective effect against Cd-induced lung injury via its antioxidant and anti-apoptotic effects mediated via regulating Nrf2/HO-1 and SIRT1/FOXO3 signaling.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71562, Egypt
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| |
Collapse
|
16
|
Opryshko V, Prokhach A, Akimov O, Riabushko M, Kostenko H, Kostenko V, Mishchenko A, Solovyova N, Kostenko V. Desmodium styracifolium: Botanical and ethnopharmacological insights, phytochemical investigations, and prospects in pharmacology and pharmacotherapy. Heliyon 2024; 10:e25058. [PMID: 38317880 PMCID: PMC10838797 DOI: 10.1016/j.heliyon.2024.e25058] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
The purpose of this inquiry is to provide a conprehensive summary and analysis of the literature concerning the pharmacological properties of components that can be extracted from Desmodium styracifolium, a preparation in Chinese medicine. This study also aims to explore their potential application in elaborating medicinal products for the effective prevention and treatment of such conditions as urolithiasis, cholelithiasis, type 2 diabetes mellitus, metabolic syndrome, pro-oxidant and inflammatory processes, etc. Several experimental studies confirmed the potential of D. styracifolium to influence mineral metabolism, to decrease the concentration of constituents involved in the formation of urinary calculi, and to reduce mineral encrustation in the urinary tract, as well as to alleviate the damage caused by crystal structures. This beneficial impact is achieved through a combination of antioxidant and anti-inflammatory actions, along with urine alkalinization. The cholelitholytic, choleretic, and hepatoprotective effects of D. styracifolium plants have been confirmed, primarily ascribed to the activation of the hepatic Xα receptor and the bile acid receptor, farnesoid X receptor, by the flavonoid shaftoside. Special attention is focused on the potential therapeutic applications of flavonoids derived from D. styracifolium for diseases associated with the development of chronic inflammation and systemic response, emphasizing the ability of flavonoids to exert antioxidant and anti-inflammatory effects by acting directly and through the modulation of transcription factors. It is concluded that new strategies for the prevention and treatment of urolithiasis, cholelithiasis, type 2 diabetes mellitus, metabolic syndrome, acute and chronic inflammatory processes may rely on the promising development of dosage forms of D. styracifolium with their subsequent preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentyna Opryshko
- Dnipro State Medical University, Department of General and Clinical Pharmacy, Dnipro, Ukraine
| | - Anna Prokhach
- Dnipro State Medical University, Department of Oncology and Medical Radiology, Dnipro, Ukraine
| | - Oleh Akimov
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Mykola Riabushko
- Poltava State Medical University, Department of Pharmacology, Clinical Pharmacology and Pharmacy, Poltava, Ukraine
| | - Heorhii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Viktoriia Kostenko
- Poltava State Medical University, Department of Foreign Languages with Latin and Medical Terminology, Poltava, Ukraine
| | - Artur Mishchenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Natalia Solovyova
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| | - Vitalii Kostenko
- Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine
| |
Collapse
|
17
|
Lombardo GE, Russo C, Maugeri A, Navarra M. Sirtuins as Players in the Signal Transduction of Citrus Flavonoids. Int J Mol Sci 2024; 25:1956. [PMID: 38396635 PMCID: PMC10889095 DOI: 10.3390/ijms25041956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Sirtuins (SIRTs) belong to the family of nicotine adenine dinucleotide (NAD+)-dependent class III histone deacetylases, which come into play in the regulation of epigenetic processes through the deacetylation of histones and other substrates. The human genome encodes for seven homologs (SIRT1-7), which are localized into the nucleus, cytoplasm, and mitochondria, with different enzymatic activities and regulatory mechanisms. Indeed, SIRTs are involved in different physio-pathological processes responsible for the onset of several human illnesses, such as cardiovascular and neurodegenerative diseases, obesity and diabetes, age-related disorders, and cancer. Nowadays, it is well-known that Citrus fruits, typical of the Mediterranean diet, are an important source of bioactive compounds, such as polyphenols. Among these, flavonoids are recognized as potential agents endowed with a wide range of beneficial properties, including antioxidant, anti-inflammatory, hypolipidemic, and antitumoral ones. On these bases, we offer a comprehensive overview on biological effects exerted by Citrus flavonoids via targeting SIRTs, which acted as modulator of several signaling pathways. According to the reported studies, Citrus flavonoids appear to be promising SIRT modulators in many different pathologies, a role which might be potentially evaluated in future therapies, along with encouraging the study of those SIRT members which still lack proper evidence on their support.
Collapse
Affiliation(s)
- Giovanni Enrico Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| | - Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.E.L.); (C.R.); (M.N.)
| |
Collapse
|
18
|
Abd-Alhameed EK, Azouz AA, Abo-Youssef AM, Ali FEM. The enteroprotective effect of nifuroxazide against methotrexate-induced intestinal injury involves co-activation of PPAR-γ, SIRT1, Nrf2, and suppression of NF-κB and JAK1/STAT3 signals. Int Immunopharmacol 2024; 127:111298. [PMID: 38070469 DOI: 10.1016/j.intimp.2023.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Methotrexate (MTX) has long manifested therapeutic efficacy in several neoplastic and autoimmune disorders. However, MTX-associated intestinal toxicity restricts the continuation of treatment. Nifuroxazide (NIF) is an oral antibiotic approved for gastrointestinal infections as an effective antidiarrheal agent with a high safety profile. The current study was designed to explore the potential efficacy of NIF in alleviating intestinal toxicity associated with MTX chemotherapy with the elucidation of the proposed molecular mechanisms. Rats were administered NIF (50 mg/kg; p.o.) for ten days. On day five, a single i.p. injection of MTX (20 mg/kg) was given to induce intestinal intoxication. At the end of the experiment, duodenal tissue samples were isolated for biochemical, Western blotting, immunohistochemical (IHC), and histopathological analysis via H&E, PSA, and Alcian blue stains. NIF showed antioxidant enteroprotective effects against MTX intestinal intoxication through enhanced expression of the redox-sensitive signals of PPAR-γ, SIRT1, and Nrf2 estimated by IHC. Moreover, NIF down-regulated the pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), NF-κB protein expression, and the phosphorylation of JAK1/STAT3 proteins, leading to mitigation of intestinal inflammation. In accordance, the histological investigation revealed that NIF ameliorated the intestinal pathological changes, preserved the goblet cells, and reduced the inflammatory cells infiltration. Therefore, NIF could be a promising candidate for adjunctive therapy with MTX to mitigate the associated intestinal injury and increase its tolerability.
Collapse
Affiliation(s)
- Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| |
Collapse
|
19
|
Althagafy HS, Ali FEM, Hassanein EHM, Mohammedsaleh ZM, Kotb El-Sayed MI, Atwa AM, Sayed AM, Soubh AA. Canagliflozin ameliorates ulcerative colitis via regulation of TLR4/MAPK/NF-κB and Nrf2/PPAR-γ/SIRT1 signaling pathways. Eur J Pharmacol 2023; 960:176166. [PMID: 37898288 DOI: 10.1016/j.ejphar.2023.176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Ulcerative colitis (UC) is one of the most common subtypes of inflammatory bowel disease (IBD) that affects the colon and is characterized by severe intestinal inflammation. Canagliflozin is a widely used antihyperglycemic agent, a sodium-glucose cotransporter-2 (SGLT2) inhibitor that enhances urinary glucose excretion. This study aims to provide insights into the potential benefits of canagliflozin as a treatment for UC by addressing possible cellular signals. Acetic acid (AA; 4% v/v) was administered intrarectally to induce colitis. Canagliflozin is given orally at a dose of 10 mg/kg/day. Canagliflozin attenuates inflammation in AA-induced colitis, evidenced by significant and dose-dependently downregulation of p38 MAPK, NF-κB-p65, IKK, IRF3, and NADPH-oxidase as well as colonic levels of IL-6 and IL-1β and MPO enzymatic activity. Canagliflozin mitigates colonic oxidative stress by decreasing MDA content and restoring SOD enzymatic activities and GSH levels mediated by co-activating of Nrf2, PPARγ, and SIRT1 pathways. Moreover, an in-silico study confirmed that canagliflozin was specific to all target proteins in this study. Canagliflozin's binding affinity with its target proteins indicates and confirms its effectiveness in regulating these pathways. Also, network pharmacology analysis supported that canagliflozin potently attenuates UC via a multi-target and multi-pathway approach.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Mohamed I Kotb El-Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Cairo, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, 71515, Egypt
| | - Ayman A Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12566, Egypt
| |
Collapse
|
20
|
Shehata AH, Anter AF, Ahmed ASF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci 2023; 58:4211-4235. [PMID: 37840012 DOI: 10.1111/ejn.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
21
|
Ramadan SA, Kamel EM, Alruhaimi RS, Bin-Ammar A, Ewais MA, Khowailed AA, Hassanein EH, Mahmoud AM. An integrated phytochemical, in silico and in vivo approach to identify the protective effect of Caroxylon salicornicum against cisplatin hepatotoxicity. Saudi Pharm J 2023; 31:101766. [PMID: 37731943 PMCID: PMC10507235 DOI: 10.1016/j.jsps.2023.101766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/27/2023] [Indexed: 09/22/2023] Open
Abstract
Cisplatin (CIS) is a chemotherapeutic medication for the treatment of cancer. However, hepatotoxicity is among the adverse effects limiting its use. Caroxylon salicornicum is traditionally used for treating inflammatory diseases. In this investigation, three flavonoids, four coumarins, and three sterols were detected in the petroleum ether fraction of C. salicornicum (PEFCS). The isolated phytochemicals exhibited binding affinity toward Keap1, NF-κB, and SIRT1 in silico. The hepatoprotective role of PEFCS (100, 200 and 400 mg/kg) was investigated in vivo. Rats received PEFCS for 14 days and CIS on day 15. CIS increased ALT, AST and ALP and caused tissue injury along with increased ROS, MDA, and NO. Hepatic NF-κB p65, pro-inflammatory mediators, Bax and caspase-3 were increased in CIS-treated animals while antioxidants and Bcl-2 were decreased. PEFCS mitigated hepatocyte injury, and ameliorated transaminases, ALP, oxidative stress (OS) and inflammatory markers. PEFCS downregulated pro-apoptosis markers and boosted Bcl-2 and antioxidants. In addition, PEFCS upregulated Nrf2, HO-1, and SIRT1 in CIS-administered rats. In conclusion, PEFCS is rich in beneficial phytoconstituents and conferred protection against liver injury by attenuating OS and inflammation and upregulating Nrf2 and SIRT1.
Collapse
Affiliation(s)
| | | | - Reem S. Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Albandari Bin-Ammar
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Madeha A. Ewais
- Physiology Department, Faculty of Medicine, Beni-Suef University, Egypt
| | | | - Emad H.M. Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Ayman M. Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
22
|
Liao X, Han Y, He Y, Liu J, Wang Y. Natural compounds targeting mitochondrial dysfunction: emerging therapeutics for target organ damage in hypertension. Front Pharmacol 2023; 14:1209890. [PMID: 37397478 PMCID: PMC10311420 DOI: 10.3389/fphar.2023.1209890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023] Open
Abstract
Hypertension generally causes target organ damage (TOD) in the heart, brain, kidney, and blood vessels. This can result in atherosclerosis, plaque formation, cardiovascular and cerebrovascular events, and renal failure. Recent studies have indicated that mitochondrial dysfunction is crucial in hypertensive target organ damage. Consequently, mitochondria-targeted therapies attract increasing attention. Natural compounds are valuable resources for drug discovery and development. Many studies have demonstrated that natural compounds can ameliorate mitochondrial dysfunction in hypertensive target organ damage. This review examines the contribution of mitochondrial dysfunction to the development of target organ damage in hypertension. Moreover, it summarizes therapeutic strategies based on natural compounds that target mitochondrial dysfunction, which may be beneficial for preventing and treating hypertensive target organ damage.
Collapse
Affiliation(s)
- Xiaolin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanshan Han
- Scientific Research Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianjun Liu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
23
|
Wang H, Chen L, Yang B, Du J, Chen L, Li Y, Guo F. Structures, Sources, Identification/Quantification Methods, Health Benefits, Bioaccessibility, and Products of Isorhamnetin Glycosides as Phytonutrients. Nutrients 2023; 15:nu15081947. [PMID: 37111165 PMCID: PMC10143801 DOI: 10.3390/nu15081947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, people have tended to consume phytonutrients and nutrients in their daily diets. Isorhamnetin glycosides (IGs) are an essential class of flavonoids derived from dietary and medicinal plants such as Opuntia ficus-indica, Hippophae rhamnoides, and Ginkgo biloba. This review summarizes the structures, sources, quantitative and qualitative analysis technologies, health benefits, bioaccessibility, and marketed products of IGs. Routine and innovative assay methods, such as IR, TLC, NMR, UV, MS, HPLC, UPLC, and HSCCC, have been widely used for the characterization and quantification of IGs. All of the therapeutic effects of IGs discovered to date are collected and discussed in this study, with an emphasis on the relevant mechanisms of their health-promoting effects. IGs exhibit diverse biological activities against cancer, diabetes, hepatic diseases, obesity, and thrombosis. They exert therapeutic effects through multiple networks of underlying molecular signaling pathways. Owing to these benefits, IGs could be utilized to make foods and functional foods. IGs exhibit higher bioaccessibility and plasma concentrations and longer average residence time in blood than aglycones. Overall, IGs as phytonutrients are very promising and have excellent application potential.
Collapse
Affiliation(s)
- Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binrui Yang
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Jun Du
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Liang Chen
- Nutrition Science, Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai 201203, China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
24
|
Farage AE, Abdo W, Osman A, Abdel-Kareem MA, Hakami ZH, Alsulimani A, Bin-Ammar A, Alanazi AS, Alsuwayt B, Alanazi MM, Antar SA, Kamel EM, Mahmoud AM. Betulin prevents high fat diet-induced non-alcoholic fatty liver disease by mitigating oxidative stress and upregulating Nrf2 and SIRT1 in rats. Life Sci 2023; 322:121688. [PMID: 37030617 DOI: 10.1016/j.lfs.2023.121688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic disorder characterized by hepatic lipid accumulation. This study explored the effect of betulin (BE), a terpenoid with promising antioxidant, anti-inflammatory and insulin sensitizing effects, on NAFLD induced by high fat diet (HFD). Rats received HFD and BE (15 and 30 mg/kg) for 12 weeks and blood and liver samples were collected for analyses. HFD caused hyperlipidemia, cholesterol and triglycerides accumulation in the liver, hepatocellular ballooning, fibrosis, insulin resistance (IR), lipid peroxidation (LPO), and NF-kB p65 upregulation. BE ameliorated serum and liver lipids, blood glucose, and insulin, liver LPO, prevented steatosis and fibrosis, suppressed NF-kB p65 and enhanced antioxidants in HFD-fed rats. BE downregulated ACC1 and FAS, and upregulated Nrf2, HO-1 and SIRT1 in the liver of HFD-fed rats. In silico investigations revealed the binding affinity of BE towards NF-kB, Keap1, HO-1 and SIRT1. In conclusion, BE attenuated HFD-induced NAFLD by ameliorating hyperlipidemia, IR, lipogenesis, liver lipid accumulation, and oxidative stress. The protective effect of BE was associated with enhanced Nrf2/HO-1 signaling and SIRT1.
Collapse
|
25
|
Hassanein EHM, Sayed AM, El-Ghafar OAMA, Omar ZMM, Rashwan EK, Mohammedsaleh ZM, Kyung SY, Park JH, Kim HS, Ali FEM. Apocynin abrogates methotrexate-induced nephrotoxicity: role of TLR4/NF-κB-p65/p38-MAPK, IL-6/STAT-3, PPAR-γ, and SIRT1/FOXO3 signaling pathways. Arch Pharm Res 2023; 46:339-359. [PMID: 36913116 DOI: 10.1007/s12272-023-01436-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
The present study was designed to evaluate the potential renoprotective impacts of apocynin (APC) against nephrotoxicity induced by methotrexate (MTX) administration. To fulfill this aim, rats were allocated into four groups: control; APC (100 mg/kg/day; orally); MTX (20 mg/kg; single intraperitoneal dose at the end of the 5th day of the experiment); and APC +MTX (APC was given orally for 5 days before and 5 days after induction of renal toxicity by MTX). On the 11th day, samples were collected to estimate kidney function biomarkers, oxidative stress, pro-inflammatory cytokines, and other molecular targets. Compared to the MTX control group, treatment with APC significantly decreased urea, creatinine, and KIM-1 levels and improved kidney histological alterations. Furthermore, APC restored oxidant/antioxidant balance, as evidenced by a remarkable alleviation of MDA, GSH, SOD, and MPO levels. Additionally, the iNOS, NO, p-NF-κB-p65, Ace-NF-κB-p65, TLR4, p-p38-MAPK, p-JAK1, and p-STAT-3 expressions were reduced, while the IκBα, PPAR-γ, SIRT1, and FOXO3 expressions were significantly increased. In NRK-52E cells, MTX-induced cytotoxicity was protected by APC in a concentration-dependent manner. In addition, increased expression of p-STAT-3 and p-JAK1/2 levels were reduced in MTX-treated NRK-52E cells by APC. The in vitro experiments revealed that APC-protected MTX-mediated renal tubular epithelial cells were damaged by inhibiting the JAK/STAT3 pathway. Besides, our in vivo and in vitro results were confirmed by predicting computational pharmacology results using molecular docking and network pharmacology analysis. In conclusion, our findings proved that APC could be a good candidate for MTX-induced renal damage due to its strong antioxidative and anti-inflammatory bioactivities.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, 71524, Asyut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni- Suef, Egypt
| | - Zainab M M Omar
- Department of Pharmacology, College of Medicine, Al-Azhar University, 71524, Asyut, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, 42421, Sakaka, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Kingdom of Saudi Arabia
| | - So Young Kyung
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Jae Hyeon Park
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, 71524, Asyut, Egypt
| |
Collapse
|
26
|
Flavonoids of Haloxylon salicornicum (Rimth) prevent cisplatin-induced acute kidney injury by modulating oxidative stress, inflammation, Nrf2, and SIRT1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49197-49214. [PMID: 36773264 DOI: 10.1007/s11356-023-25694-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Cisplatin (CIS) is an effective chemotherapeutic drug used for the treatment of many types of cancers, but its use is associated with adverse effects. Nephrotoxicity is a serious side effect of CIS and limits its therapeutic utility. Haloxylon salicornicum is a desert shrub used traditionally in the treatment of inflammatory disorders, but neither its flavonoid content nor its protective efficacy against CIS nephrotoxicity has been investigated. In this study, seven flavonoids were isolated from H. salicornicum methanolic extract (HSE) and showed in silico binding affinity with NF-κB, Keap1, and SIRT1. The protective effect of HSE against CIS nephrotoxicity was investigated. Rats received HSE (100, 200, and 400 mg/kg) for 14 days followed by a single injection of CIS. The drug increased Kim-1, BUN, and creatinine and caused multiple histopathological changes. CIS-administered rats showed an increase in renal ROS, MDA, NO, TNF-α, IL-1β, and NF-κB p65. HSE prevented tissue injury, and diminished ROS, NF-κB, and inflammatory mediators. HSE enhanced antioxidants and Bcl-2 and downregulated pro-apoptosis markers. These effects were associated with downregulation of Keap1 and microRNA-34a, and upregulation of SIRT1 and Nrf2/HO-1 signaling. In conclusion, H. salicornicum is rich in flavonoids, and its extract prevented oxidative stress, inflammation, and kidney injury, and modulated Nrf2/HO-1 and SIRT1 signaling in CIS-treated rats.
Collapse
|
27
|
Chen X, Yu J, Zheng L, Deng Z, Li H. Quercetin and lycopene co-administration prevents oxidative damage induced by d-galactose in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Alanezi AA, Almuqati AF, Alfwuaires MA, Alasmari F, Namazi NI, Althunibat OY, Mahmoud AM. Taxifolin Prevents Cisplatin Nephrotoxicity by Modulating Nrf2/HO-1 Pathway and Mitigating Oxidative Stress and Inflammation in Mice. Pharmaceuticals (Basel) 2022; 15:1310. [PMID: 36355481 PMCID: PMC9692949 DOI: 10.3390/ph15111310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 08/26/2023] Open
Abstract
Cisplatin (CIS) is an effective chemotherapeutic agent used in the treatment of several malignancies. The clinical use of CIS is associated with adverse effects, including acute kidney injury (AKI). Oxidative stress and inflammation are key events in the development of CIS-induced AKI. This study investigated the protective effect of taxifolin (TAX), a bioactive flavonoid with promising health-promoting properties, on CIS-induced nephrotoxicity in mice. TAX was orally given to mice for 10 days and a single dose of CIS was injected at day 7. Serum blood urea nitrogen (BUN) and creatinine were elevated, and multiple histopathological alterations were observed in the kidney of CIS-administered mice. CIS increased renal malondialdehyde (MDA), nitric oxide (NO), nuclear factor-kappaB (NF-κB) p65, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β, and decreased cellular antioxidants in mice. TAX remarkably prevented kidney injury, ameliorated serum BUN and creatinine, and renal MDA, NO, NF-κB p65, and pro-inflammatory cytokines, and boosted antioxidant defenses in CIS-administered mice. TAX downregulated Bax and caspase-3, and upregulated Bcl-2. These effects were associated with upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression and heme oxygenase (HO)-1 activity in CIS-administered mice. In conclusion, TAX prevented CIS-induced AKI by mitigating tissue injury, oxidative stress, inflammation, and cell death. The protective efficacy of TAX was associated with the upregulation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Abdulkareem A. Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Afaf F. Almuqati
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia
| | - Manal A. Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nader I. Namazi
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| | - Osama Y. Althunibat
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma’an 71111, Jordan
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
29
|
Optimization of Lipid Nanoparticles by Response Surface Methodology to Improve the Ocular Delivery of Diosmin: Characterization and In-Vitro Anti-Inflammatory Assessment. Pharmaceutics 2022; 14:pharmaceutics14091961. [PMID: 36145708 PMCID: PMC9506089 DOI: 10.3390/pharmaceutics14091961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Diosmin is a flavonoid with a great variety of biological activities including antioxidant and anti-inflammatory ones. Its cytoprotective effect in retinal pigment epithelium cells under high glucose conditions makes it a potential support in the treatment of diabetic retinopathy. Despite its benefits, poor solubility in water reduces its potential for therapeutic use, making it the biggest biopharmaceutical challenge. The design of diosmin-loaded nanocarriers for topical ophthalmic application represents a novelty that has not been yet explored. For this purpose, the response surface methodology (RSM) was used to optimize nanostructured lipid carriers (NLCs), compatible for ocular administration, to encapsulate diosmin and improve its physicochemical issues. NLCs were prepared by a simple and scalable technique: a melt emulsification method followed by ultrasonication. The experimental design was composed of four independent variables (solid lipid concentration, liquid lipid concentration, surfactant concentration and type of solid lipid). The effect of the factors was assessed on NLC size and PDI (responses) by analysis of variance (ANOVA). The optimized formulation was selected according to the desirability function (0.993). Diosmin at two different concentrations (80 and 160 µM) was encapsulated into NLCs. Drug-loaded nanocarriers (D-NLCs) were subjected to a physicochemical and technological investigation revealing a mean particle size of 83.58 ± 0.77 nm and 82.21 ± 1.12 nm, respectively for the D-NLC formulation prepared with diosmin at the concentration of 80 µM or 160 µM, and a net negative surface charge (−18.5 ± 0.60 and −18.0 ± 1.18, respectively for the two batches). The formulations were analyzed in terms of pH (6.5), viscosity, and adjusted for osmolarity, making them more compatible with the ocular environment. Subsequently, stability studies were carried out to assess D-NLC behavior under different storage conditions up to 60 days, indicating a good stability of NLC samples at room temperature. In-vitro studies on ARPE-19 cells confirmed the cytocompatibility of NLCs with retinal epithelium. The effect of D-NLCs was also evaluated in-vitro on a model of retinal inflammation, demonstrating the cytoprotective effect of D-NLCs at various concentrations. RSM was found to be a reliable model to optimize NLCs for diosmin encapsulation.
Collapse
|
30
|
Hao R, Ge J, Li F, Jiang Y, Sun-Waterhouse D, Li D. MiR-34a-5p/Sirt1 axis: A novel pathway for puerarin-mediated hepatoprotection against benzo(a)pyrene. Free Radic Biol Med 2022; 186:53-65. [PMID: 35561843 DOI: 10.1016/j.freeradbiomed.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Benzo[a]pyrene (BaP) as a carcinogen induces oxidative stress and inflammation, causing health problems including liver damage. Puerarin (a natural flavonoid) is traditionally used to provide hepatoprotective effects. This research was established to meet the rising demand for effective therapies/treatments against hepatic diseases and investigate the mechanism underlying the protective actions of puerarin against BaP-induced liver damage. In mice, puerarin combated effectively the detrimental changes in liver weight, color and function indices caused by BaP. In HepG2 cells, puerarin alleviated BaP-induced cell death, oxidative stress and inflammation, and such effects were positively correlated with puerarin's concentration (12.5-50 μM). Mechanistic studies revealed that BaP induced low Sirt1 expression and high miR-34a-5p expression, and puerarin treatment alleviated these changes. Oxidative stress and inflammation induced by BaP were almost eliminated when miR-34a-5p was silenced. Inhibiting miR-34a-5p or overexpressing Sirt1 had a similar effect to puerain treatment. Overexpression of miR-34a-5p and inhibition of Sirt1 reduced the protective effect of puerarin. Collectively, miR-34a-5p participates in the regulation of puerarin's protective function against BaP-induced injury through targeting Sirt1. There is a novel pathway for suppressing oxidative stress and inflammation via miR-34a-5p/Sirt1 axis in puerarin-mediated hepatoprotection, which opens up a new avenue for alternative therapies.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Junlin Ge
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China.
| |
Collapse
|
31
|
Abdel-Wahab BA, Alkahtani SA, Alqahtani AA, Hassanein EHM. Umbelliferone ameliorates ulcerative colitis induced by acetic acid via modulation of TLR4/NF-κB-p65/iNOS and SIRT1/PPARγ signaling pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37644-37659. [PMID: 35066822 DOI: 10.1007/s11356-021-18252-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Ulcerative colitis (UC) is a common chronic, idiopathic inflammatory bowel disease associated with inflammatory perturbation and oxidative stress. Umbelliferone (UMB) is a potent anti-inflammatory and antioxidant coumarin derivative. Depending on the possible mechanisms, we aimed to explore and elucidate the therapeutic potential of UMB on UC-inflammatory response and oxidative injury-induced via intrarectal administration of acetic acid (AA) in rats. Animals were assigned into four groups: control group, UMB (30 mg/kg, oral)-treated group, AA-induced colitis model group (2 ml of AA; 3% v/v), and colitis treated with UMB group. The results showed that UMB improved macroscopic and histological tissue injury caused by the AA. Mechanistically, UMB reduced the elevated colonic TNF-α, IL-6, MPO, and VCAM-1 and downregulated the gene and protein expression of TLR4, NF-κB, and iNOS signaling factors, exhibiting potent anti-inflammatory effects. Moreover, UMB upregulated the gene and protein expression of both SIRT1 and PPARγ signaling pathways, thereby inhibiting both oxidative injury and inflammatory response. Conclusively, UMB protected rats against AA-induced UC by suppressing the TLR4/NF-κB-p65/iNOS signaling pathway and promoting the SIRT1/PPARγ signaling. Our results showed the effectiveness of UMB in alleviating the pathogenesis of UC and introduced it as a possible therapeutic applicant for clinical application.
Collapse
Affiliation(s)
- Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut, Egypt.
| | - Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Abdulsalam A Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
32
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Deniz FSŞ, Eren G, Orhan IE. Flavonoids as Sirtuin Modulators. Curr Top Med Chem 2022; 22:790-805. [PMID: 35466876 DOI: 10.2174/1568026622666220422094744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
Sirtuins (SIRTs) are described as NAD+-dependent deacetylases, also known as class III histone deacetylases. So far, seven sirtuin genes (SIRTS 1-7) have been identified and characterized in mammals and also known to occur in bacteria and eukaryotes. SIRTs are involved in various biological processes including endocrine system, apoptosis, aging and longevity, diabetes, rheumatoid arthritis, obesity, inflammation, etc. Among them, the best characterized one is SIRT1. Actually, small molecules seem to be the most effective SIRT modulators. Flavonoids have been reported to possess many positive effects favrable for human health, while a relatively less research has been reported so far on their funcions as SIRT modulation mechanisms. In this regard, we herein aimed to focus on modulatory effects of flavonoids on SIRTs as the most common secondary metabolites in natural products. Our literature survey covering the years of 2006-2021 pointed out that flavonoids frequently interact with SIRT1 and SIRT3 followed by SIRT6. It can be also concluded that some popular flavonoid derivatives, e.g. resveratrol, quercetin, and catechin derivatives came forward in terms of SIRT modulation.
Collapse
Affiliation(s)
| | - Gökçen Eren
- Faculty of Pharmacy, Gazi University, 06330 Ankara
| | | |
Collapse
|
34
|
Alagal RI, AlFaris NA, Alshammari GM, ALTamimi JZ, AlMousa LA, Yahya MA. Kaempferol attenuates doxorubicin-mediated nephropathy in rats by activating SIRT1 signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
35
|
Shalkami AGS, Hassanein EHM, Sayed AM, Mohamed WR, Khalaf MM, Hemeida RAM. Hepatoprotective effects of phytochemicals berberine and umbelliferone against methotrexate-induced hepatic intoxication: experimental studies and in silico evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67593-67607. [PMID: 34258700 DOI: 10.1007/s11356-021-15358-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Chemotherapeutic drugs are used effectively to manage wide types of malignancies, but their therapeutic use is limited due to their associated hepatic intoxication. The current study sheds light on the effect of phytochemicals berberine (BBR) and umbelliferone (UMB) on methotrexate (MTX)-induced hepatic intoxication. Forty-eight rats were allocated to normal, BBR (50 mg/kg orally for 10 days), UMB (30 mg/kg orally for 10 days), MTX (20 mg/kg at the 5th day), BBR+MTX, and UMB+MTX. With regard to MTX, the results of this investigation reveal potent amelioration of MTX hepatotoxicity by BBR and UMB through reduction of the elevated serum levels of ALT, ALP, AST, and LDH confirmed by the attenuation of histopathological abrasion in liver tissues. BBR and UMB markedly restored antioxidant status. More importantly, BBR resulted in reducing P38 mitogen-activated protein kinase (P38MAPK), nuclear factor kappa-B (NF-κB), and Kelch-like ECH-associated protein 1 (Keap-1) genes and enhanced mRNA expression of Nrf-2 (P < 0.05). Interestingly, in silico studies via molecular docking pinpointed the binding modes of BBR and UMB to the binding pocket residues of P38MAPK, NF-κB, and Keap-1 and demonstrated a promising inhibition of Keap-1, P38MAPK, and NF-κB. BBR and UMB reduced the expression of pro-apoptotic protein Bax and apoptotic protein caspase-3 as well as increased the expression of anti-apoptotic protein Bcl-2. Therefore, BBR and UMB may denote promising therapeutic agents that can avert hepatic intoxication in patients receiving MTX.
Collapse
Affiliation(s)
- Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Deraya University, Menia, 61768, Egypt
| |
Collapse
|
36
|
Sayed AM, Hassanein EHM, Ali FEM, Omar ZMM, Rashwan EK, Mohammedsaleh ZM, Abd El-Ghafar OAM. Regulation of Keap-1/Nrf2/AKT and iNOS/NF-κB/TLR4 signals by apocynin abrogated methotrexate-induced testicular toxicity: Mechanistic insights and computational pharmacological analysis. Life Sci 2021; 284:119911. [PMID: 34450167 DOI: 10.1016/j.lfs.2021.119911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
AIM Male reproductive toxicity is becoming of growing significance due to clinical chemotherapy usage. Methotrexate (MTX) is an anti-folate used on a large scale for different tumors and autoimmune conditions. Despite its wide clinical use, MTX is associated with severe testicular intoxication. The exact underlying mechanism is unclear. METHODS Our study was conducted to explore the pathogenesis mechanism of MTX-induced testicular damage and the potential testicular protective effects of apocynin (APO) on testicular injury induced by single i.p. MTX (20 mg/kg). APO was administered orally (100 mg/kg) for ten days. RESULTS As compared to rats given MTX alone, co-administration of MTX with APO demonstrated multiple beneficial effects evidenced by a marked increase in testosterone, FSH, and LH and significantly restored testes histopathological alterations. Mechanistically, APO restored antioxidant status through up-regulation of Nrf2, cytoglobin, PPAR-γ, SIRT1, AKT, and p-AKT, while effectively lowering Keap-1. Moreover, APO significantly attenuated inflammation by down-regulating NF-κB-p65, iNOS, and TLR4 expressions confirmed by in-silico evidence. Additionally, network pharmacology analysis, a bioinformatics approach, was used to decipher various cellular processes' molecular mechanisms. SIGNIFICANCE The current investigation proves the beneficial effects of APO in MTX-associated testicular damage through activation of cytoglobin, Keap-1/Nrf2/AKT, PPAR-γ, SIRT1, and suppressing of TLR4/NF-κB-p65 signal. Our data collectively encourage extending the investigation to the clinical setting to explore APO effects in MTX-treated patients.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Zainab M M Omar
- Department of Pharmacology, College of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakaka 42421, Saudi Arabia; Department of Physiology, College of Medicine, Al-Azhar University, Assuit 71524, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
37
|
5,7,3',4'-tetramethoxyflavone ameliorates cholesterol dysregulation by mediating SIRT1/FOXO3a/ABCA1 signaling in osteoarthritis chondrocytes. Future Med Chem 2021; 13:2153-2166. [PMID: 34608806 DOI: 10.4155/fmc-2021-0247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dyslipidemia has been associated with the development of osteoarthritis. Our previous study found that 5,7,3',4'-tetramethoxyflavone (TMF) exhibited protective activities against the pathological changes of osteoarthritis. Aim: To investigate the roles of TMF in regulating ABCA1-mediated cholesterol metabolism. Methods: Knockdown and overexpression were employed to study gene functions. Protein-protein interaction was investigated by co-immunoprecipitation, and the subcellular locations of proteins were studied by immunofluorescence. Results: IL-1β decreased ABCA1 expression and induced apoptosis. Therapeutically, TMF ameliorated the effects of IL-1β. FOXO3a knockdown expression abrogated the effects of TMF, and FOXO3a overexpression increased ABCA1 expression by interacting with LXRα. TMF promoted FOXO3a nuclear translocation by activating SIRT1 expression. Conclusions: TMF ameliorates cholesterol dysregulation by increasing the expression of FOXO3a/LXRα/ABCA1 signaling through SIRT1 in C28/I2 cells.
Collapse
|
38
|
Hassanein EHM, Kamel EO, Ali FEM, Ahmed MAR. Berberine and/or zinc protect against methotrexate-induced intestinal damage: Role of GSK-3β/NRF2 and JAK1/STAT-3 signaling pathways. Life Sci 2021; 281:119754. [PMID: 34174323 DOI: 10.1016/j.lfs.2021.119754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
AIM The present study was undertaken to elucidate the potential protective mechanism of berberine (BBR) and/or zinc (Zn) against methotrexate (MTX)-induced intestinal injury. METHODS Five groups of rats were assigned; normal group (received vehicle), MTX group (20 mg/kg; i.p. single dose), and the other three groups received a single daily oral dose of BBR (50 mg/kg), Zn (5 mg/kg), and BBR plus Zn respectively, for 5 days before MTX and 5 days after. RESULTS Our results emphasized the toxic effect of MTX on rat's intestine as shown by disturbance of oxidant/antioxidant status, down-regulation of NRF2, SIRT1, FOXO-3, Akt, and mTOR expressions, along with up-regulation of GSK-3β, JAK1, and STAT-3 expressions. Besides, severe intestinal histopathological changes were also observed. On the contrary, BBR and/or Zn produced marked protection against MTX-induced intestinal toxicity via amelioration of oxidative stress, improving NRF2, SIRT1, FOXO-3, GSK-3β, Akt, mTOR, JAK1, and STAT-3 alterations. Moreover, our treatments significantly restored histopathological abnormalities. Interestingly, combination therapy of BBR plus Zn exhibited higher effectiveness than mono-therapy. SIGNIFICANCE BBR plus Zn could be used as a novel therapy for the treatment of MTX-induced intestinal damage through modulation of GSK-3β/NRF2, Akt/mTOR, JAK1/STAT-3, and SIRT1/FOXO-3 signaling pathways.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esam Omar Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | |
Collapse
|
39
|
Aoi W, Iwasa M, Marunaka Y. Metabolic functions of flavonoids: From human epidemiology to molecular mechanism. Neuropeptides 2021; 88:102163. [PMID: 34098453 DOI: 10.1016/j.npep.2021.102163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Dietary flavonoid intake is associated with the regulation of nutrient metabolism in the living body. Observational and cohort studies have reported a negative association between flavonoid intake and the risk of metabolic and cardiovascular diseases. Several intervention trials in humans have also supported the benefits of dietary flavonoids. In experimental studies using animal models, a daily diet rich in typical flavonoids such as catechins, anthocyanin, isoflavone, and quercetin was shown to improve whole-body energy expenditure, mitochondrial activity, and glucose tolerance. For some flavonoids, molecular targets for the metabolic modulations have been suggested. Although the effect of flavonoids on neurons has been unclear, several flavonoids have been shown to regulate thermogenesis and feeding behavior through modulating autonomic and central nervous systems. Based on epidemiological and experimental studies, this review summarizes the evidence on the metabolic benefits of flavonoids and their potential mechanism of action in metabolic regulation.
Collapse
Affiliation(s)
- Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.
| | - Masayo Iwasa
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, Kyoto 604-8472, Japan; Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan; Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; International Research Center for Food Nutrition and Safety, College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
40
|
Kempuraj D, Thangavel R, Kempuraj DD, Ahmed ME, Selvakumar GP, Raikwar SP, Zaheer SA, Iyer SS, Govindarajan R, Chandrasekaran PN, Zaheer A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors 2021; 47:190-197. [PMID: 33098588 DOI: 10.1002/biof.1687] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Neuroinflammation leads to neurodegeneration, cognitive defects, and neurodegenerative disorders. Neurotrauma/traumatic brain injury (TBI) can cause activation of glial cells, neurons, and neuroimmune cells in the brain to release neuroinflammatory mediators. Neurotrauma leads to immediate primary brain damage (direct damage), neuroinflammatory responses, neuroinflammation, and late secondary brain damage (indirect) through neuroinflammatory mechanism. Secondary brain damage leads to chronic inflammation and the onset and progression of neurodegenerative diseases. Currently, there are no effective and specific therapeutic options to treat these brain damages or neurodegenerative diseases. Flavone luteolin is an important natural polyphenol present in several plants that show anti-inflammatory, antioxidant, anticancer, cytoprotective, and macrophage polarization effects. In this short review article, we have reviewed the neuroprotective effects of luteolin in neurotrauma and neurodegenerative disorders and pathways involved in this mechanism. We have collected data for this study from publications in the PubMed using the keywords luteolin and mast cells, neuroinflammation, neurodegenerative diseases, and TBI. Recent reports suggest that luteolin suppresses systemic and neuroinflammatory responses in Coronavirus disease 2019 (COVID-19). Studies have shown that luteolin exhibits neuroprotective effects through various mechanisms, including suppressing immune cell activation, such as mast cells, and inflammatory mediators released from these cells. In addition, luteolin can suppress neuroinflammatory response, activation of microglia and astrocytes, oxidative stress, neuroinflammation, and the severity of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and TBI pathogenesis. In conclusion, luteolin can improve cognitive decline and enhance neuroprotection in neurodegenerative diseases, TBI, and stroke.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Ramasamy Thangavel
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Deepak D Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- David H. Hickman High School, Columbia Public Schools, Columbia, Missouri, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Sudhanshu P Raikwar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Smita A Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Shankar S Iyer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Raghav Govindarajan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | | | - Asgar Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| |
Collapse
|
41
|
Kitada M, Ogura Y, Monno I, Koya D. Supplementation with Red Wine Extract Increases Insulin Sensitivity and Peripheral Blood Mononuclear Sirt1 Expression in Nondiabetic Humans. Nutrients 2020; 12:nu12103108. [PMID: 33053742 PMCID: PMC7600896 DOI: 10.3390/nu12103108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the effects of dietary supplementation with a nonalcoholic red wine extract (RWE), including resveratrol and polyphenols, on insulin sensitivity and Sirt1 expression in nondiabetic humans. The present study was a single-arm, open-label and prospective study. Twelve subjects received supplementation with RWE, including 19.2 mg resveratrol and 136 mg polyphenols, daily for 8 weeks. After 8 weeks, metabolic parameters, including glucose/lipid metabolism and inflammatory markers, were evaluated. mRNA expression of Sirt1 was evaluated in isolated peripheral blood mononuclear cells (PBMNCs). Additionally, Sirt1 and phosphorylated AMP-activated kinase (p-AMPK) expression were evaluated in cultured human monocytes (THP-1 cells). Supplementation with RWE for 8 weeks decreased the homeostasis model assessment for insulin resistance (HOMA-IR), which indicates an increase in insulin sensitivity. Serum low-density lipoprotein-cholesterol (LDL-C), triglyceride (TG) and interleukin-6 (IL-6) were significantly decreased by RWE supplementation for 8 weeks. Additionally, Sirt1 mRNA expression in isolated PBMNCs was significantly increased after 8 weeks of RWE supplementation. Moreover, the rate of increase in Sirt1 expression was positively correlated with the rate of change in HOMA-IR. The administration of RWE increased Sirt1 and p-AMPK expression in cultured THP-1 cells. Supplementation with RWE improved metabolism, such as insulin sensitivity, lipid profile and inflammation, in humans. Additionally, RWE supplementation induced an increase in Sirt1 expression in PBMNCs, which may be associated with an improvement in insulin sensitivity.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan; (Y.O.); (I.M.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan
- Correspondence: (M.K.); (D.K.); Tel.: +81-76-286-2211 (M.K. & D.K.); Fax: +81-76-286-6927 (M.K. & D.K.)
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan; (Y.O.); (I.M.)
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan; (Y.O.); (I.M.)
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan; (Y.O.); (I.M.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Daigaku, Uchinada, Ishikawa 920-0293, Japan
- Correspondence: (M.K.); (D.K.); Tel.: +81-76-286-2211 (M.K. & D.K.); Fax: +81-76-286-6927 (M.K. & D.K.)
| |
Collapse
|