1
|
Ju S, Kang ZY, Yang LY, Xia YJ, Guo YM, Li S, Yan H, Qi MK, Wang HP, Zhong L. Gut microbiota and ovarian diseases: a new therapeutic perspective. J Ovarian Res 2025; 18:105. [PMID: 40399985 PMCID: PMC12093725 DOI: 10.1186/s13048-025-01684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/28/2025] [Indexed: 05/23/2025] Open
Abstract
The gut microbiota is a complex community of microorganisms that inhabit the human gastrointestinal tract, helping to maintain the ecological balance of the body's internal and external environments. Disruptions in the composition and diversity of gut microbiota, as well as changes in their metabolic functions, can link to the development and severity of conditions such as premature ovarian insufficiency, polycystic ovary syndrome, and ovarian tumors. This article thoroughly reviews recent research on the connection between gut microbiota and ovarian diseases, providing fresh perspectives on their prevention, pathogenesis, and treatment.
Collapse
Affiliation(s)
- Shan Ju
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhen Yang Kang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China
| | - Li Ya Yang
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China
| | - Yong Jun Xia
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yi Ming Guo
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China
| | - Sui Li
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Hongli Yan
- Changhai hospital, the Navy medical university, 200433, shanghai, China
| | - Ming Kang Qi
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China
| | - Hui Ping Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), National Research Institute for Family Planning, Beijing, 100081, China.
| | - Lian Zhong
- School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
2
|
Gautam N, Sharma P, Chaudhary A, Sahu S, Vohora D, Mishra M, Dutta D, Singh M, Talegaonkar S. Investigating the osteogenic potential of bone-targeted daidzein loaded hydroxyapatite nanoparticles for postmenopausal osteoporosis: pharmacodynamic, biochemical, and genotoxicity evaluations. J Drug Target 2025:1-16. [PMID: 40338153 DOI: 10.1080/1061186x.2025.2503499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/25/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Bisphosphonates and Hormone Replacement Therapy are the primary therapeutic interventions for Postmenopausal Osteoporosis (PMO), however, associated repercussions limit their usage. To address this challenge, we hypothesised the co-delivery of hydroxyapatite (HAP) with daidzein (DZ) for synergistic treatment of PMO. Propounding this bimodal approach, daidzein-loaded hydroxyapatite nanoparticles (DZHAPNPs) were prepared leveraging the oestrogenic properties of DZ while utilising HAP to facilitate biomineralization. The osteogenic potential of developed nanoparticles was validated through in vitro experiments on MG-63 cells and in vivo studies employing a "4-vinyl cyclohexene diepoxide-induced menopausal-mice model". DZHAPNPs exhibited pronounced pro-osteogenic activity, evidenced by enhanced (155.49%) alkaline phosphatase (ALP) activity in MG-63 cells. Additionally, cellular uptake studies confirmed their internalisation and targeted delivery. Following menopause induction and treatment, the mice underwent radiography, histology, micro-computed tomography (micro-CT) analysis, and biochemical evaluations. A significant reduction (p < 0.001) in biomarkers i.e., β-CTx, BALP, and TRAP-5b, post-treatment showed a substantial influence of DZ and DZHAPNPs. Better bone architectural parameters and bone mineral density in micro-CT analysis served as proof of the hypothesis. Also, the cellular biocompatibility of nanoparticles was confirmed through genotoxicity tests performed on the Drosophila melanogaster. The noteworthy results of the research substantiated the synergistic influence of DZ and HAPNPs in resilience and bone strength maintenance.
Collapse
Affiliation(s)
- Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, New Delhi, India
| | - Prashant Sharma
- Institute of Nano Science and Technology (INST), Chemical Biology Unit, Mohali, India
| | - Antra Chaudhary
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Surajita Sahu
- Neural Developmental Biology Laboratory, Department of Life Sciences, NIT Rourkela, Rourkela, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Monalisa Mishra
- Neural Developmental Biology Laboratory, Department of Life Sciences, NIT Rourkela, Rourkela, India
| | - Debopriya Dutta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, New Delhi, India
| | - Manish Singh
- Institute of Nano Science and Technology (INST), Chemical Biology Unit, Mohali, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, New Delhi, India
| |
Collapse
|
3
|
Neitzke EV, Dos Santos FG, Zanini BM, Cavalcante MB, Mason JB, Masternak MM, de Souza ICC, Schneider A. The influence of ovarian activity and menopause on mental health: Evidence from animal models and women. Physiol Behav 2025; 294:114886. [PMID: 40118132 DOI: 10.1016/j.physbeh.2025.114886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Hormonal variations occurring throughout the female reproductive cycle have a significant impact on physical and mental health, particularly due to the influence of estradiol (E2) and progesterone (P4). These changes are directly related to alterations in neurological systems, being associated with conditions such as premenstrual syndrome (PMS), premenstrual dysphoric disorder (PMDD), and mood disorders during hormonal transition phases, such as perimenopause and menopause. Studies conducted in humans and animal models indicate that these fluctuations affect neurotransmitters, neural plasticity, and patterns of brain activity, ultimately influencing quality of life and mental health. Despite extensive research on the topic, the interactions between sex hormones, mental health, and reproductive aging still require further investigation, emphasizing approaches that simultaneously address experimental and behavioral aspects. Thus, this review aims to sumarize findings about the influence of hormonal fluctuations throughout the female reproductive lifespan, including transitions such as perimenopause and menopause, on mental health. A comparative analysis of data from studies in animal models and humans was conducted, highlighting neuroendocrine, behavioral, and emotional mechanisms associated with hormonal changes and their impacts on female mental health.
Collapse
Affiliation(s)
- Ediana V Neitzke
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | | | - Bianka M Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | - Marcelo B Cavalcante
- Postgraduate Program in Medical Sciences, University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Michal M Masternak
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, Florida, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Izabel C C de Souza
- Instituto de Biologia, Departamento de Morfologia, Universidade Federal de Pelotas, Pelotas RS, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas RS, Brazil.
| |
Collapse
|
4
|
Wang J, Yang L, Liu L, Ren J, Jiang Z, Zhao X, Jiao L, Gao Y, Guo Y, Yu T, Li B, Li Y, Tong H. Pectin from Fructus Mori relieve oxidative stress and regulates gut microbiota in POF mice. Int J Biol Macromol 2025; 311:143941. [PMID: 40328388 DOI: 10.1016/j.ijbiomac.2025.143941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/16/2025] [Accepted: 05/03/2025] [Indexed: 05/08/2025]
Abstract
Pectin, a complex acidic heteropolysaccharide with diverse biological activities, is widely unilized in cosmetics and food industry. Fructus Mori (F. Mori), an important cultivated fruit, contains abundant pectin. In this study, a pectic polysaccharide (FPA1-1) was extracted from F. Mori through hot-water extraction, ethanol precipitation, and chromatographic purification. Structural analysis revealed that FPA1-1 was a rhamnogalacturonan-I (RG-I)-rich mixed pectin with a branching degree of 48.42 %. In vivo experiments, FPA1-1 (400 mg/kg) effectively shortened the oestrous cycle, reduced follicle stimulating hormone (FSH) level, promoted synthesis and secretion of estradiol hormone (E2) and luteinizing hormone (LH), suppressed serum interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels and improved antioxidant capacity in premature ovarian failure (POF) mice. Moreover, FPA1-1 modulated gut dysbiosis of POF mice by decreasing Firmicutes/ Bacteroidetes ratio and Desulfobacterota abundance at phylum level, enriching Bacteroides, Prevotellaceae, Parabacteroides, Alloprevotella, and Muribaculaceae abundance and inhibiting Desulfovibrionaceae proliferation. FPA1-1 treatment increased short-chain fatty acids (SCFAs) level. Antibiotic cocktail treatment and fecal microbiota transplantation (FMT) experiments confirmed that FPA1-1 ameliorates the ovarian function through altering the gut microbiota composition. These findings provided an experimental basis for further research and applications of F. mori pectin in female ovarian health.
Collapse
Affiliation(s)
- Jing Wang
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130118, China
| | - Ling Yang
- Affiliated Hospital Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Li Liu
- Affiliated Hospital Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Jing Ren
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ziye Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xuyan Zhao
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yue Gao
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Yingying Guo
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Tianxi Yu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Bo Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yujuan Li
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130118, China.
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China.
| |
Collapse
|
5
|
Ahmed F, Ahmad SS, Alam MM, Shaquiquzzaman M, Altamish M, Krishnan A, Vohora D, Najmi AK, Khan MA. Osteogenic effect of alogliptin in chemical-induced bone loss: a tri-modal in silico, in vitro, and in vivo analysis. J Pharm Pharmacol 2025; 77:668-684. [PMID: 39360980 DOI: 10.1093/jpp/rgae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/13/2024] [Indexed: 05/03/2025]
Abstract
OBJECTIVE To investigate the effects of Alogliptin in chemical-induced post-menopausal osteoporosis. METHODOLOGY The binding affinity of alogliptin with osteogenic proteins was analysed in silico. The effect of alogliptin on osteogenic proteins and mineralization of osteoblastic cells was evaluated in UMR-106 cells. Further, in vivo anti-osteoporotic activity of alogliptin was evaluated in postmenopausal osteoporosis. Various bone turnover markers were assayed in serum. This followed the analysis of microarchitecture of bone, histology, and immunohistochemistry (IHC) of bone tissue. RESULTS Docking scores showed that alogliptin has binding affinity for bone alkaline phosphatase (BALP), osteocalcin, and bone morphogenic protein (BMP-2). Alogliptin also enhanced mineralization of osteoblast cells, evidenced with increased ALP, osteocalcin, and BMP-2. Animal studies revealed significant elevation of bone formation markers, bone ALP, osteocalcin and BMP-2, and decreased bone resorption markers, receptor activator of NF-κβ (RANKL), cathepsin K (CTSK), tartrate resistant acid phosphatase (TRAcP5b) in VCD-induced post-menopausal osteoporosis. Micro computed tomography (μCT) analysis and histology of femur bone and lumbar vertebrae demonstrated decrease in trabecular separation and improved bone density. IHC of femur showed reduced DPP4 enzyme. CONCLUSIONS Alogliptin increased mineralization in osteoblast cells. It had beneficial effects also altered bone turnover markers, repaired the trabecular microstructure, improved bone mineral density, and exhibited bone forming capacity targeting DPP-4 enzyme in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Faraha Ahmed
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Sufian Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Altamish
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Anuja Krishnan
- Department of Molecular Medicine, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
6
|
Zhang X, Ma L, Liu X, Zhou X, Wang A, Lai Y, Zhang J, Li Y, Chen S. Sustained release of miR-21 carried by mesenchymal stem cell-derived exosomes from GelMA microspheres inhibits ovarian granulosa cell apoptosis in premature ovarian insufficiency. Mater Today Bio 2025; 31:101469. [PMID: 39906205 PMCID: PMC11790500 DOI: 10.1016/j.mtbio.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Background Premature ovarian insufficiency (POI) refers to the severe decline or failure of ovarian function in women younger than 40 years of age. It is a serious hazard to women's physical and mental health, but current treatment options are limited. Mesenchymal stem cell-derived exosomes (MSC-Exo) exhibit promising potential as a therapeutic approach for POI. However, their clinical application is hindered by their instability and low long-term retention rate in vivo. Methods and results In this study, miR-21 was identified as the predominant miRNA with low-expression in follicular fluid exosomes of POI patients and was shown to possess antiapoptotic activity. Next, we loaded miR-21 agomir to MSC-Exo to form Agomir21-Exo, which significantly reversed the apoptosis of granulosa cells in vitro. Moreover, we successfully developed GelMA hydrogel microspheres for encapsulating Agomir21-Exo through microfluidic technology, named GelMA-Ag21Exo, which had good injectability and significantly enhanced the stability and long-term retention of Agomir21-Exo in mice through sustained release. The release of Agomir21-Exo from GelMA-Ag21Exo notably alleviated the apoptosis of ovarian granulosa cells and improved the ovarian reserve and fertility in POI mice. Conclusion Our findings illustrate that activating miR-21 through Agomir21-Exo could improve the function of ovarian granulosa cells. The GelMA-Ag21Exo enhanced the exosome-based therapeutic efficacy of the Agomir21-Exo in vivo. These findings provide a novel and promising treatment strategy for POI patients.
Collapse
Affiliation(s)
| | | | | | - Xingyu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ao Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunhui Lai
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
Mashimo A, Oshida R, Oka Y, Kawabata S, Takasu C, Nihei K, Kojima T, Kanemura N, Murata K. Hormonal fluctuations in rodent models using 4-vinylcyclohexene diepoxide: A systematic review and meta-analysis. Horm Behav 2025; 168:105680. [PMID: 39826372 DOI: 10.1016/j.yhbeh.2025.105680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
An animal model of 4-vinylcyclohexene diepoxide (VCD)-induced premature ovarian failure was developed to mimic menopause; this model has been used in various field studies. However, detailed reports on the rodent model using VCD are lacking, and the animal species used, administration methods, and hormonal fluctuations in the creation of the VCD model have not been comprehensively elucidated. The aim of this study was to systematically review these aspects of the rodent model using VCD and elucidate its characteristics. Thirty-two studies were extracted; rats and mice (66 %/44 %) are the most commonly used animal species. In most of the studies involving mice, a dose of 160 mg/kg was administered, whereas in most rat studies, doses of 80 mg/kg and 160 mg/kg were administered. On most mice studies (70 %), the most frequently applied dosage duration was 15 days. In most rat studies (63 %), the most frequently applied duration was 25 days, followed by 14 and 15 days in 30 % of the studies. Meta-analysis indicated that the mouse model using VCD simulates significant hormonal changes, such as estradiol (E2), anti-Müllerian hormone (AMH), and follicle stimulating hormone (FSH) changes. In conclusion, although the VCD model has demonstrated significant promise in replicating menopausal hormonal conditions, further systematic studies are required to fully understand its potential applications and refine its methodologies. This comprehensive review of existing literature highlights the need for continued research to expand the use of the VCD model in diverse medical fields.
Collapse
Affiliation(s)
- Aoi Mashimo
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Ryuga Oshida
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Yuichiro Oka
- Graduate School of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Sora Kawabata
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Chiharu Takasu
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Kota Nihei
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Takuma Kojima
- Department of Health and Social Services, Health and Social Services, Graduate School of Saitama Prefectural University, Saitama, Japan
| | - Naohiko Kanemura
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan
| | - Kenji Murata
- Department of Physical Therapy, School of Health and Social Services, Saitama Prefectural University, Saitama, Japan.
| |
Collapse
|
8
|
Ding S, Li W, Xiong X, Si M, Yun C, Wang Y, Huang L, Yan S, Zhen X, Qiao J, Qi X. Bile acids in follicular fluid: potential new therapeutic targets and predictive markers for women with diminished ovarian reserve. J Ovarian Res 2024; 17:250. [PMID: 39702491 DOI: 10.1186/s13048-024-01573-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE To investigate the changes in bile acid (BA) metabolites within the follicular fluid (FF) of patients with diminished ovarian reserve (DOR) and to identify novel diagnostic markers that could facilitate early detection and intervention in DOR patients. DESIGN A total of 182 patients undergoing assisted reproductive technology (ART) were enrolled and categorized into the normal ovarian reserve (NOR) group (n = 91) or the DOR group (n = 91) to measure BA levels in FF. To identify the changes in granulosa cells (GCs), we collected GCs from an additional 7 groups of patients for transcriptome sequencing. SETTING Reproductive medicine center within a hospital and university research laboratory. POPULATION A total of 182 patients undergoing assisted reproductive technology were enrolled and categorized into the NOR group (n = 91) or the DOR group (n = 91). METHODS In this study, BA metabolites in FF of DOR and NOR patients were analyzed in detail by targeted metabolomics, and the correlation between BA levels in FF and clinical indicators was discussed. Then, we constructed a diagnostic model for DOR using the random forest algorithm based on five different BAs. Additionally, we performed a functional enrichment analysis on differentially expressed genes (DEGs) in GCs from both DOR and NOR patients. MAIN OUTCOME MEASURES BA levels in FF and their correlation with clinical indicators; the areas under the curve (AUCs) of the random forest diagnostic model for DOR; and the DEGs and corresponding functional enrichment results of GC RNA analysis. RESULT (S) The levels of lithocholic acid, chenodeoxycholic acid, ursodeoxycholic acid, deoxycholic acid and cholic acid in FF of DOR group were lower than those of NOR group. And significant reductions in total, primary, secondary, and unconjugated BA levels were observed in the DOR group. The above five BAs levels were closely related to indicators of ovarian reserve. The AUC of the diagnostic model based on the above five BAs was 0.964. Based on transcriptome sequencing data from two groups of GCs, a total of 482 up-regulated and 654 down-regulated DEGs were identified. Gene ontology analysis revealed that the metabolic and biosynthetic processes of fatty acids, steroids, and cholesterol were enriched in these DEGs, whereas Kyoto Encyclopedia of Genes and Genomes analysis indicated enrichment of fatty acid and ovarian steroidogenesis. CONCLUSION(S) The levels of multiple BA metabolites in FF are significantly lower than those in patients with DOR and are closely related to the evaluation of ovarian reserve function.
Collapse
Affiliation(s)
- Shu Ding
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wenyan Li
- Peking University People's Hospital, Beijing, P. R. China
| | - Xianglei Xiong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Manfei Si
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yuqian Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Lixuan Huang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Sen Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xiumei Zhen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Xinyu Qi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
- Peking University Third Hospital, Beijing, China.
| |
Collapse
|
9
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024; 7:835-852. [PMID: 39219374 PMCID: PMC11680483 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological SciencesKharazmi UniversityTehranIran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research CenterRoyan Institute for Reproductive Biomedicine, ACECRTehranIran
| |
Collapse
|
10
|
Zhang JX, Li QL, Wang XY, Zhang CC, Chen ST, Liu XH, Dong XY, Zhao H, Huang DH. Causal Link between Gut Microbiota and Infertility: A Two-sample Bidirectional Mendelian Randomization Study. Curr Med Sci 2024; 44:1312-1324. [PMID: 39551855 DOI: 10.1007/s11596-024-2931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/12/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE To investigate the associations of the gut microbiota with reproductive system diseases, including female infertility, male infertility, polycystic ovary syndrome (PCOS), primary ovarian failure, endometriosis, uterine fibroids, uterine polyps, sexual dysfunction, orchitis, and epididymitis. METHODS A two-sample bidirectional Mendelian randomization (MR) analysis was performed to evaluate the potential causal relationship between the composition of gut microbiota and infertility, along with associated diseases. RESULTS Sixteen strong causal associations between gut microbes and reproductive system diseases were identified. Sixty-one causal associations between gut microbes and reproductive system diseases were determined. The genus Eubacterium hallii was a protective factor against premature ovarian failure and a pathogenic factor of endometriosis. The genus Erysipelatoclostridium was the pathogenic factor of many diseases, such as PCOS, endometriosis, epididymitis, and orchitis. The genus Intestinibacter is a pathogenic factor of male infertility and sexual dysfunction. The family Clostridiaceae 1 was a protective factor against uterine polyps and a pathogenic factor of orchitis and epididymitis. The results of reverse causal association analysis revealed that endometriosis, orchitis, and epididymitis all led to a decrease in the abundance of bifidobacteria and that female infertility-related diseases had a greater impact on gut microbes than male infertility-related diseases did. CONCLUSIONS The findings from the MR analysis indicate that there is a bidirectional causal relationship between the gut microbiota and infertility as well as associated ailments. Compared with ovarian diseases, uterine diseases are more likely to lead to changes in women's gut microbiota. The findings of this research offer valuable perspectives on the mechanism and clinical investigation of reproductive system diseases caused by microorganisms.
Collapse
Affiliation(s)
- Jia-Xin Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin-Lan Li
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Yan Wang
- Reproductive Center, Qingdao Women and Children's Hospital Affiliated to Qingdao University, Qingdao, 266034, China
| | - Cheng-Chang Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu-Ting Chen
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Hang Liu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin-Yi Dong
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dong-Hui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518109, China.
| |
Collapse
|
11
|
Zhao X, Shi W, Li Z, Zhang W. Linking reproductive tract microbiota to premature ovarian insufficiency: Pathophysiological mechanisms and therapies. J Reprod Immunol 2024; 166:104325. [PMID: 39265315 DOI: 10.1016/j.jri.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Over the past decade, research on the human microbiota has become a hot topic. Among them, the female reproductive tract (FRT) also has a specific microbiota that maintains the body's health and dynamic balance, especially in the reproductive aspect. When the FRT ecosystem is dysregulated, changes in immune and metabolic signals can lead to pathological and physiological changes such as chronic inflammation, epithelial barrier disruption, changes in cell proliferation and apoptosis, and dysregulation of angiogenesis and metabolism, thereby causing disruption of the female endocrine system. Premature ovarian insufficiency (POI), a clinical syndrome of ovarian dysfunction, is primarily influenced by immune, genetic, and environmental factors. New evidence suggests that dysbiosis of the FRT microbiota and/or the presence of specific bacteria may contribute to the occurrence and progression of POI. This influence occurs through both direct and indirect mechanisms, including the regulation of estrogen metabolism. The use of probiotics or microbiota transplantation to regulate the microbiome has also been proven to be beneficial in improving ovarian function and the quality of life in women with premature aging. This article provides an overview of the interrelationships and roles between the FRT microbiome and POI in recent years, to fully understand the risk factors affecting female reproductive health, and to offer insights for the future diagnosis, treatment, and application of the FRT microbiome in POI patients.
Collapse
Affiliation(s)
- Xi Zhao
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wenying Shi
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Zhengyu Li
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| |
Collapse
|
12
|
Knox N, Yasrebi A, Caramico D, Wiersielis K, Samuels BA, Roepke TA. The Interaction Of Diet-Induced Obesity And Chronic Stress In A Mouse Model Of Menopause. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622997. [PMID: 39605499 PMCID: PMC11601223 DOI: 10.1101/2024.11.11.622997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Menopause is characterized by the cessation of ovarian hormone production. During postmenopause, cisgender women face increased risks of obesity, cognitive decline, and mood disorder. Mood disorders are associated with exposure to chronic stress. We investigated the combined effects of a high-fat diet (HFD) and chronic stress exposure in a mouse model of menopause using 4-vinylcyclohexene diepoxide (VCD), a selective ovotoxicant that gradually depletes ovarian follicles and hormones. Starting at 6 months, 82 female WT C57BL/6J mice received saline or VCD (130 mg/kg i.p.) 5 days per week for 3 weeks. One month after injection, mice were fed either low-fat diet (LFD) or HFD for 8 weeks followed by 6 weeks of chronic variable mild stress (CVMS). Post-CVMS, mice were either processed for gene expression of the anterodorsal BNST or behavior tests to assess cognitive and anxiety-related behaviors. Plasma samples were collected to analyze metabolic hormones and corticosterone levels. VCD-treated HFD-fed mice had higher fat and body mass, and elevated fasting glucose levels compared to controls and more pronounced avoidance behaviors and cognitive impairments. LFD-fed, VCD-treated mice exhibited less exploration of novel objects and open spaces compared to OIL and HFD counterparts. VCD elevated corticosterone levels on LFD and increased BNST Pacap gene expression on HFD. These findings highlight cognitive repercussions of estrogen deficiency and suggest a potential protective effect of a HFD against some of the adverse outcomes associated with menopause. Our study emphasizes the importance of considering dietary and hormonal interactions in the development of therapeutic strategies.
Collapse
|
13
|
Yang YF, Cheng SY, Wang YL, Yue ZP, Yu YX, Chen YZ, Wang WK, Xu ZR, Qi ZQ, Liu Y. Accumulated inflammation and fibrosis participate in atrazine induced ovary toxicity in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124672. [PMID: 39103034 DOI: 10.1016/j.envpol.2024.124672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Atrazine is a widely used herbicide in agricultural production. Previous studies have shown that atrazine affects hormone secretion and oocyte maturation in female reproduction. However, the specific mechanism by which atrazine affects ovarian function remains unclear. In this study, using a mouse gastric lavage model, we report that four weeks of atrazine exposure affects body growth, interferes with the estrous cycle, and increases the number of atretic follicles in mice. The expression levels of follicle development related factors StAR, BMP15, and AMH decreased. Metabolomic analysis revealed that atrazine activates an inflammatory response in ovarian tissue. Further studies confirmed that the expression levels of TNF-α, IL-6, and NF-κB increased in the ovaries of mice exposed to atrazine. Additionally, α-smooth muscle actin (α-SMA) accumulated in ovarian tissue, and transforming growth factor-β (TGF-β) signaling was activated, indicating the occurrence of tissue fibrosis. Moreover, mice exposed to atrazine produced fewer oocytes and exhibited reduced embryonic development. Furthermore, mice exposed to atrazine exhibited altered gut microbiota abundance and a disrupted colon barrier. Collectively, these findings suggest that atrazine exposure induces ovarian inflammation and fibrosis, disrupts ovarian homeostasis, and impairs follicle maturation, ultimately reducing oocyte quality.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Si-Yao Cheng
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ya-Long Wang
- Center for Reproductive Medicine, Maternity and Child Health Care Hospital in Xiangtan, Xiangtan, Hunan, 411100, China
| | - Zhao-Ping Yue
- Center for Reproductive Medicine, Maternity and Child Health Care Hospital in Xiangtan, Xiangtan, Hunan, 411100, China
| | - Yu-Xi Yu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yan-Zhu Chen
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wen-Ke Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
14
|
Wang M, Zheng LW, Ma S, Zhao DH, Xu Y. The gut microbiota: emerging biomarkers and potential treatments for infertility-related diseases. Front Cell Infect Microbiol 2024; 14:1450310. [PMID: 39391885 PMCID: PMC11464459 DOI: 10.3389/fcimb.2024.1450310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infertility is a disease of impaired fertility. With socioeconomic development, changes in human lifestyles, and increased environmental pollution, the problem of low human fertility has become increasingly prominent. The incidence of global infertility is increasing every year. Many factors lead to infertility, and common female factors include tubal factors, ovulation disorders, endometriosis, and immune factors. The gut microbiota is involved in many physiological processes, such as nutrient absorption, intestinal mucosal growth, glycolipid metabolism, and immune system regulation. An altered gut flora is associated with female infertility disorders such as polycystic ovary syndrome (PCOS), endometriosis (EMs), and premature ovarian failure (POF). Dysbiosis of the gut microbiota directly or indirectly contributes to the development of female infertility disorders, which also affect the homeostasis of the gut microbiota. Identifying the etiology and pathogenesis of infertility in patients is the focus of reproductive medicine physicians. We studied the developmental mechanism between the gut microbiota and PCOS, EMs, and POF from a new perspective, providing new ideas for diagnosing and treating female infertility diseases and specific reference values for eugenics.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lian-Wen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuai Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Dong-Hai Zhao
- Department of Pathology, Jilin Medical University, Jilin, China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Sun H, Qi Q, Pan X, Zhou J, Wang J, Li L, Li D, Wang L. Bu-Shen-Ning-Xin decoction inhibits macrophage activation to ameliorate premature ovarian insufficiency-related osteoimmune disorder via FSH/FSHR pathway. Drug Discov Ther 2024; 18:106-116. [PMID: 38631868 DOI: 10.5582/ddt.2024.01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Limited studies are associated with premature ovarian insufficiency (POI)-related osteoimmune disorder currently. Bu-Shen-Ning-Xin decoction (BSNXD) displayed a favorable role in treating postmenopausal osteoporosis. However, its impact on the POI-related osteoimmune disorder remains unclear. The study primarily utilized animal experiments and network pharmacology to investigate the effects and underlying mechanisms of BSNXD on the POI-related osteoimmune disorder. First, a 4-vinylcyclohexene dioxide (VCD)-induced POI murine model was conducted to explore the therapeutical action of BSNXD. Second, we analyzed the active compounds of BSNXD and predicted their potential mechanisms for POI-related osteoimmune disorder via network pharmacology, further confirmed by molecular biology experiments. The results demonstrated that VCD exposure led to elevated follicle-stimulating hormone (FSH) levels, a 50% reduction in the primordial follicles, bone microstructure changes, and macrophage activation, indicating an osteoimmune disorder. BSNXD inhibited macrophage activation and osteoclast differentiation but did not affect serum FSH and estradiol levels in the VCD-induced POI model. Network pharmacology predicted the potential mechanisms of BSNXD against the POI-related osteoimmune disorder involving tumor necrosis factor α and MAPK signaling pathways, highlighting BSNXD regulated inflammation, hormone, and osteoclast differentiation. Further experiments identified BSNXD treatment suppressed macrophage activation via downregulating FSH receptor (FSHR) expression and inhibiting the phosphorylation of ERK and CCAAT enhancer binding proteins β. In conclusion, BSNXD regulated POI-related osteoimmune disorder by suppressing the FSH/FSHR pathway to reduce macrophage activation and further inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Hongmei Sun
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
- Hexi University, Zhangye, Gansu, China
| | - Qing Qi
- Wuhan Business University, Wuhan, Hubei, China
| | - Xinyao Pan
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Dajing Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
16
|
Ruan X, Wang P, Wei M, Yang Q, Dong X. Yu Linzhu alleviates primary ovarian insufficiency in a rat model by improving proliferation and energy metabolism of granulosa cells through hif1α/cx43 pathway. J Ovarian Res 2024; 17:89. [PMID: 38671471 PMCID: PMC11046760 DOI: 10.1186/s13048-024-01408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Yu Linzhu (YLZ) is a classical Chinese traditional formula, which has been used for more than 600 years to regulate menstruation to help pregnancy. However, the mechanism of modern scientific action of YLZ needs to be further studied. METHODS Thirty SD female rats were divided into three groups to prepare the blank serum and drug-containing serum, and then using UHPLC-QE-MS to identify the ingredients of YLZ and its drug-containing serum. Twenty-four SD female rats were divided into four groups, except the control group, 4-vinylcyclohexene dicycloxide (VCD) was intraperitoneally injected to establish a primary ovarian insufficiency (POI) model of all groups. Using vaginal smear to show that the estrous cycle of rats was disturbed after modeling, indicates that the POI model was successfully established. The ELISA test was used to measure the follicle-stimulating hormone (FSH), estradiol (E2), and anti-Mullerian hormone (AMH) levels in the serum of rats. HE stain was used to assess the morphology of ovarian tissue. The localization and relative expression levels of CX43 protein were detected by tissue immunofluorescence. Primary ovarian granulosa cells (GCs) were identified by cellular immunofluorescence. CCK8 was used to screen time and concentration of drug-containing serum and evaluate the proliferation effect of YLZ on VCD-induced GCs. ATP kit and Seahorse XFe24 were used to detect energy production and real-time glycolytic metabolism rate of GCs. mRNA and protein expression levels of HIF1α, CX43, PEK, LDH, HK1 were detected by RT-PCR and WB. RESULTS UHPLC-QE-MS found 1702 ingredients of YLZ and 80 constituents migrating to blood. YLZ reduced the FSH while increasing the AMH and E2 levels. In ovarian tissues, YLZ improved ovarian morphology, follicle development, and the relative expression of CX43. In vitro studies, we found that YLZ increased the proliferative activity of GCs, ATP levels, glycolytic metabolic rate, HIF1α, CX43, PEK, HK1, LDH mRNA, and protein levels. CONCLUSIONS The study indicated that YLZ increased the proliferation and glycolytic energy metabolism of GCs to improve follicular development further alleviating ovarian function.
Collapse
Affiliation(s)
- Xin Ruan
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China
| | - Pengxu Wang
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China
| | - Maolin Wei
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China
| | - Qingqing Yang
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China
| | - Xiaoying Dong
- Department of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Capital Medicine University, Beijing, 100069, China.
| |
Collapse
|
17
|
Li Y, He R, Qin X, Zhu Q, Ma L, Liang X. Transcriptome analysis during 4-vinylcyclohexene diepoxide exposure-induced premature ovarian insufficiency in mice. PeerJ 2024; 12:e17251. [PMID: 38646488 PMCID: PMC11032656 DOI: 10.7717/peerj.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
The occupational chemical 4-Vinylcyclohexene diepoxide (VCD) is a reproductively toxic environmental pollutant that causes follicular failure, leading to premature ovarian insufficiency (POI), which significantly impacts a woman's physical health and fertility. Investigating VCD's pathogenic mechanisms can offer insights for the prevention of ovarian impairment and the treatment of POI. This study established a mouse model of POI through intraperitoneal injection of VCD into female C57BL/6 mice for 15 days. The results were then compared with those of the control group, including a comparison of phenotypic characteristics and transcriptome differences, at two time points: day 15 and day 30. Through a comprehensive analysis of differentially expressed genes (DEGs), key genes were identified and validated some using RT-PCR. The results revealed significant impacts on sex hormone levels, follicle number, and the estrous cycle in VCD-induced POI mice on both day 15 and day 30. The DEGs and enrichment results obtained on day 15 were not as significant as those obtained on day 30. The results of this study provide a preliminary indication that steroid hormone synthesis, DNA damage repair, and impaired oocyte mitosis are pivotal in VCD-mediated ovarian dysfunction. This dysfunction may have been caused by VCD damage to the primordial follicular pool, impairing follicular development and aggravating ovarian damage over time, making it gradually difficult for the ovaries to perform their normal functions.
Collapse
Affiliation(s)
- Yi Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Ruifen He
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Qin
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Qinying Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Liangjian Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolei Liang
- Gansu Provincial Clinical Research Center for Gynecological Oncology, the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
18
|
Zhang J, Qin M, Kao C, Shi Y, Yang Z, Chen T, Liu M, Fang L, Gao F, Qin Y, Ding L. PDCD4 deficiency improved 4-vinylcyclohexene dioxide-induced mouse premature ovarian insufficiency. Reprod Biomed Online 2024; 48:103685. [PMID: 38324980 DOI: 10.1016/j.rbmo.2023.103685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 02/09/2024]
Abstract
RESEARCH QUESTION What role does programmed cell death 4 (PDCD4) play in premature ovarian insufficiency (POI)? DESIGN A PDCD4 gene knockout (PDCD4-/-) mouse model was constructed, a POI mouse model was established similar to human POI with 4-vinylcyclohexene dioxide (VCD), a PDCD4-overexpressed adenovirus was designed and the regulatory role in POI in vitro and in vivo was investigated. RESULTS PDCD4 expression was significantly increased in the ovarian granulosa cells of patients with POI (P ≤ 0.002 protein and mRNA) and mice with VCD-induced POI (P < 0.001 protein expression in both mouse ovaries and granulosa cells). In POI-induced mice model, PDCD4 knockouts significantly increased anti-Müllerian hormone, oestrodiol and numbers of developing follicles, and the PI3K-AKT-Bcl2/Bax signalling pathway is involved in it. CONCLUSION The expression and regulation of PDCD4 significantly affects the POI pathology in a mouse model. This effect is closely related to the regulation of Bcl2/Bax and the activation of the PI3K-AKT signalling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengzhen Qin
- Reproductive Endocrinology of Ministry of Education, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
| | - Chunyu Kao
- Institute for Financial Studies, Shandong University, Jinan, Shandong, China
| | - Ying Shi
- Reproductive Endocrinology of Ministry of Education, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
| | - Zhi Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minghao Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liang Fang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Reproductive Endocrinology of Ministry of Education, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
| | - Lingling Ding
- Reproductive Endocrinology of Ministry of Education, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Shandong Technology Innovation Center for Reproductive Health, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China..
| |
Collapse
|
19
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
20
|
Huang F, Cao Y, Liang J, Tang R, Wu S, Zhang P, Chen R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024; 16:2295394. [PMID: 38170622 PMCID: PMC10766396 DOI: 10.1080/19490976.2023.2295394] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Ovarian aging occurs prior to the aging of other organ systems and acts as the pacemaker of the aging process of multiple organs. As life expectancy has increased, preventing ovarian aging has become an essential goal for promoting extended reproductive function and improving bone and genitourinary conditions related to ovarian aging in women. An improved understanding of ovarian aging may ultimately provide tools for the prediction and mitigation of this process. Recent studies have suggested a connection between ovarian aging and the gut microbiota, and alterations in the composition and functional profile of the gut microbiota have profound consequences on ovarian function. The interaction between the gut microbiota and the ovaries is bidirectional. In this review, we examine current knowledge on ovary-gut microbiota crosstalk and further discuss the potential role of gut microbiota in anti-aging interventions. Microbiota-based manipulation is an appealing approach that may offer new therapeutic strategies to delay or reverse ovarian aging.
Collapse
Affiliation(s)
- Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ying Cao
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| | - Si Wu
- School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, China
| |
Collapse
|
21
|
Zucon Bacelar AC, Momesso NR, Pederro FHM, Gonçalves A, Ervolino E, Chaves-Neto AH, Biguetti CC, Matsumoto MA. Aged and induced-premature ovarian failure mouse models affect diestrus profile and ovarian features. PLoS One 2023; 18:e0284887. [PMID: 38064437 PMCID: PMC10707698 DOI: 10.1371/journal.pone.0284887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/11/2023] [Indexed: 12/18/2023] Open
Abstract
Sex hormones exert a wide influence on several systems of the human body, especially in women, who undergo intense changes in the trans and postmenopausal periods. Different experimental models are used to mimic these conditions; however, the impact on hormonal profile may be different. This study aimed to analyze and compare vaginal cytology of different post-estropausal mice models, along with their microscopical ovarian features. Forty-six C57BL/6J female mice with the ages of 4, 6 and 18 months at the beginning of the experiment, weighing about 25-28 grams, constituted five groups: NC-(negative control) animals with no treatment, OVX-SHAM-sham ovariectomized, OVX-ovariectomized, VCD-medicated with 160 mg/kg/day of 4-vinylcyclohexene diepoxide via IP for 20 consecutive days, and Aged-senescent mice under physiological estropause. Euthanasia was performed at different periods for the removal of the ovaries, and after diestrus was confirmed by vaginal cytology for 10 consecutive days. For daily vaginal cytology, morphological and histomorphometric microscopic analyzes were performed. Aged mice presented significant increased neutrophils when compared to VCD group, as well as increased cornified epithelial cells when compared to OVX mice, and also increased nucleated epithelial cells when compared to VCD and OVX. NC and OVX-SHAM ovaries presented innumerous follicles at different stages of development, while VCD showed marked follicular atresia, depleted of primordial or developing follicles and a predominance of interstitial cells. The ovaries of aged mice were predominantly constituted by corpus luteum degenerated into corpus albicans, with rare antral follicles. All analyzed models led to different permanent diestrus profiles caused by each model, as indicated by ovarian features. This should be carefully considered when choosing a post-estropausal experimental model, in order to better correlate this challenging phase of female's life with physiological/pathological conditions.
Collapse
Affiliation(s)
- Ana Carolina Zucon Bacelar
- Department of Diagnostics and Surgery, São Paulo State University—Unesp, Araçatuba, School of Dentistry, São Paulo, Brazil
| | - Nataira Regina Momesso
- Department of Diagnostics and Surgery, São Paulo State University—Unesp, Araçatuba, School of Dentistry, São Paulo, Brazil
| | - Felipe Haddad Martim Pederro
- Department of Basic Sciences, São Paulo State University—Unesp, Araçatuba School of Dentistry, São Paulo, Brazil
| | - Alaíde Gonçalves
- Department of Basic Sciences, São Paulo State University—Unesp, Araçatuba School of Dentistry, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, São Paulo State University—Unesp, Araçatuba School of Dentistry, São Paulo, Brazil
| | | | - Claudia Cristina Biguetti
- School of Podiatric Medicine, The University of Texas at Rio Grande Valley (UTRGV), Rio Grande Valley, Texas, United States of America
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, São Paulo State University—Unesp, Araçatuba School of Dentistry, São Paulo, Brazil
| |
Collapse
|
22
|
Lee HJ, Park MJ, Heo JD, Joo BS, Joo JK. Timing of hormone therapy and its association with cardiovascular risk and metabolic parameters in 4-vinylcyclohexene diepoxide-induced primary ovarian insufficiency mouse model. Gynecol Endocrinol 2023; 39:2247094. [PMID: 37599578 DOI: 10.1080/09513590.2023.2247094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/14/2022] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
OBJECTIVE To evaluate the effects of various initiation time points and durations of hormone therapy (HT) on cardiovascular and metabolic parameters of premenarche, primary ovarian insufficiency (POI) mouse model, induced by 4-vinylcyclohexene diepoxide. METHODS A total of 50 mice at 4 weeks of age were developed into POI mouse model, further randomly categorized into 5 groups: control group without any intervention; no HT group with only high-fat diet (NT); group 1 with delayed estradiol treatment (T1); group 2 with on-time, continuous estradiol treatment (T2); and group 3 with on-time estradiol treatment but early stop (T3). Cardiovascular risk and metabolic parameters were measured. RESULTS Presenting with similar body weights, blood glucose levels of T1, T2, and T3 were all significantly lower than NT (p < .001). Serum total cholesterol and insulin were also significantly lower in all HT groups than in NT, especially in T2 (p < .001). For serum low-density lipoprotein-cholesterol, only T2 resulted in the statically lower level than those of NT, T1, and T3 (p < .001). Aortic thickness was significantly increased with aggravated fibrotic change of the intima in NT, and such consequence was significantly ameliorated in HT groups, mostly lowered in T2 (p < .05). Last, serum pro-inflammatory cytokines were significantly low in the HT groups than in NT, especially in T2 with the lowest level (p < .05). . CONCLUSIONS On-time, continuous E2 treatment immediately after a biologic estrogen deprivation event significantly reduced metabolic and cardiovascular risks in young, pre-menarche female mouse models of POI, confirming decreased serum levels of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Min Jung Park
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jeong-Doo Heo
- Korea Institute of Toxicology, Gyeongnam Branch Institute, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Bo Sun Joo
- The Korea Institute for Public Sperm Bank, Busan, Republic of Korea
| | - Jong Kil Joo
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
23
|
Chen Y, Sun S, Zhou X, He M, Li Y, Liu C, Ta D. Low-intensity pulsed ultrasound and parathyroid hormone improve muscle atrophy in estrogen deficiency mice. ULTRASONICS 2023; 132:106984. [PMID: 36944299 DOI: 10.1016/j.ultras.2023.106984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 03/09/2023] [Indexed: 05/29/2023]
Abstract
Due to aging and long-term estrogen deficiency, postmenopausal women suffer muscle atrophy (MA), which is characterized by decreased muscle mass and muscle quality. Low-intensity pulsed ultrasound (LIPUS) is an acoustic wave inducing biological effects mainly by the mechanical stimulation and used as a non-invasive physical therapy for muscle repair. Parathyroid hormone (PTH) is an 84-amino-acid polypeptide, and its bioactive fragment [PTH (1-34)] has potential application in the treatment of MA. We speculate that the combination of physical therapy (i.e., the LIPUS) and regulatory hormone (i.e., the PTH) would be more effective in the treatment of MA. The objective of this study was to evaluate the individual and combined effects of LIPUS and PTH therapy on MA in estrogen deficiency mice. Seventy 8-week-old female C57BL/6J mice were used in this study and the MA model was induced by an intraperitoneal injection of 4-vinylcyclohexene diepoxide (VCD) for 20 consecutive days. The VCD-induced MA mice were randomly divided into MA, LIPUS, PTH and LIPUS + PTH (Combined) groups (n = 10/group). In the LIPUS group, the mice were treated by LIPUS in bilateral quadriceps muscles for 20 min, five times a week for 6 weeks. In the PTH group, the mice received subcutaneous injection of PTH (1-34) (80 ug/kg/d) five times a week, for 6 weeks. In the Combined group, the PTH was administrated 30 min before each LIPUS session. Hematoxylin-eosin (H&E) staining, serum biochemical analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to evaluate the therapeutic effects of related treatments. The results showed that the MA mice had a disordered estrus cycle, significantly decreased muscle mass and myofibers cross-sectional area (CSA). After treatments, LIPUS, PTH and Combined groups had a significantly increased CSA, compared with the MA mice without treatment. In addition, Combined group had a significantly increased mRNA expression of Pax7, MyoD and MyoG, compared with LIPUS and PTH monotherapy groups. Our findings indicated that the combination of LIPUS and PTH treatment improves muscle regeneration ability, which might have potential for treating MA in postmenopausal women.
Collapse
Affiliation(s)
- Yuefu Chen
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Shuxin Sun
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Xinyan Zhou
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Min He
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China.
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China.
| | - Dean Ta
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
24
|
Zhou X, Sun S, Chen Y, Liu C, Li D, Cheng Q, He M, Li Y, Xu K, Ta D. Pulsed frequency modulated ultrasound promotes therapeutic effects of osteoporosis induced by ovarian failure in mice. ULTRASONICS 2023; 132:106973. [PMID: 36893552 DOI: 10.1016/j.ultras.2023.106973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 05/29/2023]
Abstract
Low-intensity pulsed ultrasound (LIPUS) has been proved to be an effective technique for the treatment of osteoporosis. To better activate the bone formation-related markers, promote the different stages of osteogenesis, and further enhance the therapeutic effects of ultrasound, this study employed pulsed frequency modulated ultrasound (pFMUS) to treat mice with osteoporosis, which was caused by ovarian failure due to 4-vinylcyclohexene dioxide (VCD) injection. Healthy 8-week-old female C57BL/6J mice were randomly divided into four groups: Sham (S), VCD-control (V), VCD + LIPUS (VU), and VCD + pFMUS (VFU). VU and VFU groups were treated by LIPUS and pFMUS, respectively. Serum analysis, micro-computed tomography (micro-CT), mechanical testing and hematoxylin and eosin (HE) staining were performed to evaluate the therapeutic effects of ultrasound. Quantitative reverse-transcription PCR (qRT-PCR) and western blot analysis were used to explore the mechanism of ultrasound on osteoporosis. Results showed that pFMUS might have better therapeutic effects than traditional LIPUS in terms of bone microstructure and bone strength. In addition, pFMUS could promote bone formation by activating phosphoinositide-3 kinase/protein kinase B (PI3K/Akt) pathway, and slow down bone resorption by increasing osteoprotegerin/receptor activator of nuclear factor κB ligand (OPG/RANKL) ratio. This study is of positive prognostic significance when understanding the mechanism of ultrasound regulation on osteoporosis and establishing novel treatment plan of osteoporosis by multi-frequency ultrasound.
Collapse
Affiliation(s)
- Xinyan Zhou
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| | - Shuxin Sun
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Yuefu Chen
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Chengcheng Liu
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China
| | - Dan Li
- Department of Electronic Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Min He
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Ying Li
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China.
| | - Kailiang Xu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China.
| | - Dean Ta
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Academy for Engineering and Technology, Fudan University, Shanghai 200433, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
25
|
Wang J, Luo R, Zhao X, Xia D, Liu Y, Shen T, Liang Y. Association between gut microbiota and primary ovarian insufficiency: a bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1183219. [PMID: 37424857 PMCID: PMC10324962 DOI: 10.3389/fendo.2023.1183219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background Recent studies have indicated a potential correlation between intestinal bacteria and primary ovarian insufficiency (POI). However, the causal relationship between the gut microbiota (GM) and POI remains unclear. Methods A bidirectional two-sample Mendelian randomization (MR) study was conducted to investigate the relationship between the GM and POI. Data on the GM were based on the MiBioGen consortium's summary statistics from the most comprehensive genome-wide association study meta-analysis to date (n=13,266), and POI data were obtained from the R8 release of the FinnGen consortium, containing a total of 424 cases and 181,796 controls. A variety of analytical methods, including inverse variance weighting, maximum likelihood, MR-Egger, weighted median, and constrained maximum likelihood and model averaging and Bayesian information criterion, were utilized to explore the connection between the GM and POI. The Cochran's Q statistics were used to evaluate the heterogeneity of instrumental variables. The MR-Egger and MR-pleiotropy residual sum and outlier (PRESSO) methods were used to identify the horizontal pleiotropy of instrumental variables. The MR Steiger test was used to evaluate the strength of causal relationships. A reverse MR study was performed to investigate the causal relationship between POI and the targeted GMs which were indicated to have a causal relationship with POI in the forward MR evaluation. Results The inverse variance weighted analysis indicated that Eubacterium (hallii group) (odds ratio [OR]=0.49, 95% confidence interval [CI]: 0.26-0.9, P=0.022) and Eubacterium (ventriosum group) (OR=0.51, 95% CI: 0.27-0.97, P=0.04) had protective effects on POI, and Intestinibacter (OR=1.82, 95% CI: 1.04-3.2, P=0.037) and Terrisporobacter (OR=2.47, 95% CI: 1.14-5.36, P=0.022) had detrimental effects on POI. Results of the reverse MR analysis indicated that POI had no significant influence on the four GMs. No significant heterogeneity or horizontal pleiotropy was observed in the performance of the instrumental variables. Conclusion This bidirectional two-sample MR study revealed a causal link between Eubacterium (hallii group), Eubacterium (ventriosum group), Intestinibacter, and Terrisporobacter and POI. Additional clinical trials are needed to gain a clearer understanding of the beneficial or detrimental effects of the GMs on POI and their mechanisms of action.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Rong Luo
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Xia Zhao
- School of Medicine, Southeast University, Nanjing, China
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Di Xia
- School of Medicine, Southeast University, Nanjing, China
| | - Yi Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Tao Shen
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| | - Yuanjiao Liang
- School of Medicine, Southeast University, Nanjing, China
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, Nanjing, China
| |
Collapse
|
26
|
Dai F, Wang R, Deng Z, Yang D, Wang L, Wu M, Hu W, Cheng Y. Comparison of the different animal modeling and therapy methods of premature ovarian failure in animal model. Stem Cell Res Ther 2023; 14:135. [PMID: 37202808 DOI: 10.1186/s13287-023-03333-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 05/20/2023] Open
Abstract
Incidence of premature ovarian failure (POF) is higher with the increase of the pace of life. The etiology of POF is very complex, which is closely related to genes, immune diseases, drugs, surgery, and psychological factors. Ideal animal models and evaluation indexes are essential for drug development and mechanism research. In our review, we firstly summarize the modeling methods of different POF animal models and compare their advantages and disadvantages. Recently, stem cells are widely studied for tumor treatment and tissue repair with low immunogenicity, high homing ability, high ability to divide and self-renew. Hence, we secondly reviewed recently published data on transplantation of stem cells in the POF animal model and analyzed the possible mechanism of their function. With the further insights of immunological and gene therapy, the combination of stem cells with other therapies should be actively explored to promote the treatment of POF in the future. Our article may provide guidance and insight for POF animal model selection and new drug development.
Collapse
Affiliation(s)
- Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Hu
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
27
|
Ocañas SR, Ansere VA, Kellogg CM, Isola JVV, Chucair-Elliott AJ, Freeman WM. Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Res Bull 2023; 195:157-171. [PMID: 36804773 PMCID: PMC10810555 DOI: 10.1016/j.brainresbull.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Biological sex contributes to phenotypic sex effects through genetic (sex chromosomal) and hormonal (gonadal) mechanisms. There are profound sex differences in the prevalence and progression of age-related brain diseases, including neurodegenerative diseases. Inflammation of neural tissue is one of the most consistent age-related phenotypes seen with healthy aging and disease. The pro-inflammatory environment of the aging brain has primarily been attributed to microglial reactivity and adoption of heterogeneous reactive states dependent upon intrinsic (i.e., sex) and extrinsic (i.e., age, disease state) factors. Here, we review sex effects in microglia across the lifespan, explore potential genetic and hormonal molecular mechanisms of microglial sex effects, and discuss currently available models and methods to study sex effects in the aging brain. Despite recent attention to this area, significant further research is needed to mechanistically understand the regulation of microglial sex effects across the lifespan, which may open new avenues for sex informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose V V Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
28
|
Chen D, Hu N, Xing S, Yang L, Zhang F, Guo S, Liu S, Ma X, Liang X, Ma H. Placental mesenchymal stem cells ameliorate NLRP3 inflammasome-induced ovarian insufficiency by modulating macrophage M2 polarization. J Ovarian Res 2023; 16:58. [PMID: 36945010 PMCID: PMC10029285 DOI: 10.1186/s13048-023-01136-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a common clinical problem, however, there are currently no effective therapies. Pyroptosis induced by the NLRP3 inflammasome is considered a possible mechanism of POI. Placental mesenchymal stem cells (PMSCs) have excellent immunomodulatory potential and offer a promising method for treating POI. METHODS Female Sprague-Dawley rats were randomly divided into four treatment groups: control (no POI), POI with no PMSCs, POI with PMSCs transplant, and POI with hormones (estrogen + progesterone) as positive control. POI was induced by exposure to 4-vinylcyclohexene diepoxide (VCD) for 15 days. After four weeks, all animals were euthanized and examined for pathology. Hormone levels were measured and ovarian function was evaluated in relation to the estrous cycle. Levels of NLRP3 inflammasome pathway proteins were determined by immunohistochemistry and western blot. RESULTS VCD significantly damaged rat follicles at different estrous stages. Injection of human PMSCs improved ovarian function and reproductive ability of POI rats compared to the sham and hormone groups. Our data also showed that PMSCs markedly suppress cell pyroptosis via downregulation of the NLRP3 inflammasome, caspase-1, IL-1β and IL-18 compared to the other two groups. The human PMSCs increased the expression of IL-4 and IL-10 and decreased pro-inflammatory factors by phenotypic changes in macrophages. CONCLUSIONS Our findings revealed a novel mechanism of follicular dysfunction and ovarian fibrosis via activation of the NLRP3 inflammasome followed by secretion of pro-inflammatory factors. Transplantation of PMSCs into POI rats suppressed pro-inflammatory factor production, NLRP3 inflammasome formation and pyroptosis, and improved ovarian function.
Collapse
Affiliation(s)
- Dongmei Chen
- Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Na Hu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Shasha Xing
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Li Yang
- Laboratory Animal Center, Ningxia Medical University, Yinchuan, 750004, China
| | - Feiyan Zhang
- Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Songlin Guo
- Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Shudan Liu
- Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xiaona Ma
- Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xueyun Liang
- Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
29
|
Yu S, Zhang L, Wang Y, Yan J, Wang Q, Bian H, Huang L. Mood, hormone levels, metabolic and sleep across the menopausal transition in VCD-induced ICR mice. Physiol Behav 2023; 265:114178. [PMID: 37001841 DOI: 10.1016/j.physbeh.2023.114178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
AIMS Menopausal transition is the transitional period before menopause in women, often accompanied by abnormal fluctuations in hormone levels that increase the risk of aging-related diseases. 4-vinylcyclohexene dioxide (VCD) is a chemical agent that induces gradual depletion of ovarian follicles, which can mimic the natural human process of transition from menopausal transition to post-menopause. Previous studies have shown that the onset of menopausal transition or menopause in VCD-injected mice is associated with a specific strain, even in inbred animals. Institute of Cancer Research (ICR) mice constitute general purpose outbred population, which has not been well-characterized in the VCD-induced model. Thus, the current study aimed to explore the characteristic features, including sleep, mood, and metabolism, of the model by examining the effect of timing of VCD injection in ICR mice to extend the applications of this model. MATERIALS AND METHODS ICR mice were randomly divided into six groups: 20d VCD and 20d Control, 35d VCD and 35d Control, 52d VCD and 52d Control. VCD mice were intraperitoneally injected with VCD (160 mg/kg), while Control mice were injected intraperitoneally with sesame oil for 4 consecutive weeks, five times a week daily. A vaginal smear was used to observe the estrous cycle of the mice. On the 20th, 35th, and 52nd day after VCD or sesame oil injection, the ovarian morphology, the number of atretic cells, hormone levels, anxiety, depression-like behaviors, sleep phase, and energy metabolism were observed. KEY FINDINGS The menopausal transition model was successfully replicated by injecting VCD into ICR mice. On the specific days after VCD treatment, the number of atretic follicles increased, the level of E2 decreased and FSH increased, the depressive- and anxiety-like behavior increased, the time of REM and NREM sleep time decreased, and energy metabolism was reduced. SIGNIFICANCE These results suggested that the ICR mice model has human-like characteristics during the menopause transition. Moreover, the ICR model has a long menopausal transition duration.
Collapse
Affiliation(s)
- Shuang Yu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Lixin Zhang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Yanyan Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Jinming Yan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Hongsheng Bian
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Lili Huang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China.
| |
Collapse
|
30
|
Song W, Li A, Sha QQ, Liu SY, Zhou Y, Zhou CY, Zhang X, Li XZ, Jiang JX, Li F, Li C, Schatten H, Ou XH, Sun QY. Maternal exposure to 4-vinylcyclohexene diepoxide during pregnancy induces subfertility and birth defects of offspring in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160431. [PMID: 36423845 DOI: 10.1016/j.scitotenv.2022.160431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
4-vinylcyclohexene diepoxide (VCD), widely used in industry, is a hazardous compound that can cause premature ovarian failure, but whether maternal VCD exposure affects the health and reproduction of offspring is unknown. Here we focused on the effects of VCD on fertility and physical health of F1 and F2 offspring in mice. The pregnant mice were injected intraperitoneally with different dosages of VCD once every day from 6.5 to 18.5 days post-coitus (dpc). We showed that maternal exposure to VCD during pregnancy significantly reduced the litter size and ovarian reserve, while increasing microtia occurrences of F1 mice. The cytospread staining showed a significant inhibition of meiotic prophase I progression from the zygotene stage to the pachytene stage. Mechanistically, the expression level of DNA damage marker (γ-H2AX) and BAX/BCL2 ratios were significantly increased, and RAD51 and DMC1 were extensively recruited to DNA double strand breaks sites in the oocytes of offspring from VCD-exposed mothers. Overall, our results provide solid evidence showing that maternal exposure to VCD during pregnancy has intergenerational deleterious effects on the offspring.
Collapse
Affiliation(s)
- Wei Song
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ang Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qian-Qian Sha
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Shao-Yuan Liu
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yong Zhou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Chang-Yin Zhou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xue Zhang
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiao-Zhen Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jia-Xin Jiang
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Fei Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Chao Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, Guangzhou 510317, China; College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
31
|
Sui K, Yasrebi A, Longoria CR, MacDonell AT, Jaffri ZH, Martinez SA, Fisher SE, Malonza N, Jung K, Tveter KM, Wiersielis KR, Uzumcu M, Shapses SA, Campbell SC, Roepke TA, Roopchand DE. Coconut Oil Saturated Fatty Acids Improved Energy Homeostasis but not Blood Pressure or Cognition in VCD-Treated Female Mice. Endocrinology 2023; 164:bqad001. [PMID: 36626144 PMCID: PMC11009791 DOI: 10.1210/endocr/bqad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Obesity, cardiometabolic disease, cognitive decline, and osteoporosis are symptoms of postmenopause, which can be modeled using 4-vinylcyclohexene diepoxide (VCD)-treated mice to induce ovarian failure and estrogen deficiency combined with high-fat diet (HFD) feeding. The trend of replacing saturated fatty acids (SFAs), for example coconut oil, with seed oils that are high in polyunsaturated fatty acids, specifically linoleic acid (LA), may induce inflammation and gut dysbiosis, and worsen symptoms of estrogen deficiency. To investigate this hypothesis, vehicle (Veh)- or VCD-treated C57BL/6J mice were fed a HFD (45% kcal fat) with a high LA:SFA ratio (22.5%: 8%), referred to as the 22.5% LA diet, or a HFD with a low LA:SFA ratio (1%: 31%), referred to as 1% LA diet, for a period of 23 to 25 weeks. Compared with VCD-treated mice fed the 22.5% LA diet, VCD-treated mice fed the 1% LA diet showed lower weight gain and improved glucose tolerance. However, VCD-treated mice fed the 1% LA diet had higher blood pressure and showed evidence of spatial cognitive impairment. Mice fed the 1% LA or 22.5% LA diets showed gut microbial taxa changes that have been associated with a mix of both beneficial and unfavorable cognitive and metabolic phenotypes. Overall, these data suggest that consuming different types of dietary fat from a variety of sources, without overemphasis on any particular type, is the optimal approach for promoting metabolic health regardless of estrogen status.
Collapse
Affiliation(s)
- Ke Sui
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ali Yasrebi
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Candace R Longoria
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Avery T MacDonell
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zehra H Jaffri
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Savannah A Martinez
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Samuel E Fisher
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Natasha Malonza
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Katie Jung
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kevin M Tveter
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Kimberly R Wiersielis
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Mehmet Uzumcu
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Sara C Campbell
- Department of Kinesiology and Applied Physiology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Troy A Roepke
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research, Center for Human Nutrition, Exercise and Metabolism Center, and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Department of Food Science, NJ Institute for Food Nutrition and Health (Rutgers Center for Lipid Research and Center for Nutrition Microbiome and Health), Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
32
|
Qin J, Chen J, Xu H, Xia Y, Tang W, Wang W, Li C, Tang Y, Wang Y. Low-Intensity Pulsed Ultrasound Promotes Repair of 4-Vinylcyclohexene Diepoxide-Induced Premature Ovarian Insufficiency in SD Rats. J Gerontol A Biol Sci Med Sci 2022; 77:221-227. [PMID: 34417809 DOI: 10.1093/gerona/glab242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/12/2022] Open
Abstract
Women with premature ovarian insufficiency (POI) may be more vulnerable to a variety of health risks. To seek a new method to treat the disease, the effects of low-intensity pulsed ultrasound (LIPUS) on promoting repair of ovarian injury in female SD rats induced by 4-vinylcyclohexene diepoxide (VCD) were explored in this research. A total of 24 female SD rats were subjected to intraperitoneal injection of VCD to induce POI. Successful modeling was achieved in 22 rats, which were then randomized into VCD + LIPUS group (n = 13) and VCD group (n = 9). The control group (n = 5) was injected with equal normal saline. Hematoxylin and eosin staining, enzyme-linked immunosorbent assay, Western blot analysis, scanning electron microscope, immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated nick end labeling assay were applied to detect the results. The results indicated that rats in the VCD group showed disorder in the estrous cycle, the number of atresia follicles and apoptosis granulosa cells increased (p < .05). After the LIPUS treatment, the estrous cycle recovered, the number of follicles increased (p < .05), the level of E2 and anti-Müllerian hormone enhanced (p < .05), and the follicle-stimulating hormone decreased (p < .05). The expression of NF-κB p65, TNFα, Bax, ATF4, and caspase-3 in ovarian tissue was significantly decreased (p < .05). These findings showed that LIPUS could promote the repair of the VCD-induced ovarian damage in SD rats, which has the potential to be further applied in the clinic.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, China
- Department of Obstetrics and Gynecology, Guiyang Maternal and Child Health Care Hospital, Guizhou Medical University, China
| | - Junlin Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, China
| | - Haopeng Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, China
| | - Yi Xia
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, China
| | - Wentao Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, China
| | - Wei Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, China
| | - Chongyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, China
| | - Yilin Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, China
| |
Collapse
|
33
|
Lin XM, Chen M, Wang QL, Ye XM, Chen HF. Clinical observation of Kuntai capsule combined with Fenmotong in treatment of decline of ovarian reserve function. World J Clin Cases 2021; 9:8349-8357. [PMID: 34754844 PMCID: PMC8554447 DOI: 10.12998/wjcc.v9.i28.8349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/04/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Decreased ovarian reserve function is an ovarian hypofunction disease that occurs in women before 40 years of age, leading to a decline in fertility and perimenopausal symptoms, such as irregular menstruation, amenorrhea, infertility, decreased libido, and autonomic nervous dysfunction. Fenmatong (FMT) is a compound mixture of estradiol tablets and estradiol didroxyprogesterone tablets, which can improve ovarian reserve function by supplementation of exogenous estrogen. However, this treatment has also been shown to cause breast pain, gastrointestinal discomfort, irregular vaginal bleeding, and changes in sexual desire. In severe cases, FMT can promote the development of breast cancer, endometrial cancer, and venous embolic disease.
AIM To observe the effects of Kuntai capsules and FMT on endocrine indexes and uterine artery blood circulation in patients with decreased ovarian reserve function.
METHODS Patients (130) with decreased ovarian reserve function, who were treated in our hospital from May 2018 to May 2020, were divided into two groups: The FMT group, in which patients were treated with FMT, and the observation group, in which patients were treated with Kuntai capsules. Chinese medicine symptom scores, uterine artery blood flow parameters, ovarian ultrasound test indexes, pictorial blood loss assessment chart (PBAC) scores, and hormone levels were recorded, and total effective rates were calculated for both groups.
RESULTS The total effective rate in the observation group was higher than that in the FMT group (P < 0.05).After treatment, primary symptoms, including low menstrual volume, delayed menstruation, red color and thick consistency of menses, dizziness, palpitation, weakness at the waist and knee, insomnia and excessive dreaming, irritability, and dryness and astringency of the pudendal canal in the observation group decreased, and scores for primary and secondary symptoms in the observation group were significantly lower than those in the FMT group (P < 0.05).The systolic peak flow rate (PSV), end-diastolic flow rate (EDV), ovarian diameter, sinus follicle count, and resistance index (RI) of the uterine arteries in the observation group and FMT group increased after treatment. Notably, the PSV, EDV, ovarian diameter, and antral follicle count in the observation group were higher than those in the FMT group, whereas the RI in the observation group was lower than that in the FMT group (P < 0.05).The PBAC scores in the observation and FMT groups increased after treatment, with that in the observation group becoming significantly higher than that in the FMT group (P < 0.05). After treatment, estradiol (E2) and anti-Mullerian hormone (AMH) levels increased, whereas follicle-stimulating hormone (FSH) levels decreased in the observation group and FMT group; E2 and AMH levels became significantly higher and FSH levels became significantly lower in the observation group than in the FMT group (P < 0.05).
CONCLUSION Compared with FMT, Kuntai capsules promoted uterine artery blood circulation, improved menstruation, relieved symptoms, regulated endocrine function, and improved curative effects.
Collapse
Affiliation(s)
- Xin-Miao Lin
- Department of Reproductive Health and Infertility, Zhanjiang Central People’s Hospital, Zhanjiang 524037, Guangdong Province, China
| | - Miao Chen
- Department of Reproductive Health and Infertility, Zhanjiang Central People’s Hospital, Zhanjiang 524037, Guangdong Province, China
| | - Qiao-Ling Wang
- Department of Reproductive Health and Infertility, Zhanjiang Central People’s Hospital, Zhanjiang 524037, Guangdong Province, China
| | - Xiao-Min Ye
- Department of Reproductive Health and Infertility, Zhanjiang Central People’s Hospital, Zhanjiang 524037, Guangdong Province, China
| | - Hao-Fan Chen
- Department of Reproductive Health and Infertility, Zhanjiang Central People’s Hospital, Zhanjiang 524037, Guangdong Province, China
| |
Collapse
|
34
|
Xu H, Xia Y, Qin J, Xu J, Li C, Wang Y. Effects of low intensity pulsed ultrasound on expression of B-cell lymphoma-2 and BCL2-Associated X in premature ovarian failure mice induced by 4-vinylcyclohexene diepoxide. Reprod Biol Endocrinol 2021; 19:113. [PMID: 34284777 PMCID: PMC8290625 DOI: 10.1186/s12958-021-00799-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/09/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Premature ovarian failure (POF) is a common disease in the field of Gynecology. Low intensity pulsed ultrasound (LIPUS) can promote tissue repair and improve function. This study was performed to determine the effects of LIPUS on granulosa cells (GCs) apoptosis and protein expression of B-cell lymphoma-2 (Bcl-2) and BCL2-Associated X (Bax) in 4-vinylcyclohexene diepoxide (VCD)-induced POF mice and investigate the mechanisms of LIPUS on ovarian function and reserve capacity. METHODS The current POF mice model was administrated with VCD (160 mg/kg) by intraperitoneal injection for 15 consecutive days. The mice were divided into the POF group, LIPUS group and control group. In the LIPUS group, the right ovary of mice was treated by LIPUS (acoustic intensity was 200 mW/cm2, frequency was 0.3 MHz, and duty cycle was 20%) for 20 min, 15 consecutive days from day 16. The mice of the POF group and control group were treated without ultrasonic output. The basic observation and body weight were recorded. Hematoxylin and eosin staining (H&E staining) and enzyme-linked immunosorbent assay (ELISA) were applied to detect ovarian follicle development, ovarian morphology and sex hormone secretion. Ovarian GCs apoptosis was detected by TUNEL assay and immunohistochemistry. RESULTS The results showed that VCD can induce estrus cycle disorder, follicular atresia, sex hormone secretion decreased and GCs apoptosis in mice to establish POF model successfully. LIPUS significantly promoted follicular development, increased sex hormone secretion, inhibited excessive follicular atresia and GCs apoptosis. The mechanism might be achieved by increasing the protein expression of Bcl-2 and decreasing the expression of Bax in ovaries. CONCLUSIONS LIPUS can improve the POF induced by VCD. These findings have the potential to provide novel methodological foundation for the future research, which help treat POF patients in the clinic.
Collapse
Affiliation(s)
- Haopeng Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yi Xia
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Juan Qin
- Department of Gynaecology, Guiyang Maternal and Child Health Hospital, Guizhou, 550003, China
| | - Jie Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Chongyan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
35
|
Su X, Wang X, Liu Y, Kong W, Yan F, Han F, Liu Q, Shi Y. Effect of Jiajian Guishen Formula on the senescence-associated heterochromatic foci in mouse ovaria after induction of premature ovarian aging by the endocrine-disrupting agent 4-vinylcyclohexene diepoxide. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113720. [PMID: 33358858 DOI: 10.1016/j.jep.2020.113720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiajian Guishen Formula (JJGSF), which is a prescription of Traditional Chinese Medicine (TCM), has been reported to be useful in the treatment of premature ovarian insufficiency (POI). AIM OF THE STUDY To investigate the therapeutic effects of JJGSF on the treatment of POI induced by 4-vinylcyclohexene diep-oxide (VCD), an endocrine-disrupting chemical (EDC), and to elucidate the potential mechanism. MATERIALS AND METHODS Female 8-week-old ICR mice (N = 72) were randomized into six groups, containing the Model group, Control group, three JJGSF groups, and Progynova group which was served as a positive control. After model establishment by VCD, the Progynova group were given a daily intragastric administration of Progynova, and the three JJGSF groups (high dose group, medium dose group and low dose group) received a daily intragastric administration of JJGSF at doses of 9, 4.5 and 2.25 g/kg for four weeks. The general growth of the mice was observed and the estrous cycles were examined. The serum hormone concentrations were measured by enzyme-linked immunosorbent assay (ELISA). To explore the potential mechanism of effect, the protein expressions of H3K9me3, HP1, and HMGA1/HMGA2 related to senescence-associated heterochromatic foci (SAHF), were determined by Immunofluorescence and Western blot analysis, respectively. RESULTS After treating with JJGSF, the estrous cycles were improved significantly. The level of estrogen (E2) and anti-müllerian hormone (AMH) was increased and the ratio of follicle-stimulating hormone (FSH) to luteinizing hormone (LH) in serum was decreased significantly. Furthermore, a significant down-regulation of HMGA1/HMGA2 on protein level, a reduction distribution of HP1 and H3K9me3 in ovarian, and a lower fraction of SAHF-positive cells were observed after the administration with JJGSF, additionally effects showed a positive correlation with dosages. CONCLUSIONS JJGSF could treat POI by the mechanism of inhibiting SAHF.
Collapse
Affiliation(s)
- Xianzhi Su
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaomei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yifei Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Wenjuan Kong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Fei Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Fuguo Han
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Qingfei Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yun Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|