1
|
Zhang R, Zhang Y, Li H, Zhang J, Feng Q, Lei Y, Liu S, Zhao Q, He J, Luo C, Qiu H, Zhang J, Gong S, Wang L. Single-cell transcriptomic analysis reveals distinct plasma cell populations in chronic thromboembolic pulmonary hypertension. J Thromb Haemost 2025; 23:1608-1621. [PMID: 39965671 DOI: 10.1016/j.jtha.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Chronic thromboembolic pulmonary hypertension (CTEPH) presents challenges due to its complex pathobiology. Although numerous studies have reported heterogeneous cell types by single-cell RNA sequencing, the atlas and characteristics of plasma cells remain poorly understood. OBJECTIVES To identify the altered phenotype and differentiation patterns of plasma cells in CTEPH. METHODS We performed single-cell RNA sequencing on pulmonary endarterectomy tissue from 5 patients and 6 normal pulmonary arteries. Serum immunoglobulins (Igs) were measured using protein electrophoresis among 273 CTEPH patients, 259 idiopathic pulmonary arterial hypertension (IPAH) patients, and 251 healthy controls. RESULTS The percentage of plasma cells was significantly increased from less than 1% in healthy controls to 15% in CTEPH patients. We identified 1 B cell cluster and 5 distinct mature plasma cell clusters, including IGHG1, HSPA1A, AHNAK, IGLC3, and IGKV4. Notably, the AHNAK and IGLC3 subclusters are newly identified. GeneSwitches analysis indicated early activation of IGHG1 and early deactivation of HLA-DPA1. The trajectory of AHNAK cluster was earlier than that of IGLC3 cluster, with an enrichment for pathways responsive to lipopolysaccharide. The IGLC3 cluster revealed lower differentiation potential and was predominantly associated with Ig production. Furthermore, Igα2 levels in CTEPH patients were lower than in controls but higher than in IPAH patients. Significantly, Igγ levels were markedly elevated in CTEPH patients compared with IPAH patients and controls, better distinguishing CTEPH patients from controls and IPAH patients. CONCLUSION Plasma cells of CTEPH had a distinctive landscape and heterogeneity. The newly identified clusters represented excessive Ig production but lacked immune response function. These findings highlight that targeted plasma cells can be used to develop novel CTEPH treatments.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yunlong Zhang
- Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Huiting Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiao Feng
- Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yitong Lei
- Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Sihan Liu
- Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cijun Luo
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongling Qiu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfeng Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Shen L, Tao C, Zhu K, Cai L, Yang S, Jin J, Ren Y, Xiao Y, Zhang Y, Lai D, Tou J. Key platelet genes play important roles in predicting the prognosis of sepsis. Sci Rep 2024; 14:23530. [PMID: 39384856 PMCID: PMC11464784 DOI: 10.1038/s41598-024-74052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/23/2024] [Indexed: 10/11/2024] Open
Abstract
Sepsis is a life-threatening organ malfunction induced by an imbalanced immunological reaction to infection in the host. Many studies have utilized traditional RNA sequencing (RNA-seq) data to identify important biological targets to predict sepsis prognosis. However, alterations in core cells and functional status cannot be effectively detected in sepsis patients. The goal of this study was to identify key cells through single-cell RNA-seq (scRNA-seq), and combine bulk RNA-seq data and multiple algorithm analysis to construct a stable prognostic model for sepsis. The scRNA-seq and bulk RNA-seq data from sepsis patients were collected from the Gene Expression Omnibus (GEO) database. The R package "Seurat" was used to process the scRNA-seq data. Cell communication was investigated using the R package "CellChat". The pseudo-time of the cells was calculated using the R package "monocle". The R package "limma" was used to identify differentially expressed genes (DEGs) between the sepsis group and the control group. Weighted gene correlation network analysis (WGCNA) was used to identify critical modules. Eight kinds of machine learning and 90 algorithm combinations were used to construct the prognostic model for sepsis. Quantitative real-time PCR (qRT‒PCR) was performed to determine the expression of key genes in the cecal ligation and puncture (CLP)-induced sepsis mouse model. The immunological status and related properties of DEGs were then investigated in the high- and low-risk groups delineated by the model. By combining the scRNA-seq data from nine samples, 13 clusters and 9 cell types were identified. CellChat analysis revealed that the number and strength of interactions between platelets and a variety of cells increased. We identified key platelet genes from the scRNA-seq data and combined these genes and the results of differential analysis and WGCNA of the bulk RNA-seq data. After univariate Cox regression analysis, we calculated the Cindex of the model constructed by the combination of 90 algorithms, and we finally determined the "CoxBoost + Lasso" combination. Multivariate Cox regression was used to construct the final prognostic model. The qRT-PCR results revealed significant differences in five key prognostic genes between the CLP and sham groups. The data was classified into high- and low-risk groups based on the model score. The high-risk group had a poorer survival rate and less immune infiltration. We identified the importance of platelets in sepsis patients through scRNA-seq, and established prognostic models with key genes that were identified via scRNA-seq combined with bulk RNA-seq analysis. The results of this model were closely associated with patient survival rates and immunological status and this model is useful for the prognostic management of sepsis.
Collapse
Affiliation(s)
- Leiting Shen
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chang Tao
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Linghao Cai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Sisi Yang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingyi Jin
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yichao Ren
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yi Xiao
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuebai Zhang
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dengming Lai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Jinfa Tou
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
3
|
Li Z, Ma J, Wang X, Zhu L, Gan Y, Dai B. The role of immune cells in the pathogenesis of connective tissue diseases-associated pulmonary arterial hypertension. Front Immunol 2024; 15:1464762. [PMID: 39355239 PMCID: PMC11442293 DOI: 10.3389/fimmu.2024.1464762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/03/2024] Open
Abstract
Connective tissue diseases-related pulmonary arterial hypertension (CTD-PAH) is a disease characterized by an elevated pulmonary artery pressure that arises as a complication of connective tissue diseases. The number of patients with CTD-PAH accounts for 25.3% of all PAH patients. The main pathological features of CTD-PAH are thickening of intima, media and adventitia of pulmonary arterioles, increased pulmonary vascular resistance, autoimmune activation and inflammatory reaction. It is worth noting that abnormal immune activation will produce autoantibodies and release cytokines, and abnormal immune cell recruitment will promote inflammatory environment and vascular remodeling. Therefore, almost all forms of connective tissue diseases are related to PAH. In addition to general therapy and targeted drug therapy for PAH, high-dose glucocorticoid combined with immunosuppressant can quickly alleviate and stabilize the basic CTD-PAH disease. Given this, the development of therapeutic approaches targeting immune dysregulation and heightened inflammation is recognized as a promising strategy to prevent or reverse the progression of CTD-PAH. This review explores the potential mechanisms by which immune cells contribute to the development of CTD-PAH and examines the clinical application of immunosuppressive therapies in managing CTD-PAH.
Collapse
Affiliation(s)
- Zhe Li
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Juan Ma
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Xuejing Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, China
| | - Liquan Zhu
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Yu Gan
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| | - Baoquan Dai
- Department 5 of Pediatric, Weifang Maternal and Child Health Hospital, Weifang, China
| |
Collapse
|
4
|
Zhang Y, Li X, Li S, Zhou Y, Zhang T, Sun L. Immunotherapy for Pulmonary Arterial Hypertension: From the Pathogenesis to Clinical Management. Int J Mol Sci 2024; 25:8427. [PMID: 39125996 PMCID: PMC11313500 DOI: 10.3390/ijms25158427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive cardiovascular disease, which may lead to severe cardiopulmonary dysfunction. As one of the main PH disease groups, pulmonary artery hypertension (PAH) is characterized by pulmonary vascular remodeling and right ventricular dysfunction. Increased pulmonary artery resistance consequently causes right heart failure, which is the major reason for morbidity and mortality in this disease. Although various treatment strategies have been available, the poor clinical prognosis of patients with PAH reminds us that further studies of the pathological mechanism of PAH are still needed. Inflammation has been elucidated as relevant to the initiation and progression of PAH, and plays a crucial and functional role in vascular remodeling. Many immune cells and cytokines have been demonstrated to be involved in the pulmonary vascular lesions in PAH patients, with the activation of downstream signaling pathways related to inflammation. Consistently, this influence has been found to correlate with the progression and clinical outcome of PAH, indicating that immunity and inflammation may have significant potential in PAH therapy. Therefore, we reviewed the pathogenesis of inflammation and immunity in PAH development, focusing on the potential targets and clinical application of anti-inflammatory and immunosuppressive therapy.
Collapse
Affiliation(s)
| | | | | | | | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; (Y.Z.); (X.L.); (S.L.); (Y.Z.)
| | - Lan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China; (Y.Z.); (X.L.); (S.L.); (Y.Z.)
| |
Collapse
|
5
|
Zhou M, Li T, Lv S, Gan W, Zhang F, Che Y, Yang L, Hou Y, Yan Z, Zeng Z, Zhao W, Yang M. Identification of immune-related genes and small-molecule drugs in hypertension-induced left ventricular hypertrophy based on machine learning algorithms and molecular docking. Front Immunol 2024; 15:1351945. [PMID: 38994368 PMCID: PMC11236603 DOI: 10.3389/fimmu.2024.1351945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Background Left ventricular hypertrophy (LVH) is a common consequence of hypertension and can lead to heart failure. The immune response plays an important role in hypertensive LVH; however, there is no comprehensive method to investigate the mechanistic relationships between immune response and hypertensive LVH or to find novel therapeutic targets. This study aimed to screen hub immune-related genes involved in hypertensive LVH as well as to explore immune target-based therapeutic drugs. Materials and methods RNA-sequencing data from a mouse model generated by angiotensin II infusion were subjected to weighted gene co-expression network analysis (WGCNA) to identify core expression modules. Machine learning algorithms were applied to screen immune-related LVH characteristic genes. Heart structures were evaluated by echocardiography and cardiac magnetic resonance imaging (CMRI). Validation of hub genes was conducted by RT-qPCR and western blot. Using the Connectivity Map database and molecular docking, potential small-molecule drugs were explored. Results A total of 1215 differentially expressed genes were obtained, most of which were significantly enriched in immunoregulation and collagen synthesis. WGCNA and multiple machine learning strategies uncovered six hub immune-related genes (Ankrd1, Birc5, Nuf2, C1qtnf6, Fcgr3, and Cdca3) that may accurately predict hypertensive LVH diagnosis. Immune analysis revealed that fibroblasts and macrophages were closely correlated with hypertensive LVH, and hub gene expression was significantly associated with these immune cells. A regulatory network of transcription factor-mRNA and a ceRNA network of miRNA-lncRNA was established. Notably, six hub immune-related genes were significantly increased in the hypertensive LVH model, which were positively linked to left ventricle wall thickness. Finally, 12 small-molecule compounds with the potential to reverse the high expression of hub genes were ruled out as potential therapeutic agents for hypertensive LVH. Conclusion This study identified and validated six hub immune-related genes that may play essential roles in hypertensive LVH, providing new insights into the potential pathogenesis of cardiac remodeling and novel targets for medical interventions.
Collapse
Affiliation(s)
- Mingxuan Zhou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiegang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Silin Lv
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenqiang Gan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexia Che
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Liu Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yufang Hou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zifan Zeng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Yang Q, Lai B, Xie H, Deng M, Li J, Yang Y, Wan J, Liao B, Liu F. Identification of differentially expressed ER stress-related genes and their association with pulmonary arterial hypertension. Respir Res 2024; 25:220. [PMID: 38789967 PMCID: PMC11127292 DOI: 10.1186/s12931-024-02849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a complex and progressive illness that has a multifaceted origin, significant fatality rates, and profound effects on health. The pathogenesis of PAH is poorly defined due to the insufficient understanding of the combined impact of endoplasmic reticulum (ER) stress and immune infiltration, both of which play vital roles in PAH development. This study aims to identify potential ER stress-related biomarkers in PAH and investigate their involvement in immune infiltration. METHODS The GEO database was used to download gene expression profiles. Genes associated with ER stress were obtained from the MSigDB database. Weighted gene co-expression network analysis (WGCNA), GO, KEGG, and protein-protein interaction (PPI) were utilized to conduct screening of hub genes and explore potential molecular mechanisms. Furthermore, the investigation also delved into the presence of immune cells in PAH tissues and the correlation between hub genes and the immune system. Finally, we validated the diagnostic value and expression levels of the hub genes in PAH using subject-workup characterization curves and real-time quantitative PCR. RESULTS In the PAH and control groups, a total of 31 genes related to ER stress were found to be differentially expressed. The enrichment analysis revealed that these genes were primarily enriched in reacting to stress in the endoplasmic reticulum, dealing with unfolded proteins, transporting proteins, and processing proteins within the endoplasmic reticulum. EIF2S1, NPLOC4, SEC61B, SYVN1, and DERL1 were identified as the top 5 hub genes in the PPI network. Immune infiltration analysis revealed that these hub genes were closely related to immune cells. The receiver operating characteristic (ROC) curves revealed that the hub genes exhibited excellent diagnostic efficacy for PAH. The levels of SEC61B, NPLOC4, and EIF2S1 expression were in agreement with the findings of bioinformatics analysis in the PAH group. CONCLUSIONS Potential biomarkers that could be utilized are SEC61B, NPLOC4, and EIF2S1, as identified in this study. The infiltration of immune cells was crucial to the development and advancement of PAH. This study provided new potential therapeutic targets for PAH.
Collapse
Affiliation(s)
- Qi Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Banghui Lai
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Hao Xie
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Mingbin Deng
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Jun Li
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yan Yang
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| | - Feng Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
7
|
Sanges S, Tian W, Dubucquoi S, Chang JL, Collet A, Launay D, Nicolls MR. B-cells in pulmonary arterial hypertension: friend, foe or bystander? Eur Respir J 2024; 63:2301949. [PMID: 38485150 PMCID: PMC11043614 DOI: 10.1183/13993003.01949-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/01/2024] [Indexed: 04/22/2024]
Abstract
There is an unmet need for new therapeutic strategies that target alternative pathways to improve the prognosis of patients with pulmonary arterial hypertension (PAH). As immunity has been involved in the development and progression of vascular lesions in PAH, we review the potential contribution of B-cells in its pathogenesis and evaluate the relevance of B-cell-targeted therapies. Circulating B-cell homeostasis is altered in PAH patients, with total B-cell lymphopenia, abnormal subset distribution (expansion of naïve and antibody-secreting cells, reduction of memory B-cells) and chronic activation. B-cells are recruited to the lungs through local chemokine secretion, and activated by several mechanisms: 1) interaction with lung vascular autoantigens through cognate B-cell receptors; 2) costimulatory signals provided by T follicular helper cells (interleukin (IL)-21), type 2 T helper cells and mast cells (IL-4, IL-6 and IL-13); and 3) increased survival signals provided by B-cell activating factor pathways. This activity results in the formation of germinal centres within perivascular tertiary lymphoid organs and in the local production of pathogenic autoantibodies that target the pulmonary vasculature and vascular stabilisation factors (including angiotensin-II/endothelin-1 receptors and bone morphogenetic protein receptors). B-cells also mediate their effects through enhanced production of pro-inflammatory cytokines, reduced anti-inflammatory properties by regulatory B-cells, immunoglobulin (Ig)G-induced complement activation, and IgE-induced mast cell activation. Precision-medicine approaches targeting B-cell immunity are a promising direction for select PAH conditions, as suggested by the efficacy of anti-CD20 therapy in experimental models and a trial of rituximab in systemic sclerosis-associated PAH.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Wen Tian
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-first authorship
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - Jason L Chang
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Aurore Collet
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, F-59000 Lille, France
| | - David Launay
- Univ. Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
- INSERM, F-59000 Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, F-59000 Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord, Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), F-59000 Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), F-59000 Lille, France
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| | - Mark R Nicolls
- Veteran Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, School of Medicine, Stanford, CA, USA
- Both authors contributed equally and share co-last authorship
| |
Collapse
|
8
|
Wufuer D, Li Y, Aierken H, Zheng J. Bioinformatics-led discovery of ferroptosis-associated diagnostic biomarkers and molecule subtypes for tuberculosis patients. Eur J Med Res 2023; 28:445. [PMID: 37853432 PMCID: PMC10585777 DOI: 10.1186/s40001-023-01371-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Ferroptosis is closely associated with the pathophysiological processes of many diseases, such as infection, and is characterized by the accumulation of excess lipid peroxides on the cell membranes. However, studies on the ferroptosis-related diagnostic markers in tuberculosis (TB) is still lacking. Our study aimed to explore the role of ferroptosis-related biomarkers and molecular subtypes in TB. METHODS GSE83456 dataset was applied to identify ferroptosis-related genes (FRGs) associated with TB, and GSE42826, GSE28623, and GSE34608 datasets for external validation of core biomarkers. Core FRGs were identified using weighted gene co-expression network analysis (WGCNA). Subsequently, two ferroptosis-related subtypes were constructed based on ferroptosis score, and differently expressed analysis, GSEA, GSEA, immune cell infiltration analysis between the two subtypes were performed.Affiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.correctly RESULTS: A total of 22 FRGs were identified, of which three genes (CHMP5, SAT1, ZFP36) were identified as diagnostic biomarkers that were enriched in pathways related to immune-inflammatory response. In addition, TB patients were divided into high- and low-ferroptosis subtypes (HF and LF) based on ferroptosis score. HF patients had activated immune- and inflammation-related pathways and higher immune cell infiltration levels than LF patients. CONCLUSION Three potential diagnostic biomarkers and two ferroptosis-related subtypes were identified in TB patients, which would help to understand the pathogenesis of TB.Author names: Kindly check and confirm the process of the author names [2,4]correctly.
Collapse
Affiliation(s)
- Dilinuer Wufuer
- The First Affiliated Hospital of Guangzhou Medical University/National Clinical Research Center for Respiratory Disease/National Respiratory Medical Center/State Key Laboratory of Respiratory Disease/Guangzhou Institute of Respiratory Health, NO. 151 Yanjang Road, Guangzhou, 510120, China
| | - YuanYuan Li
- Department of Respiratory Medicine, Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830049, Xinjiang, China
| | - Haidiya Aierken
- Department of Respiratory Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - JinPing Zheng
- The First Affiliated Hospital of Guangzhou Medical University/National Clinical Research Center for Respiratory Disease/National Respiratory Medical Center/State Key Laboratory of Respiratory Disease/Guangzhou Institute of Respiratory Health, NO. 151 Yanjang Road, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Ko J, Noviani M, Chellamuthu VR, Albani S, Low AHL. The Pathogenesis of Systemic Sclerosis: The Origin of Fibrosis and Interlink with Vasculopathy and Autoimmunity. Int J Mol Sci 2023; 24:14287. [PMID: 37762589 PMCID: PMC10532389 DOI: 10.3390/ijms241814287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease associated with increased mortality and poor morbidity, impairing the quality of life in patients. Whilst we know that SSc affects multiple organs via vasculopathy, inflammation, and fibrosis, its exact pathophysiology remains elusive. Microvascular injury and vasculopathy are the initial pathological features of the disease. Clinically, the vasculopathy in SSc is manifested as Raynaud's phenomenon (reversible vasospasm in reaction to the cold or emotional stress) and digital ulcers due to ischemic injury. There are several reports that medications for vasculopathy, such as bosentan and soluble guanylate cyclase (sGC) modulators, improve not only vasculopathy but also dermal fibrosis, suggesting that vasculopathy is important in SSc. Although vasculopathy is an important initial step of the pathogenesis for SSc, it is still unclear how vasculopathy is related to inflammation and fibrosis. In this review, we focused on the clinical evidence for vasculopathy, the major cellular players for the pathogenesis, including pericytes, adipocytes, endothelial cells (ECs), and myofibroblasts, and their signaling pathway to elucidate the relationship among vasculopathy, inflammation, and fibrosis in SSc.
Collapse
Affiliation(s)
- Junsuk Ko
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
| | - Maria Noviani
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore 169608, Singapore
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore 169856, Singapore;
| | - Vasuki Ranjani Chellamuthu
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore 169856, Singapore;
| | - Salvatore Albani
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
- Translational Immunology Institute, SingHealth Duke-National University of Singapore Academic Medical Centre, Singapore 169856, Singapore;
| | - Andrea Hsiu Ling Low
- Duke-National University of Singapore Medical School, Singapore 169857, Singapore; (J.K.); (M.N.); (S.A.)
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore 169608, Singapore
| |
Collapse
|
10
|
New insights into MAIT cells in autoimmune diseases. Biomed Pharmacother 2023; 159:114250. [PMID: 36652733 DOI: 10.1016/j.biopha.2023.114250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are resident T cells that express semi-invariant TCR chains and are restricted by monomorphic major histocompatibility complex (MHC) class I-related molecules (MR1). MAIT cells can be activated by microbial-specific metabolites (MR1-dependent mode) or cytokines (MR1-independent mode). Activated MAIT cells produce chemokines, cytotoxic molecules (granzyme B and perforin), and proinflammatory cytokines (IFN-γ, TNF-α, and IL-17), to clear pathogens and target infected cells involved in the pro-inflammatory, migratory, and cytolytic properties of MAIT cells. MAIT cells produce pro-inflammatory cytokines in the target organs of autoimmune diseases and contribute to the development and progression of autoimmune diseases. This article reviews the biological characteristics, activation mechanism, dynamic migration, and dual functions of MAIT cells, and focuses on the mechanism and potential application of MAIT cells in the early diagnosis, disease activity monitoring, and therapeutic targets of autoimmune diseases, to lay a foundation for future research.
Collapse
|
11
|
Bhandari R, Yang H, Kosarek NN, Smith AE, Garlick JA, Hinchcliff M, Whitfield ML, Pioli PA. Human dermal fibroblast-derived exosomes induce macrophage activation in systemic sclerosis. Rheumatology (Oxford) 2023; 62:SI114-SI124. [PMID: 35946522 PMCID: PMC9910573 DOI: 10.1093/rheumatology/keac453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Prior work demonstrates that co-cultured macrophages and fibroblasts from patients with SSc engage in reciprocal activation. However, the mechanism by which these cell types communicate and contribute to fibrosis and inflammation in SSc is unknown. METHODS Fibroblasts were isolated from skin biopsies obtained from 7 SSc patients or 6 healthy age and gender-matched control subjects following written informed consent. Human donor-derived macrophages were cultured with exosomes isolated from control or SSc fibroblasts for an additional 48 h. Macrophages were immunophenotyped using flow cytometry, qRT-PCR and multiplex. For mutual activation studies, exosome-activated macrophages were co-cultured with SSc or healthy fibroblasts using Transwells. RESULTS Macrophages activated with dermal fibroblast-derived exosomes from SSc patients upregulated surface expression of CD163, CD206, MHC Class II and CD16 and secreted increased levels of IL-6, IL-10, IL-12p40 and TNF compared with macrophages incubated with healthy control fibroblasts (n = 7, P < 0.05). Exosome-stimulated macrophages and SSc fibroblasts engaged in reciprocal activation, as production of collagen and fibronectin was significantly increased in SSc fibroblasts receiving signals from SSc exosome-stimulated macrophages (n = 7, P < 0.05). CONCLUSION In this work, we demonstrate for the first time that human SSc dermal fibroblasts mediate macrophage activation through exosomes. Our findings suggest that macrophages and fibroblasts engage in cross-talk in SSc skin, resulting in mutual activation, inflammation, and extracellular matrix (ECM) deposition. Collectively, these studies implicate macrophages and fibroblasts as cooperative mediators of fibrosis in SSc and suggest therapeutic targeting of both cell types may provide maximal benefit in ameliorating disease in SSc patients.
Collapse
Affiliation(s)
| | - Heetaek Yang
- Department of Microbiology and Immunology
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Noelle N Kosarek
- Department of Microbiology and Immunology
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Avi E Smith
- Department of Diagnostic Science, Tufts University School of Dental Medicine, Boston, MA
| | - Jonathan A Garlick
- Department of Diagnostic Science, Tufts University School of Dental Medicine, Boston, MA
| | - Monique Hinchcliff
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | |
Collapse
|
12
|
Sanges S, Guerrier T, Duhamel A, Guilbert L, Hauspie C, Largy A, Balden M, Podevin C, Lefèvre G, Jendoubi M, Speca S, Hachulla É, Sobanski V, Dubucquoi S, Launay D. Soluble markers of B cell activation suggest a role of B cells in the pathogenesis of systemic sclerosis-associated pulmonary arterial hypertension. Front Immunol 2022; 13:954007. [PMID: 35967377 PMCID: PMC9374103 DOI: 10.3389/fimmu.2022.954007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Soluble markers of B cell activation are interesting diagnostic and prognostic tools in autoimmune diseases. Data in systemic sclerosis (SSc) are scarce and few studies focused on their association with disease characteristics. Methods 1. Serum levels of 14 B cell biomarkers (β2-microglobulin, rheumatoid factor (RF), immunoglobulins (Ig) G, IgA, IgM, BAFF, APRIL, soluble (s)TACI, sBCMA sCD21, sCD23, sCD25, sCD27, CXCL13) were measured in SSc patients and healthy controls (HC). 2. Associations between these biomarkers and SSc characteristics were assessed. 3. The pathophysiological relevance of identified associations was explored by studying protein production in B cell culture supernatant. Results In a discovery panel of 80 SSc patients encompassing the broad spectrum of disease manifestations, we observed a higher frequency of RF positivity, and increased levels of β2-microglobulin, IgG and CXCL13 compared with HC. We found significant associations between several biomarkers and SSc characteristics related to disease phenotype, activity and severity. Especially, serum IgG levels were associated with pulmonary hypertension (PH); β2-microglobulin with Nt-pro-BNP and DLCO; and BAFF with peak tricuspid regurgitation velocity (TRV). In a validation cohort of limited cutaneous SSc patients without extensive ILD, we observed lower serum IgG levels, and higher β2-microglobulin, sBCMA, sCD23 and sCD27 levels in patients with pulmonary arterial hypertension (PAH). BAFF levels strongly correlated with Nt-pro-BNP levels, FVC/DLCO ratio and peak TRV in SSc-PAH patients. Cultured SSc B cells showed increased production of various angiogenic factors (angiogenin, angiopoietin-1, VEGFR-1, PDGF-AA, MMP-8, TIMP-1, L-selectin) and decreased production of angiopoietin-2 compared to HC. Conclusion Soluble markers of B cell activation could be relevant tools to assess organ involvements, activity and severity in SSc. Their associations with PAH could plead for a role of B cell activation in the pathogenesis of pulmonary microangiopathy. B cells may contribute to SSc vasculopathy through production of angiogenic mediators.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Thomas Guerrier
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Alain Duhamel
- Univ. Lille, CHU Lille, ULR2694 – METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Lucile Guilbert
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Carine Hauspie
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Alexis Largy
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Maïté Balden
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Céline Podevin
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
| | - Guillaume Lefèvre
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Manel Jendoubi
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Silvia Speca
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Éric Hachulla
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Vincent Sobanski
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - David Launay
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| |
Collapse
|
13
|
Clark KEN, Csomor E, Campochiaro C, Galwey N, Nevin K, Morse MA, Teo YV, Freudenberg J, Ong VH, Derrett-Smith E, Wisniacki N, Flint SM, Denton CP. Integrated analysis of dermal blister fluid proteomics and genome-wide skin gene expression in systemic sclerosis: an observational study. THE LANCET. RHEUMATOLOGY 2022; 4:e507-e516. [PMID: 36404995 PMCID: PMC9669928 DOI: 10.1016/s2665-9913(22)00094-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Skin fibrosis is a hallmark feature of systemic sclerosis. Skin biopsy transcriptomics and blister fluid proteomics give insight into the local environment of the skin. We have integrated these modalities with the aim of developing a surrogate for the modified Rodnan skin score (mRSS), using candidate genes and proteins from the skin and blister fluid as anchors to identify key analytes in the plasma. Methods In this single-centre, prospective observational study at the Royal Free Campus, University College London, London, UK, transcriptional and proteomic analyses of blood and skin were performed in a cohort of patients with systemic sclerosis (n=52) and healthy controls (n=16). Weighted gene co-expression network analysis was used to explore the association of skin transcriptomics data, clinical traits, and blister fluid proteomic results. Candidate hub analytes were identified as those present in both blister and skin gene sets (modules), and which correlated with plasma (module membership >0·7 and gene significance >0·6). Hub analytes were confirmed using RNA transcript data obtained from skin biopsy samples from patients with early diffuse cutaneous systemic sclerosis at 12 months. Findings We identified three modules in the skin, and two in blister fluid, which correlated with a diagnosis of early diffuse cutaneous systemic sclerosis. From these modules, 11 key hub analytes were identified, present in both skin and blister fluid modules, whose transcript and protein levels correlated with plasma protein concentrations, mRSS, and showed statistically significant correlation on repeat transcriptomic samples taken at 12 months. Multivariate analysis identified four plasma analytes as correlates of mRSS (COL4A1, COMP, SPON1, and TNC), which can be used to differentiate disease subtype. Interpretation This unbiased approach has identified potential biological candidates that might be drivers of local skin pathogenesis in systemic sclerosis. By focusing on measurable analytes in the plasma, we generated a promising composite plasma protein biomarker that could be used for assessment of skin severity, case stratification, and as a potential outcome measure for clinical trials and practice. Once fully validated, the biomarker score could replace a clinical score such as the mRSS, which carries substantial variability. Funding GlaxoSmithKline and UK Medical Research Council.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary A Morse
- Immunoinflammation, GlaxoSmithKline, Stevenage, UK
| | - Yee Voan Teo
- Computational Biology, GlaxoSmithKline, California, USA
| | | | - Voon H Ong
- Centre for Rheumatology, University College London, London, UK
| | | | | | | | | |
Collapse
|
14
|
Yao X, Jing T, Wang T, Gu C, Chen X, Chen F, Feng H, Zhao H, Chen D, Ma W. Molecular Characterization and Elucidation of Pathways to Identify Novel Therapeutic Targets in Pulmonary Arterial Hypertension. Front Physiol 2021; 12:694702. [PMID: 34366885 PMCID: PMC8346036 DOI: 10.3389/fphys.2021.694702] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disease. However, there are limited studies reflecting the available biomarkers from separate gene expression profiles in PAH. This study explored two microarray datasets by an integrative analysis to estimate the molecular signatures in PAH. Methods: Two microarray datasets (GSE53408 and GSE113439) were exploited to compare lung tissue transcriptomes of patients and controls with PAH and to estimate differentially expressed genes (DEGs). According to common DEGs of datasets, gene and protein overrepresentation analyses, protein-protein interactions (PPIs), DEG-transcription factor (TF) interactions, DEG-microRNA (miRNA) interactions, drug-target protein interactions, and protein subcellular localizations were conducted in this study. Results: We obtained 38 common DEGs for these two datasets. Integration of the genome transcriptome datasets with biomolecular interactions revealed hub genes (HSP90AA1, ANGPT2, HSPD1, HSPH1, TTN, SPP1, SMC4, EEA1, and DKC1), TFs (FOXC1, FOXL1, GATA2, YY1, and SRF), and miRNAs (hsa-mir-17-5p, hsa-mir-26b-5p, hsa-mir-122-5p, hsa-mir-20a-5p, and hsa-mir-106b-5p). Protein-drug interactions indicated that two compounds, namely, nedocromil and SNX-5422, affect the identification of PAH candidate biomolecules. Moreover, the molecular signatures were mostly localized in the extracellular and nuclear areas. Conclusions: In conclusion, several lung tissue-derived molecular signatures, highlighted in this study, might serve as novel evidence for elucidating the essential mechanisms of PAH. The potential drugs associated with these molecules could thus contribute to the development of diagnostic and therapeutic strategies to ameliorate PAH.
Collapse
Affiliation(s)
- Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tian Jing
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Tianxing Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Chenxin Gu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Xi Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Fengqiang Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Hao Feng
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Huiying Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|