1
|
Xu J, Liu T, Pan F, Ao X, Wang L, Liang R, Lei Y, Ding Y, Yu M, Li L, Yang H. Rhubarb with Different Cooking Methods Restored the Gut Microbiota Dysbiosis and SCFAs in Ischemic Stroke Mice. Mol Neurobiol 2025:10.1007/s12035-025-04865-x. [PMID: 40195217 DOI: 10.1007/s12035-025-04865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/17/2025] [Indexed: 04/09/2025]
Abstract
Ischemic stroke is a significant public health problem worldwide. Growing evidence has shown gut microbiota served a vital function in ischemic stroke. Rhubarb, always used after processing, is a promising therapy for ischemic stroke. However, the possible mechanism of rhubarb with different cooking methods has remained unclear. Herein, the constitutes of steaming rhubarb (SP), raw rhubarb (RP), and nine steaming nine sun-drying rhubarb (NSP) were identified via LC-QTOF-MS. The middle cerebral artery occlusion (MCAO) mice model was constructed. Infarction area, neurological score, Nissl staining, IBA-1 immunofluorescence, and ELISA were performed to confirm the neuroprotective effect of SP, RP, and NSP. The gut microbiota in fetal was studied via 16sRNA sequencing, and the level of short-chain fatty acids (SCFAs) in brain and gut were measured via GC-MS. The function of microbiota signature was identified through PICRUSt2; the possible mechanism was studied. SP, RP, and NSP alleviated the neurological dysfunction, decreased the inflammation, suppressed dysbiosis of gut microbiota, restored SCFA-producing bacteria, and enhanced the SCFA level in MCAO mice. Moreover, the NSP and SP enriched the proportion of anti-inflammation and beneficial bacteria, deleted the proportion of pro-inflammation. It observed energy metabolism was involved in the possible mechanism of rhubarb; activities of COXI and Na+-K+-ATPase were increased in the brain of NSP and SP treatment mice. Furthermore, the expression of GLUT4 and PFK1 (the energy metabolism-related genes) was elevated in the brain after RP, NSP and SP administration. In this study, it provided proof for the treatment of ischemic stroke with rhubarb. Rhubarb restored the gut microbiota and regulated the expression of GLUT4 and PFK1 to alleviate ischemic stroke.
Collapse
Affiliation(s)
- Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Taotao Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
- Tongjunge Health, Chongqing Taiji Industry (Group) Co. Ltd, Chongqing, 408000, China
| | - Fuzhu Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
- School of Pharmacy, Zunyi Medical University, Zunyi City Xuefu West Road, Honghuagang District No. 6, Zunyi, 563000, China
| | - Xuan Ao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Lan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Rixin Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Yuxin Lei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou City Heping North Road, Tianning District No. 25, Changzhou, 213003, China
| | - Yurong Ding
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Miao Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| | - Li Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dongzhimen NeiNanxiaojie Within 16, Beijing, 100700, China
| |
Collapse
|
2
|
Xie A, Qian W, Ye D, Deng X, Ma Y, Wang R, Zhou Q, Bao Z, Yu R. Sodium propionate protects against bronchopulmonary dysplasia by inhibiting IL-17-mediated apoptosis of alveolar epithelial cells. Sci Rep 2025; 15:11722. [PMID: 40188136 PMCID: PMC11972331 DOI: 10.1038/s41598-025-94794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Sodium propionate (SP) has been shown to enhance alveolar growth retardation in Bronchopulmonary Dysplasia (BPD), but the mechanism remains unclear. The aim of this study is to explore the potential mechanism of SP in the treatment of BPD by utilizing animal and cell models along with bioinformation analysis. Neonatal mice were exposed to either air (21% O2) or hyperoxia (85% O2) from the first day after birth to establish the BPD model. The neonatal mice were intraperitoneally injected with normal saline (control group) or SP (500 mg/kg, SP group) from day 8 to day 14. SP significantly reduced the inflammatory condition of alveolar septal thickening, and decreased the alveolar fusion and mitigated weight loss in BPD mice. ELISA results demonstrated that SP significantly inhibited the secretion of IL-17, IL-6 and TNFα. Transcriptome analysis confirmed that IL-17 signaling pathway is closely related to the therapeutic effects of SP on BPD. In addition, MX2, MMP10, IL-11, ZMAT4 and SEC1 genes were identified as key and potential targets involved in the mechanism of SP treating BPD. Meanwhile, in mouse alveolar epithelial cells, apoptosis was induced by hyperoxia, but it was reduced following SP intervention. The expression of IL-17 pathway related genes: IL-17A, IL-6, TNFα and cox2 was decreased in hyperoxia treated cells after SP intervention. In conclusion, through transcriptome analysis, animal and cell experiments, we explored the role of sodium propionate in attenuating apoptosis in a BPD model through IL-17 pathway.
Collapse
Affiliation(s)
- Anni Xie
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Weilin Qian
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Danni Ye
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Xianhui Deng
- Department of Neonatology, Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China
| | - Yizhe Ma
- Department of Neonatology, Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China
| | - Ran Wang
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Qin Zhou
- Department of Pediatric, Wuxi Yihe Gynaecology and Obstetrics Hospital, Wuxi, 214124, China.
| | - Zhidan Bao
- Department of Neonatology, Jiangyin People's Hospital of Nantong University, Jiangyin, 214400, China.
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China.
| |
Collapse
|
3
|
Yu H, Liu S, Wang S, Gu X. The involvement of HDAC3 in the pathogenesis of lung injury and pulmonary fibrosis. Front Immunol 2024; 15:1392145. [PMID: 39391308 PMCID: PMC11464298 DOI: 10.3389/fimmu.2024.1392145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Acute lung injury (ALI) and its severe counterpart, acute respiratory distress syndrome (ARDS), are critical respiratory conditions with high mortality rates due primarily to acute and intense pulmonary inflammation. Despite significant research advances, effective pharmacological treatments for ALI and ARDS remain unavailable, highlighting an urgent need for therapeutic innovation. Notably, idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease characterized by the irreversible progression of fibrosis, which is initiated by repeated damage to the alveolar epithelium and leads to excessive extracellular matrix deposition. This condition is further complicated by dysregulated tissue repair and fibroblast dysfunction, exacerbating tissue remodeling processes and promoting progression to terminal pulmonary fibrosis. Similar to that noted for ALI and ARDS, treatment options for IPF are currently limited, with no specific drug therapy providing a cure. Histone deacetylase 3 (HDAC3), a notable member of the HDAC family with four splice variants (HD3α, -β, -γ, and -δ), plays multiple roles. HDAC3 regulates gene transcription through histone acetylation and adjusts nonhistone proteins posttranslationally, affecting certain mitochondrial and cytoplasmic proteins. Given its unique structure, HDAC3 impacts various physiological processes, such as inflammation, apoptosis, mitochondrial homeostasis, and macrophage polarization. This article explores the intricate role of HDAC3 in ALI/ARDS and IPF and evaluates its therapeutic potential the treatment of these severe pulmonary conditions.
Collapse
Affiliation(s)
| | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of
China Medical University, Shenyang, China
| |
Collapse
|
4
|
Khan MZ, Li L, Wang T, Liu X, Chen W, Ma Q, Zahoor M, Wang C. Bioactive Compounds and Probiotics Mitigate Mastitis by Targeting NF-κB Signaling Pathway. Biomolecules 2024; 14:1011. [PMID: 39199398 PMCID: PMC11352841 DOI: 10.3390/biom14081011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis is a significant inflammatory condition of the mammary gland in dairy cows. It is caused by bacterial infections and leads to substantial economic losses worldwide. The disease can be either clinical or sub-clinical and presents challenges such as reduced milk yield, increased treatment costs, and the need to cull affected cows. The pathogenic mechanisms of mastitis involve the activation of Toll-like receptors (TLRs), specifically TLR2 and TLR4. These receptors play crucial roles in recognizing pathogen-associated molecular patterns (PAMPs) and initiating immune responses through the NF-κB signaling pathway. Recent in vitro studies have emphasized the importance of the TLR2/TLR4/NF-κB signaling pathway in the development of mastitis, suggesting its potential as a therapeutic target. This review summarizes recent research on the role of the TLR2/TLR4/NF-κB signaling pathway in mastitis. It focuses on how the activation of TLRs leads to the production of proinflammatory cytokines, which, in turn, exacerbate the inflammatory response by activating the NF-κB signaling pathway in mammary gland tissues. Additionally, the review discusses various bioactive compounds and probiotics that have been identified as potential therapeutic agents for preventing and treating mastitis by targeting TLR2/TLR4/NF-κB signaling pathway. Overall, this review highlights the significance of targeting the TLR2/TLR4/NF-κB signaling pathway to develop effective therapeutic strategies against mastitis, which can enhance dairy cow health and reduce economic losses in the dairy industry.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Liangliang Li
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Tongtong Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Qingshan Ma
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien, 90372 Oslo, Norway
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
5
|
Wang Y, Zhao Y, Tang X, Nan X, Jiang L, Wang H, Liu J, Yang L, Yao J, Xiong B. Nutrition, gastrointestinal microorganisms and metabolites in mastitis occurrence and control. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:220-231. [PMID: 38800734 PMCID: PMC11126769 DOI: 10.1016/j.aninu.2024.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 05/29/2024]
Abstract
Mastitis affects almost all mammals including humans and dairy cows. In the dairy industry, bovine mastitis is a disease with a persistently high incidence, causing serious losses to the health of cows, the quality of dairy products, and the economy of dairy farms. Although local udder infection caused by the invasion of exogenous pathogens into the mammary gland was considered the main cause of mastitis, evidence has been established and continues to grow, showing that nutrition factors and gastrointestinal microbiome (GM) as well as their metabolites are also involved in the development of mammary inflammatory response. Suboptimal nutrition is recognized as a risk factor for increased susceptibility to mastitis in cattle, in particular the negative energy balance. The majority of data regarding nutrition and bovine mastitis involves micronutrients. In addition, the dysbiotic GM can directly trigger or aggravate mastitis through entero-mammary gland pathway. The decreased beneficial commensal bacteria, lowered bacterial diversity, and increased pathogens as well as proinflammatory metabolites are found in both the milk and gastrointestinal tract of mastitic dairy cows. This review discussed the relationship between the nutrition (energy and micronutrient levels) and mastitis, summarized the role of GM and metabolites in regulating mastitis. Meanwhile, several non-antibiotics strategies were provided for the prevention and alleviation of mastitis, including micronutrients, probiotics, short-chain fatty acids, high-fiber diet, inulin, and aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang 065000, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Ran X, Hu G, Guo W, Li K, Wang X, Liu J, Fu S. Hesperetin regulates the intestinal flora and inhibits the TLR4/NF-κB signaling axis to protect the blood-milk barrier and prevent mastitis. Life Sci 2024; 342:122533. [PMID: 38428570 DOI: 10.1016/j.lfs.2024.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The World Health Organization recommends breastfeeding for 6 months, but mastitis, a common disease during lactation, presents a major obstacle to fulfilling this recommendation. Maternal nutrient intake during lactation has been shown to be related to mastitis. Therefore, this study aimed to explore the effect of hesperetin, a phytonutrient, on mastitis. The oral administration of hesperetin to lipopolysaccharide (LPS)-induced mastitis mice alleviated their pathological damage, reduced the secretion of pro-inflammatory cytokines, and maintained the integrity of their blood-milk barrier. Moreover, our results showed that oral administration of hesperetin regulates the composition of the intestinal flora of mice. Fecal microbial transplantation (FMT) from the mice of hesperetin group alleviated LPS-induced mastitis in recipient mice. In additional, hesperetin attenuated the inflammatory response and increased the expression of tight junction proteins (TJs) in LPS-stimulated mouse mammary epithelial cells (mMECs). Through network pharmacological analysis and further research, we demonstrated hesperetin inhibits the expression of TLR4 and the activation of NF-κB signaling. In conclusion, hesperetin protects the blood-milk barrier and improve mastitis by regulating intestinal flora and inhibiting the activation of TLR4/NF-κB signaling axis. This study provides a theoretical basis for lactating females to consume hesperetin as a supplement to prevent mastitis and maintain mammary health.
Collapse
Affiliation(s)
- Xin Ran
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guiqiu Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Weiwei Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kefei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxuan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Li H, Li H, Stanton C, Ross RP, Zhao J, Chen W, Yang B. Alleviative effects of exopolysaccharides from Limosilactobacillus mucosae CCFM1273 against ulcerative colitis via modulation of gut microbiota and inhibition of Fas/Fasl and TLR4/NF-κB pathways. Int J Biol Macromol 2024; 260:129346. [PMID: 38242402 DOI: 10.1016/j.ijbiomac.2024.129346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
Abstract
Ulcerative colitis (UC) has become a public health challenge as its global prevalence increases annually. The use of prebiotics in healthcare has grown in recent years. Thus, the present study was designed to explore the alleviating effects and mechanisms of exopolysaccharides (EPS) produced by Limosilactobacillus mucosae CCFM1273 on UC. The results indicated that CCFM1273 EPS mitigated the disease symptoms and colonic pathologic damage in DSS-induced colitis mice. Moreover, CCFM1273 EPS improved the intestinal barrier by restoring goblet cell numbers and MUC2 production, enhancing intercellular junctions, and inhibiting epithelial cell apoptosis. In addition, CCFM1273 EPS inhibited colonic inflammation and oxidative stress. Importantly, CCFM1273 EPS augmented short-chain fatty acid (SCFA) producers, leading to increased levels of SCFAs (especially propionic acid), which inhibited the Fas/Fasl pathway and consequently inhibited epithelial apoptosis, and diminished Gram-negative bacteria, further decreasing lipopolysaccharides (LPS), which suppressed the TLR4/NF-κB pathway and consequently suppressed colonic inflammation, eventually relieving UC in mice. This study provides theoretical support for the use of prebiotics in clinical practice for UC.
Collapse
Affiliation(s)
- Huizhen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
8
|
Zhao C, Yi F, Wei B, Tan P, Huang Y, Zeng F, Wang Y, Xu C, Wang J. Sodium Propionate Relieves LPS-Induced Inflammation by Suppressing the NF-ĸB and MAPK Signaling Pathways in Rumen Epithelial Cells of Holstein Cows. Toxins (Basel) 2023; 15:438. [PMID: 37505707 PMCID: PMC10467098 DOI: 10.3390/toxins15070438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Subacute ruminal acidosis (SARA) is a prevalent disease in intensive dairy farming, and the rumen environment of diseased cows acidifies, leading to the rupture of gram-negative bacteria to release lipopolysaccharide (LPS). LPS can cause rumentitis and other complications, such as liver abscess, mastitis and laminitis. Propionate, commonly used in the dairy industry as a feed additive, has anti-inflammatory effects, but its mechanism is unclear. This study aims to investigate whether sodium propionate (SP) reduces LPS-induced inflammation in rumen epithelial cells (RECs) and the underlying mechanism. RECs were stimulated with different time (0, 1, 3, 6, 9, 18 h) and different concentrations of LPS (0, 1, 5, 10 μg/mL) to establish an inflammation model. Then, RECs were treated with SP (15, 25, 35 mM) or 10 μM PDTC in advance and stimulated by LPS for the assessment. The results showed that LPS (6h and 10 μg/mL) could stimulate the phosphorylation of NF-κB p65, IκB, JNK, ERK and p38 MAPK through TLR4, and increase the release of TNF-α, IL-1β and IL-6. SP (35 mM) can reduce the expression of cytokines by effectively inhibiting the NF-κB and MAPK inflammatory pathways. This study confirmed that SP inhibited LPS-induced inflammatory responses through NF-κB and MAPK in RECs, providing potential therapeutic targets and drugs for the prevention and treatment of SARA.
Collapse
Affiliation(s)
- Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Fanxuan Yi
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Bo Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Yan Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Fangyuan Zeng
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (C.Z.); (F.Y.); (B.W.); (P.T.); (Y.H.); (F.Z.); (Y.W.)
| |
Collapse
|
9
|
Mignini I, Ainora ME, Di Francesco S, Galasso L, Gasbarrini A, Zocco MA. Tumorigenesis in Inflammatory Bowel Disease: Microbiota-Environment Interconnections. Cancers (Basel) 2023; 15:3200. [PMID: 37370812 PMCID: PMC10295963 DOI: 10.3390/cancers15123200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colo-rectal cancer (CRC) is undoubtedly one of the most severe complications of inflammatory bowel diseases (IBD). While sporadic CRC develops from a typical adenoma-carcinoma sequence, IBD-related CRC follows different and less understood pathways and its pathophysiological mechanisms were not completely elucidated. In contrast to chronic inflammation, which is nowadays a well-recognised drive towards neoplastic transformation in IBD, only recently was gut microbiota demonstrated to interfere with both inflammation processes and immune-mediated anticancer surveillance. Moreover, the role of microbiota appears particularly complex and intriguing when also considering its multifaceted interactions with multiple environmental stimuli, notably chronic pathologies such as diabetes and obesity, lifestyle (diet, smoking) and vitamin intake. In this review, we presented a comprehensive overview on current evidence of the influence of gut microbiota on IBD-related CRC, in particular its mutual interconnections with the environment.
Collapse
Affiliation(s)
| | - Maria Elena Ainora
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy; (I.M.); (S.D.F.); (L.G.); (A.G.); (M.A.Z.)
| | | | | | | | | |
Collapse
|
10
|
Lyu C, Yuan B, Meng Y, Cong S, Che H, Ji X, Wang H, Chen C, Li X, Jiang H, Zhang J. Puerarin Alleviates H 2O 2-Induced Oxidative Stress and Blood-Milk Barrier Impairment in Dairy Cows. Int J Mol Sci 2023; 24:ijms24097742. [PMID: 37175449 PMCID: PMC10178507 DOI: 10.3390/ijms24097742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
During the perinatal period, the bovine mammary epithelial cells of dairy cows exhibit vigorous metabolism and produce large amounts of reactive oxygen species (ROS). The resulting redox balance disruption leads to oxidative stress, one of the main causes of mastitis. Puerarin (PUE) is a natural flavonoid in the root of PUE that has attracted extensive attention as a potential antioxidant. This study first investigated whether PUE could reduce oxidative damage and mastitis induced by hydrogen peroxide (H2O2) in bovine mammary epithelial cells in vitro and elucidated the molecular mechanism. In vitro, BMECs (Bovine mammary epithelial cells) were divided into four treatment groups: Control group (no treatment), H2O2 group (H2O2 stimulation), PUE + H2O2 group (H2O2 stimulation before PUE rescue) and PUE group (positive control). The growth of BMECs in each group was observed, and oxidative stress-related indices were detected. Fluorescence quantitative PCR (qRT-PCR) was used to detect the expression of tightly linked genes, antioxidant genes, and inflammatory factors. The expression of p65 protein was detected by Western blot. In vivo, twenty cows with an average age of 5 years having given birth three times were divided into the normal dairy cow group, normal dairy cow group fed PUE, mastitis dairy cow group fed PUE, and mastitis dairy cow group fed PUE (n = 5). The contents of TNF-α, IL-6, and IL-1β in milk and serum were detected. In BMECs, the results showed that the PUE treatment increased the activities of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (T-AOC); ROS and malondialdehyde (MDA) levels were reduced. Thus, PUE alleviated H2O2-induced oxidative stress in vitro. In addition, the PUE treatment eliminated the inhibition of H2O2 on the expression of oxidation genes and tight junction genes, and the enrichment degree of NRF-2, HO-1, xCT, and tight junctions (claudin4, occludin, ZO-1 and symplekin) increased. The PUE treatment also inhibited the expression of NF-κB-associated inflammatory factors (IL-6 and IL-8) and the chemokine CCL5 in H2O2-induced BMECs. In vivo experiments also confirmed that feeding PUE can reduce the expression of inflammatory factors in the milk and serum of lactating dairy cows. In conclusion, PUE can effectively reduce the oxidative stress of bovine mammary epithelial cells, enhance the tight junctions between cells, and play an anti-inflammatory role. This study provides a theoretical basis for PUE prevention and treatment of mastitis and oxidative stress. The use of PUE should be considered as a feed additive in future dairy farming.
Collapse
Affiliation(s)
- Chenchen Lyu
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Yu Meng
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Shuai Cong
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Haoyu Che
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Xingyu Ji
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Haoqi Wang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Chengzhen Chen
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| | - Jiabao Zhang
- Department of Laboratory Animals, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Guo HH, Shen HR, Tang MZ, Sheng N, Ding X, Lin Y, Zhang JL, Jiang JD, Gao TL, Wang LL, Han YX. Microbiota-derived short-chain fatty acids mediate the effects of dengzhan shengmai in ameliorating cerebral ischemia via the gut-brain axis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116158. [PMID: 36638854 DOI: 10.1016/j.jep.2023.116158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengzhan shengmai (DZSM) formula, composed of four herbal medicines (Erigeron breviscapus, Panax ginseng, Schisandra chinensis, and Ophiopogon japonicus), is widely used in the recovery period of ischemic cerebrovascular diseases; however, the associated molecular mechanism remains unclear. AIM OF THE STUDY The purpose of this study was to uncover the links between the microbiota-gut-brain axis and the efficacy of DZSM in ameliorating cerebral ischemic diseases. MATERIALS AND METHODS The effects of DZSM on the gut microbiota community and bacteria-derived short-chain fatty acid (SCFA) production were evaluated in vivo using a rat model of cerebral ischemia and in vitro through the anaerobic incubation with fresh feces derived from model animals. Subsequently, the mechanism underlying the role of SCFAs in the DZSM-mediated treatment of cerebral ischemia was explored. RESULTS We found that DZSM treatment significantly altered the composition of the gut microbiota and markedly enhanced SCFA production. The consequent increase in SCFA levels led to the upregulation of the expression of monocarboxylate transporters and facilitated the transportation of intestinal SCFAs into the brain, thereby inhibiting the apoptosis of neurocytes via the regulation of the PI3K/AKT/caspase-3 pathway. The increased intestinal SCFA levels also contributed to the repair of the 2VO-induced disruption of gut barrier integrity and inhibited the translocation of lipopolysaccharide from the intestine to the brain, thus attenuating neuroinflammation. Consequently, cerebral neuropathy and oxidative stress were significantly improved in 2VO model rats, leading to the amelioration of cerebral ischemia-induced cognitive dysfunction. Finally, fecal microbiota transplantation could reproduce the beneficial effects of DZSM on SCFA production and cerebral ischemia. CONCLUSIONS Our findings suggested that SCFAs mediate the effects of DZSM in ameliorating cerebral ischemia via the gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Hao-Ran Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Ming-Ze Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Ning Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Tian-Le Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Lu-Lu Wang
- Laboratory of Antiviral Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Li X, Chen Y, Song L, Wang J, Song Z, Zhao X, Zhou C, Wu Y. Partial enzymolysis affects the digestion of tamarind seed polysaccharides in vitro: Degradation accelerates and gut microbiota regulates. Int J Biol Macromol 2023; 237:124175. [PMID: 37003195 DOI: 10.1016/j.ijbiomac.2023.124175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
Two hydrolyzed fractions of tamarind seed polysaccharide (TSP), denoted ETSP1 (176.68 kDa) and ETSP2 (34.34 kDa), were prepared by partial degradation via endo-xyloglucanase, and then characterized and evaluated by simulated gastrointestinal digestion in vitro. The results showed that the hydrolyzed TSPs remained indigestible in gastric and small intestinal media, and were fermented by gut microbiota, similar to the native TSP (Mw = 481.52 kDa). Although the degradation of hydrolyzed TSPs was accelerated during fermentation with a decreasing degree of polymerization, the content of produced total short-chain fatty acids (SCFAs) decreased. After fermentation, the gut microbiota composition was modified, esp. the Firmicutes/Bacteroidetes ratio decreased (1.06 vs. 0.96 vs. 0.80) with a decreasing degree of polymerization, which implied that the potential anti-obesity prebiotic effect was enhanced. At the genus level, hydrolyzed TSPs maintained similar roles as native TSP, including promoting beneficial bacteria (Bifidobacterium, Parabacteroides, and Faecalibacterium) and inhibiting enteropathogenic bacteria (Escherichia-Shigella and Dorea). Moreover, ETSP1 had additional potential due to abundant Bacteroides vulgatus (LDA = 4.68), and ETSP2 might perform better as related to Bacteroides xylanisolvens (LDA = 4.40). All these results indicated the prebiotic potential of hydrolyzed TSP with detailed information about changes in degradation and gut microbiota based on enzyme-hydrolysis.
Collapse
Affiliation(s)
- Xujiao Li
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinan Chen
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiangmei Wang
- Weifang Ecological Environment Monitoring Center, Weifang 261041, China.
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China.
| | - Xiaoyan Zhao
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Changyan Zhou
- Institute for Agro-food Standards and Testing Technology, Laboratory of Quality & Safety Risk Assessment for Agro-products (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yan Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Luo S, Wang Y, Kang X, Liu P, Wang G. Research progress on the association between mastitis and gastrointestinal microbes in dairy cows and the effect of probiotics. Microb Pathog 2022; 173:105809. [PMID: 36183956 DOI: 10.1016/j.micpath.2022.105809] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Mastitis in dairy cows affects milk quality and thereby constrains the development of the dairy industry. A clear understanding of the pathogenesis of mastitis can help its treatment. Mastitis is caused by the invasion of pathogenic bacteria into the mammary gland through the mammary ducts. However, recent studies suggested that an endogenous entero-mammary pathway in dairy cattle might also be playing an important role in regulating mastitis. Also, probiotic intervention regulating host gut microbes has become an interesting tool to control mastitis. This review discusses the association of gastrointestinal microbes with mastitis and the mechanism of action of probiotics in dairy cows to provide new ideas for the management of mastitis in large-scale dairy farms.
Collapse
Affiliation(s)
- Shuangyan Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yuxia Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xinyun Kang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Panpan Liu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Guiqin Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
14
|
Akhtar M, Naqvi SUAS, Liu Q, Pan H, Ma Z, Kong N, Chen Y, Shi D, Kulyar MFEA, Khan JA, Liu H. Short Chain Fatty Acids (SCFAs) Are the Potential Immunomodulatory Metabolites in Controlling Staphylococcus aureus-Mediated Mastitis. Nutrients 2022; 14:3687. [PMID: 36145063 PMCID: PMC9503071 DOI: 10.3390/nu14183687] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Mastitis is an emerging health concern in animals. An increased incidence of mastitis in dairy cows has been reported in the last few years across the world. It is estimated that up to 20% of cows are suffering from mastitis, causing incompetency in the mucosal immunity and resulting in excessive global economic losses in the dairy industry. Staphylococcus aureus (S. aureus) has been reported as the most common bacterial pathogen of mastitis at clinical and sub-clinical levels. Antibiotics, including penicillin, macrolides, lincomycin, cephalosporins, tetracyclines, chloramphenicol, and methicillin, were used to cure S. aureus-induced mastitis. However, S. aureus is resistant to most antibiotics, and methicillin-resistant S. aureus (MRSA) especially has emerged as a critical health concern. MRSA impairs immune homeostasis leaving the host more susceptible to other infections. Thus, exploring an alternative to antibiotics has become an immediate requirement of the current decade. Short chain fatty acids (SCFAs) are the potent bioactive metabolites produced by host gut microbiota through fermentation and play a crucial role in host/pathogen interaction and could be applied as a potential therapeutic agent against mastitis. The purpose of this review is to summarize the potential mechanism by which SCFAs alleviate mastitis, providing the theoretical reference for the usage of SCFAs in preventing or curing mastitis.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jawaria Ali Khan
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Ali I, Li C, Kuang M, Shah AU, Shafiq M, Ahmad MA, Abdalmegeed D, Li L, Wang G. Nrf2 Activation and NF-Kb & caspase/bax signaling inhibition by sodium butyrate alleviates LPS-induced cell injury in bovine mammary epithelial cells. Mol Immunol 2022; 148:54-67. [PMID: 35671559 DOI: 10.1016/j.molimm.2022.05.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/23/2022]
Abstract
Mastitis, an inflammation of the mammary gland, is a complex disease that affects the health of dairy cows worldwide. Sodium butyrate (SB) is a short-chain fatty acid that has recently been shown to have antioxidant, anti-inflammatory and anti-apoptotic potential in various cells types, although its role in bovine mammary epithelial cells (bMECs) has not been comprehensively reported. Therefore, the aim of this study was to assess the protective effect of sodium butyrate on Lipopolysaccharide (LPS)-induced mastitis model in vitro and to elucidate the possible underlying molecular mechanisms. The in vitro mastitis model was designed to investigate the regulatory effect of SB on LPS-induced inflammatory conditions in bMECs, with particular emphasis on oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. The results showed that SB co-treatment markedly prevented LPS-induced death of bMECs in a concentration-dependent manner. In addition, SB attenuated LPS-induced oxidative stress (OS) (Increased Intracellular ROS, MDA, and decreased SOD, GSH-Px and CAT activity), thereby reduced inflammation (increased expression of IL-6, IL-Iβ, and TNF-α), and apoptosis (Increased the expression of caspases and Bax and decreased Bcl-2) via inhibiting NF-kB and caspase/bax signaling pathways. Furthermore, the protective effect of SB was also associated with the activation of endogenous antioxidant system (Nrf2, Keap1, NQO-1 and HO-1). Nrf2 silencing significantly abolished the protective effect of SB on bMECs. In conclusion, our findings suggest that SB has a significant protective effect on LPS-induced OS, inflammatory responses and apoptosis by activating Nrf2 and inhibiting NF-kB and ROS-mediated mitochondrial dysfunction. These results propose that SB may be an important regulator of OS and its subsequent inflammatory responses, and thus could be used as a therapeutic agent for bovine mastitis.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen 518060, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Meqian Kuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Abid Ullah Shah
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Shafiq
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Dyaaaldin Abdalmegeed
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Microbiology section, Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
N6-Methyladenosine Modification Profile in Bovine Mammary Epithelial Cells Treated with Heat-Inactivated Staphylococcus aureus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1704172. [PMID: 35251466 PMCID: PMC8890870 DOI: 10.1155/2022/1704172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
The symptoms of mastitis caused by Staphylococcus aureus (S. aureus) in dairy cows are not obvious and difficult to identify, resulting in major economic losses. N6-Methyladenosine (m6A) modification has been reported to be closely associated with the occurrence of many diseases. However, only a few reports have described the role of m6A modification in S. aureus-induced mastitis. In this study, after 24 h of treatment with inactivated S. aureus, MAC-T cells (an immortalized bovine mammary epithelial cell line) showed increased expression levels of the inflammatory factors IL-1β, IL-6, TNF-α, and reactive oxygen species. We found that the mRNA levels of METLL3, METLL14, WTAP, and ALKBH5 were also upregulated. Methylated RNA immunoprecipitation sequencing analysis revealed that 133 genes were m6A hypermethylated, and 711 genes were m6A hypomethylated. Biological functional analysis revealed that the differential m6A methylated genes were mainly related to oxidative stress, lipid metabolism, inflammatory response, and so on. In the present study, we also identified 62 genes with significant changes in m6A modification and mRNA expression levels. These findings elucidated the m6A modification spectrum induced by S. aureus in MAC-T cells and provide the basis for subsequent m6A research on mastitis.
Collapse
|
17
|
Selenium and Taurine Combination Is Better Than Alone in Protecting Lipopolysaccharide-Induced Mammary Inflammatory Lesions via Activating PI3K/Akt/mTOR Signaling Pathway by Scavenging Intracellular ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5048375. [PMID: 34938382 PMCID: PMC8687852 DOI: 10.1155/2021/5048375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/07/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.
Collapse
|