1
|
Wang J, Wang D, Ma S, He B, Lu J, Guo Z. Solasodine suppresses nasopharyngeal carcinoma progression by inducing ferroptosis. Sci Rep 2025; 15:17247. [PMID: 40383858 DOI: 10.1038/s41598-025-93834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/10/2025] [Indexed: 05/20/2025] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor with a high prevalence in China. Solasodine is a natural compound derived from the traditional herb that possess anticancer activity in various tumors, but its role in NPC remains unclear. Here, we demonstrated that solasodine potently suppressed NPC growth and induced cell death both in vitro and in vivo. Network pharmacology identified HMOX1 as a pivotal target of solasodine linked to ferroptosis. Solasodine triggered ferroptotic hallmarks, including mitochondrial cristae disruption, elevated Fe2⁺/ROS/MDA, depleted GSH, and dysregulated ferroptosis-related proteins (HMOX1/COX2↑, GPX4/MUC1/SLC40A1↓). Crucially, ferroptosis inhibitors (Fer-1/Lip-1), but not apoptosis, necroptosis, or autophagy inhibitors, rescued solasodine-induced cell death, confirming ferroptosis as the dominant mechanism. In conclusion, by applying network pharmacology accompanied with experimental validation, our study unveils solasodine as a novel ferroptosis inducer for NPC treatment. However, its therapeutic potential requires further validation in patient-derived models and clinical trials.
Collapse
Affiliation(s)
- Jing Wang
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China
- The First Clinical College, Changsha Medical University, Changsha, 410219, China
| | - DongHua Wang
- School of Nursing, Changsha Medical University, Changsha, 410219, China
| | - SiQing Ma
- Department of Pharmacy, Hunan Chest Hospital, Changsha, 410013, China
| | - BinSheng He
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
| | - JiaoYang Lu
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- School of Nursing, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- The First Clinical College, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
2
|
Fang Y, Wu B, Zhang R, Chen X, Jiang F, Jin Q, Jin T, Huang S, Tao C, Qiang M, Piao Y, Hua Y, Feng X, Cao C. Effects of Antibiotics on First-line Immunotherapy in Patients With Recurrent or Metastatic Nasopharyngeal Carcinoma. J Immunother 2025:00002371-990000000-00137. [PMID: 40223355 DOI: 10.1097/cji.0000000000000556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025]
Abstract
Immunotherapy combined with chemotherapy has become the first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (RM-NPC). However, the impact of antibiotic (ATB) use on the efficacy of immunotherapy in RM-NPC remains unclear. A total of 200 patients with RM-NPC who started first-line immunotherapy between October 2021 and September 2023 were included. Forty-six patients received ATB within 60 days before and 42 days after the first infusion of immunotherapy (group ATB+), and the remaining 154 patients were in group ATB-. The median progression-free survival (PFS) times of the ATB+ and ATB- groups were 11.20 and 19.87 months, respectively (P = 0.061). The 2-year overall survival (OS) rates of the ATB+ and ATB- groups were 52.6% and 76.7%, respectively (P = 0.001). In multivariate analysis, ATB use was significantly associated with worse OS (hazard ratio = 2.549, P = 0.002). No significant differences were observed between the 2 groups in terms of grade 3+ treatment-related adverse events. ATB use in RM-NPC may reduce the effectiveness of first-line immunotherapy.
Collapse
Affiliation(s)
- Yuting Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Binhao Wu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Rong Zhang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiaozhong Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Feng Jiang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qifeng Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ting Jin
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shuang Huang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Changjuan Tao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengyun Qiang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yongfeng Piao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yonghong Hua
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xinglai Feng
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| | - Caineng Cao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Head and Neck Cancer Translational Research of Zhejiang Province, Postgraduate Training Base Alliance of Wenzhou Medical University, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
3
|
Ouyang X, Wang J, Qiu X, Hu D, Cui J. Current developments of pharmacotherapy targeting heme oxygenase 1 in cancer (Review). Int J Oncol 2025; 66:26. [PMID: 39981901 DOI: 10.3892/ijo.2025.5732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Malignant tumors are non-communicable diseases that impact human health and quality of life. Identifying and targeting the underlying genetic drivers is a challenge. Heme oxygenase-1 (HO-1), a stress-inducible enzyme also known as heat shock protein 32, plays a crucial role in maintaining cellular homeostasis. It mitigates oxidative stress-induced damage and exhibits anti-apoptotic properties. HO-1 is expressed in a wide range of malignancies and is associated with tumor growth. However, the precise role of HO-1 in tumor development remains controversial. Drugs, both naturally occurring and chemically synthesized, can inhibit tumor growth by modulating HO-1 expression in cancer cells. The present review aimed to discuss biological functions of HO-1 pharmacological therapies targeting HO-1.
Collapse
Affiliation(s)
- Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaoyuan Qiu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Cui
- Health Management Center, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
4
|
Bruno PS, Biggers P, Nuru N, Versaci N, Chirila MI, Darie CC, Neagu AN. Small Biological Fighters Against Cancer: Viruses, Bacteria, Archaea, Fungi, Protozoa, and Microalgae. Biomedicines 2025; 13:665. [PMID: 40149641 PMCID: PMC11940145 DOI: 10.3390/biomedicines13030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the progress made in oncological theranostics, cancer remains a global health problem and a leading cause of death worldwide. Multidrug and radiation therapy resistance is an important challenge in cancer treatment. To overcome this great concern in clinical practice, conventional therapies are more and more used in combination with modern approaches to improve the quality of patients' lives. In this review, we emphasize how small biological entities, such as viruses, bacteria, archaea, fungi, protozoans, and microalgae, as well as their related structural compounds and toxins/metabolites/bioactive molecules, can prevent and suppress cancer or regulate malignant initiation, progression, metastasis, and responses to different therapies. All these small biological fighters are free-living or parasitic in nature and, furthermore, viruses, bacteria, archaea, fungi, and protozoans are components of human and animal microbiomes. Recently, polymorphic microbiomes have been recognized as a new emerging hallmark of cancer. Fortunately, there is no limit to the development of novel approaches in cancer biomedicine. Thus, viral vector-based cancer therapies based on genetically engineered viruses, bacteriotherapy, mycotherapy based on anti-cancer fungal bioactive compounds, use of protozoan parasite-derived proteins, nanoarchaeosomes, and microalgae-based microrobots have been more and more used in oncology, promoting biomimetic approaches and biology-inspired strategies to maximize cancer diagnostic and therapy efficiency, leading to an improved patients' quality of life.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Peter Biggers
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Nicholas Versaci
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Miruna Ioana Chirila
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania;
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania;
| |
Collapse
|
5
|
Zhou L, Li L, Yang J, Mansuer M, Deng X, Wang Y, Ren H, Cui D, Jiang Y, Gao L. TNFAIP3 affects ferroptosis after traumatic brain injury by affecting the deubiquitination and ubiquitination pathways of the HMOX1 protein and ACSL3. Free Radic Biol Med 2025; 228:221-239. [PMID: 39743027 DOI: 10.1016/j.freeradbiomed.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
The occurrence and progression of traumatic brain injury involve a complex process. The pathophysiological mechanisms triggered by neuronal damage include various forms of programmed cell death, including ferroptosis. We observed upregulation of TNFAIP3 in mice after traumatic brain injury. Overexpression of TNFAIP3 inhibits HT-22 proliferation and cell viability through ferroptosis. Mechanistically, TNFAIP3 interacts with the HMOX1 protein and promotes its stability through the deubiquitination pathway. Additionally, TNFAIP3 can enhance lipoperoxidation, mitochondrial damage, and neuronal cell death by promoting ACSL3 degradation via NEDD4-mediated ubiquitination. Mice injected with AAV-shTNFAIP3 exhibited reduced neuronal degeneration and improved motor and cognitive function following cortical impact injury. In conclusion, our findings demonstrate that TNFAIP3 deficiency inhibits neuronal cell ferroptosis and ameliorates cognitive impairment caused by traumatic brain injury and demonstrate its potential applicability in the treatment of traumatic brain injury.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lei Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinghao Yang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Maierdan Mansuer
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xianyu Deng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yida Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Ren
- Department of Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200435, China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
6
|
Su S, Wu X, Zhu Y, Yang S, Lu K, Zhang X, Zhang D, Wang X. Screening of orthopedic medicines identifies raloxifene hydrochloride as a novel ferroptosis inhibitor for spinal cord injury therapy. Int Immunopharmacol 2024; 143:113542. [PMID: 39510030 DOI: 10.1016/j.intimp.2024.113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Spinal cord injury (SCI) is a severe condition that can lead to irreversible central nervous system damage. Spinal cord injury patients frequently present with coexisting orthopedic conditions, and many of them also have underlying bone and joint diseases. Recent studies have identified ferroptosis as a significant contributor that exacerbates the progression of spinal cord injury. This study conducted a screening in common orthopedic medications, which includes anti-osteoporosis agents and calcium supplements, in order to identify potential ferroptosis inhibitors and investigate their therapeutic effects on spinal cord injury. Among the 8 drugs screened, raloxifene hydrochloride was found to significantly inhibit ferroptosis induced by RSL3 in neural cells. Subsequent studies confirmed its inhibitory effect on ferroptosis both in vitro and in vivo. It was also demonstrated that Nrf2 inhibitor Brusatol could reverse the anti-ferroptotic effect of Raloxifene hydrochloride in neural cells in vitro as well as its therapeutic effect on SCI in vivo, suggesting its inhibitory effect on ferroptosis is through Nrf2. This study identifies a novel ferroptosis inhibitor among orthopedic medicines and also confirms the therapeutic effect of Raloxifene hydrochloride on SCI. The results of the current study may provide reference for the clinical administration of SCI.
Collapse
Affiliation(s)
- Shenkai Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xuanzhang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuxuan Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shu Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Keyu Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Di Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
7
|
Karamanolis NN, Kounatidis D, Vallianou NG, Dimitriou K, Tsaroucha E, Tsioulos G, Anastasiou IA, Mavrothalassitis E, Karampela I, Dalamaga M. Unraveling the Anti-Cancer Mechanisms of Antibiotics: Current Insights, Controversies, and Future Perspectives. Antibiotics (Basel) 2024; 14:9. [PMID: 39858295 PMCID: PMC11762948 DOI: 10.3390/antibiotics14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation. Diverse classes of antibiotics have exhibited promising anti-cancer properties in both in vitro and in vivo studies. These mechanisms include the induction of apoptosis and cell cycle arrest, generation of reactive oxygen species, and inhibition of key regulators of cell proliferation and migration. Additional effects involve the disruption of angiogenesis and modulation of pivotal processes such as inflammation, immune response, mitochondrial dynamics, ferroptosis, and autophagy. Furthermore, antibiotics have demonstrated the potential to enhance the efficacy of conventional modalities like chemotherapy and radiotherapy, while alleviating treatment-induced toxicities. Nevertheless, the integration of antibiotics into oncological applications remains contentious, with concerns centered on their disruption of gut microbiota, interference with immunotherapeutic strategies, contribution to microbial resistance, and potential association with tumorigenesis. This narrative review explores the mechanisms of antibiotics' anti-cancer activity, addresses controversies about their dual role in cancer biology, and envisions future perspectives that include the development of novel derivatives and innovative frameworks for their incorporation into cancer treatment paradigms.
Collapse
Affiliation(s)
- Nikolaos Nektarios Karamanolis
- Second Department of Internal Medicine, Hippokratio General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.K.); (K.D.)
| | - Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (I.A.A.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Krystalia Dimitriou
- Second Department of Internal Medicine, Hippokratio General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.K.); (K.D.)
| | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Georgios Tsioulos
- Fourth Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Ioanna A. Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (I.A.A.)
| | - Evangelos Mavrothalassitis
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (E.T.); (E.M.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12461 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Zhang T, Qiao C, Yang Y, Yuan Y, Zhao Z, Miao Y, Zhao Q, Zhang R, Zheng H. Ceftazidime is a potential drug to inhibit cell proliferation by increasing cellular p27. J Antibiot (Tokyo) 2024; 77:697-705. [PMID: 38898184 DOI: 10.1038/s41429-024-00751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The development of new therapeutic uses for existing drugs is important for the treatment of some diseases. Cephalosporin antibiotics stand as the most extensively utilized antibiotics in clinical practice, effectively combating bacterial infections. Here, we found that the antimicrobial drug ceftazidime strongly upregulates p27 protein levels by inhibiting p27 ubiquitination. The p27 protein is a classic negative regulator of the cell cycle. Next, we demonstrated that ceftazidime can impede the cell cycle from G1 to S phase, thus inhibiting cell proliferation. Furthermore, we found that ceftazidime promotes p27 expression and inhibits cell proliferation by reducing Skp2, which is a substrate recognition component of the Skp2-Cullin-F-box (SCF) ubiquitin ligase. Moreover, ceftazidime downregulates transcriptional expression of Skp2. Importantly, we demonstrated that ceftazidime inhibited the proliferation of tumor cells in vivo. These findings reveal ceftazidime-mediated inhibition of cell proliferation through the Skp2-p27 axis, and could provide a potential strategy for anti-tumor therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Caixia Qiao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Yunshan Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- The First Clinical Medical School, Soochow University, Suzhou, China
| | - Yukang Yuan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhenglan Zhao
- Department of Gastroenterology and Hepatology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Miao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qian Zhao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Renxia Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, 215123, China
| | - Hui Zheng
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China.
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
9
|
He S, Luo C, Shi F, Zhou J, Shang L. The Emerging Role of Ferroptosis in EBV-Associated Cancer: Implications for Cancer Therapy. BIOLOGY 2024; 13:543. [PMID: 39056735 PMCID: PMC11274159 DOI: 10.3390/biology13070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Ferroptosis is a novel and iron-dependent form of programmed cell death, which has been implicated in the pathogenesis of various human cancers. EBV is a well-recognized oncogenic virus that controls multiple signaling pathways within the host cell, including ferroptosis signaling. Recent studies show that inducing ferroptosis could be an efficient therapeutic strategy for EBV-associated tumors. This review will firstly describe the mechanism of ferroptosis, then summarize EBV infection and EBV-associated tumors, as well as the crosstalk between EBV infection and the ferroptosis signaling pathway, and finally discuss the role and potential application of ferroptosis-related reagents in EBV-associated tumors.
Collapse
Affiliation(s)
- Shan He
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Cheng Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Jianhua Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| | - Li Shang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha 410078, China; (S.H.); (C.L.); (F.S.); (J.Z.)
- Department of Pathology, National Clinical Research Center for Geriatric Disorders/XiangYa Hospital, Central South University, Changsha 410078, China
| |
Collapse
|
10
|
Miki K, Yagi M, Kang D, Kunisaki Y, Yoshimoto K, Uchiumi T. Glucose starvation causes ferroptosis-mediated lysosomal dysfunction. iScience 2024; 27:109735. [PMID: 38706843 PMCID: PMC11067335 DOI: 10.1016/j.isci.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
Lysosomes, the hub of metabolic signaling, are associated with various diseases and participate in autophagy by supplying nutrients to cells under nutrient starvation. However, their function and regulation under glucose starvation remain unclear and are studied herein. Under glucose starvation, lysosomal protein expression decreased, leading to the accumulation of damaged lysosomes. Subsequently, cell death occurred via ferroptosis and iron accumulation due to DMT1 degradation. GPX4, a key factor in ferroptosis inhibition located on the outer membrane of lysosomes, accumulated in lysosomes, especially under glucose starvation, to protect cells from ferroptosis. ALDOA, GAPDH, NAMPT, and PGK1 are also located on the outer membrane of lysosomes and participate in lysosomal function. These enzymes did not function effectively under glucose starvation, leading to lysosomal dysfunction and ferroptosis. These findings may facilitate the treatment of lysosomal-related diseases.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Kashiigaoka Rehabilitation Hospital, Fukuoka 813-0002, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Junshin Gakuen University, Fukuoka 815-8510, Japan
| | - Yuya Kunisaki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Chen Y, Feng Y, Lin Y, Zhou X, Wang L, Zhou Y, Lin K, Cai L. GSTM3 enhances radiosensitivity of nasopharyngeal carcinoma by promoting radiation-induced ferroptosis through USP14/FASN axis and GPX4. Br J Cancer 2024; 130:755-768. [PMID: 38228715 PMCID: PMC10912431 DOI: 10.1038/s41416-024-02574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Radiotherapy is a critical treatment modality for nasopharyngeal carcinoma (NPC). However, the mechanisms underlying radiation resistance and tumour recurrence in NPC remain incompletely understood. METHODS Oxidised lipids were assessed through targeted metabolomics. Ferroptosis levels were evaluated using cell viability, clonogenic survival, lipid peroxidation, and transmission electron microscopy. We investigated the biological functions of glutathione S-transferase mu 3 (GSTM3) in cell lines and xenograft tumours. Co-immunoprecipitation, mass spectrometry, and immunofluorescence were conducted to explore the molecular mechanisms involving GSTM3. Immunohistochemistry was performed to investigate the clinical characteristics of GSTM3. RESULTS Ionising radiation (IR) promoted lipid peroxidation and induced ferroptosis in NPC cells. GSTM3 was upregulated following IR exposure and correlated with IR-induced ferroptosis, enhancing NPC radiosensitivity in vitro and in vivo. Mechanistically, GSTM3 stabilised ubiquitin-specific peptidase 14 (USP14), thereby inhibiting the ubiquitination and subsequent degradation of fatty acid synthase (FASN). Additionally, GSTM3 interacted with glutathione peroxidase 4 (GPX4) and suppressed GPX4 expression. Combining IR treatment with ferroptosis inducers synergistically improved NPC radiosensitivity and suppressed tumour growth. Notably, a decrease in GSTM3 abundance predicted tumour relapse and poor prognosis. CONCLUSIONS Our findings elucidate the pivotal role of GSTM3 in IR-induced ferroptosis, offering strategies for the treatment of radiation-resistant or recurrent NPC.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yuanyuan Feng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yanling Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Lingzhi Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yingtong Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Kefan Lin
- First Clinical Medical College, Southern Medical University, 510515, Guangzhou, China
| | - Longmei Cai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
12
|
Xue W, Jian W, Meng Y, Wang T, Cai L, Yu Y, Yu Y, Xia Z, Zhang C. Knockdown of SETD2 promotes erastin-induced ferroptosis in ccRCC. Cell Death Dis 2023; 14:539. [PMID: 37604811 PMCID: PMC10442429 DOI: 10.1038/s41419-023-06057-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/15/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is associated with poor prognosis. The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be expressed at low levels and frequently mutated in ccRCC. Ferroptosis, a form of death distinct from apoptosis and necrosis, has been reported in recent years in renal cancer. However, the relationship between SETD2 and ferroptosis in renal cancer is not clear. Here, we demonstrated that SETD2 was expressed at low levels in ccRCC and was associated with poor prognosis. Moreover, we found that knockdown of SETD2 increased lipid peroxidation and Fe2+ levels in tumor cells, thereby increasing the sensitivity of erastin, a ferroptosis inducer. Mechanistically, histone H3 lysine 36 trimethylation (H3K36me3) which was catalyzed by SETD2, interacted with the promoter of ferrochelatase (FECH) to regulate its transcription and ferroptosis-related signaling pathways. In conclusion, the presesnt study revealed that knockdown of the epigenetic molecule, SETD2, significantly increases the sensitivity of ferroptosis inducers which promotes tumor cell death, thereby indicating that SETD2 may be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Wei Xue
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Wengang Jian
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuyang Meng
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Tengda Wang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Licheng Cai
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yongchun Yu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yipeng Yu
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhinan Xia
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Cheng Zhang
- Department of Urology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
- Department of Urology, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
13
|
Lee J, Roh JL. Altered iron metabolism as a target for ferroptosis induction in head and neck cancer. Cell Oncol (Dordr) 2023; 46:801-810. [PMID: 36811720 DOI: 10.1007/s13402-023-00784-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Iron is a mineral micronutrient essential for survival and vital functions in many biological processes in living organisms. Iron plays a crucial role as a cofactor of iron-sulfur clusters in energy metabolism and biosynthesis by binding with enzymes and transferring electrons to targets. Iron can also impair cellular functions by damaging organelles and nucleic acids by producing free radicals from redox cycling. Iron-catalyzed reaction products can induce active-site mutations in tumorigenesis and cancer progression. However, the boosted pro-oxidant iron form may contribute to cytotoxicity by increasing soluble radicals and highly reactive oxygen species via the Fenton reaction. An increased redox-active labile iron pool is required for tumor growth and metastasis, but the increased cytotoxic lipid radicals also lead to regulated cell death, such as ferroptosis. Therefore, this may be a major target for selectively killing cancer cells. This review intends to understand altered iron metabolism in cancers and discuss iron-related molecular regulators highly associated with iron-induced cytotoxic radical production and ferroptosis induction, focusing on head and neck cancer.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, 13496, Seongnam, Gyeonggi-do, Republic of Korea
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, 13496, Seongnam, Gyeonggi-do, Republic of Korea.
- Department of Biomedical Science, General Graduate School, CHA University, Seongnam, Republic of Korea.
| |
Collapse
|
14
|
Xu Y, Bu G. Identification of two novel ferroptosis-associated targets in sepsis-induced cardiac injury: Hmox1 and Slc7a11. Front Cardiovasc Med 2023; 10:1185924. [PMID: 37424906 PMCID: PMC10326630 DOI: 10.3389/fcvm.2023.1185924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Sepsis-induced cardiac injury is a severe complication of sepsis and has a high mortality. Recent research has implicated ferroptosis as a contributing factor to myocardial cell death. This study is aimed at finding novel ferroptosis-associated targets in sepsis-induced cardiac injury. Methods and results In our study, a total of two Gene expression omnibus datasets (GSE185754 and GSE171546) were obtained for bioinformatics analysis. GSEA enrichment analysis demonstrated that ferroptosis pathway Z-score rapidly increased in the first 24 h and decreased gradually in the following 24-72 h. Fuzzy analysis was then used to obtain distinct clusters of temporal patterns and find genes in cluster 4 that exhibited the same trend with ferroptosis progression during the time points. After intersecting the differentially expressed genes, genes in cluster 4, and ferroptosis-related genes, three ferroptosis-associated targets were finally selected: Ptgs2, Hmox1, and Slc7a11. While Ptgs2 has been previously reported to be involved in the regulation of septic cardiomyopathy, this study is the first to demonstrate that downregulation of Hmox1 and Slc7a11 can alleviate ferroptosis in sepsis-induced cardiac injury. Conclusion This study reports Hmox1 and Slc7a11 as ferroptosis-associated targets in sepsis-induced cardiac injury, and both of them may become key therapeutic and diagnostic targets for this complication in the future.
Collapse
Affiliation(s)
- Yushun Xu
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Gang Bu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Zhou R, Qiu L, Zhou L, Geng R, Yang S, Wu J. P4HA1 activates HMGCS1 to promote nasopharyngeal carcinoma ferroptosis resistance and progression. Cell Signal 2023; 105:110609. [PMID: 36702290 DOI: 10.1016/j.cellsig.2023.110609] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Ferroptosis is a novel type of iron-dependent regulatory cell death. To date, the regulatory mechanism of ferroptosis in nasopharyngeal carcinoma (NPC) remains poorly understood. In this study, we found that the prolyl 4-hydroxylase (P4H) subunit P4HA1 protects NPC cells from erastin-induced ferroptosis by activating HMGCS1, a key enzyme in the mevalonate pathway. We also found that the P4HA1/HMGCS1 axis promoted NPC cell proliferation in vitro. In vivo, downregulation of the P4HA1/HMGCS1 axis inhibited the growth of NPC cell xenografts and enhanced the inhibitory effect of erastin on tumor growth. Extracellular matrix (ECM) detachment is an important trigger for ferroptosis. We found that the P4HA1/HMGCS1 axis promoted the ferroptosis resistance and survival of ECM-detached NPC cells. In vivo, downregulation of the P4HA1/HMGCS1 axis inhibited the lung colonization of NPC cells and enhanced the inhibitory effect of erastin on NPC lung metastasis. Moreover, the high expression of P4HA1 predicted a poor prognosis and served as a potential independent prognostic factor in patients with NPC. In conclusion, P4HA1 is a novel molecular marker of NPC ferroptosis resistance and a poor prognosis, and the P4HA1/HMGCS1 axis provides a new target for the treatment of NPC progression.
Collapse
Affiliation(s)
- Rui Zhou
- The Third Affiliated Hospital of Southern Medical University, Department of General Surgery, Guangzhou, China
| | - Lin Qiu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China; Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Department of Hematology and Oncology, Guangzhou, China
| | - Ling Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Rong Geng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China; Foshan Women and Children Hospital Affiliated to Southern Medical University, Departments of Obstetrics and Gynecology, Foshan, China
| | - Shiping Yang
- Hainan Affiliated Hospital of Hainan Medical University, Department of Radiation Oncology, Haikou, China
| | - Jiangxue Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China.
| |
Collapse
|
16
|
Nassar H, Sippl W, Dahab RA, Taha M. Molecular docking, molecular dynamics simulations and in vitro screening reveal cefixime and ceftriaxone as GSK3β covalent inhibitors. RSC Adv 2023; 13:11278-11290. [PMID: 37057264 PMCID: PMC10087387 DOI: 10.1039/d3ra01145c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
GSK3β is a serine/threonine kinase that has been suggested as a putative drug target for several diseases. Recent studies have reported the beneficial effects of cephalosporin antibiotics in cancer and Alzheimer's disease, implying potential inhibition of GSK3β. To investigate this mechanism, four cephalosporins, namely, cefixime, ceftriaxone, cephalexin and cefadroxil were docked into the GSK3β binding pocket. The third-generation cephalosporins, cefixime and ceftriaxone, exhibited the best docking scores due to the exclusive hydrogen bonding between their aminothiazole group and hinge residues of GSK3β. The stability of top-ranked poses and the possibility of covalent bond formation between the carbonyl carbon of the β-lactam ring and the nucleophilic thiol of Cys-199 were evaluated by molecular dynamics simulations and covalent docking. Finally, the in vitro inhibitory activities of the four cephalosporins were measured against GSK3β with and without preincubation. In agreement with the results of molecular docking, cefixime and ceftriaxone exhibited the best inhibitory activities with IC50 values of 2.55 μM and 7.35 μM, respectively. After 60 minutes preincubation with GSK3β, the IC50 values decreased to 0.55 μM for cefixime and 0.78 μM for ceftriaxone, supporting a covalent bond formation as suggested by molecular dynamics simulations and covalent docking. In conclusion, the third-generation cephalosporins are reported herein as GSK3β covalent inhibitors, offering insight into the mechanism behind their benefits in cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Husam Nassar
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) 06120 Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) 06120 Germany
| | - Rana Abu Dahab
- Department of Clinical Pharmacy and Biopharmaceutics, School of Pharmacy, University of Jordan Amman 11942 Jordan
| | - Mutasem Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan Amman 11942 Jordan
| |
Collapse
|
17
|
Miki K, Yagi M, Yoshimoto K, Kang D, Uchiumi T. Mitochondrial dysfunction and impaired growth of glioblastoma cell lines caused by antimicrobial agents inducing ferroptosis under glucose starvation. Oncogenesis 2022; 11:59. [PMID: 36195584 PMCID: PMC9532440 DOI: 10.1038/s41389-022-00437-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Glioblastoma is a difficult-to-cure disease owing to its malignancy. Under normal circumstances, cancer is dependent on the glycolytic system for growth, and mitochondrial oxidative phosphorylation (OXPHOS) is not well utilized. Here, we investigated the efficacy of mitochondria-targeted glioblastoma therapy in cell lines including U87MG, LN229, U373, T98G, and two patient-derived stem-like cells. When glioblastoma cells were exposed to a glucose-starved condition (100 mg/l), they rely on mitochondrial OXPHOS for growth, and mitochondrial translation product production is enhanced. Under these circumstances, drugs that inhibit mitochondrial translation, called antimicrobial agents, can cause mitochondrial dysfunction and thus can serve as a therapeutic option for glioblastoma. Antimicrobial agents activated the nuclear factor erythroid 2-related factor 2–Kelch-like ECH-associated protein 1 pathway, resulting in increased expression of heme oxygenase-1. Accumulation of lipid peroxides resulted from the accumulation of divalent iron, and cell death occurred via ferroptosis. In conclusion, mitochondrial OXPHOS is upregulated in glioblastoma upon glucose starvation. Under this condition, antimicrobial agents cause cell death via ferroptosis. The findings hold promise for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
18
|
Liu Z, He J, Hu X. Ferroptosis regulators related scoring system by Gaussian finite mixture model to predict prognosis and immunotherapy efficacy in nasopharyngeal carcinoma. Front Genet 2022; 13:975190. [PMID: 36118882 PMCID: PMC9479336 DOI: 10.3389/fgene.2022.975190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
The role of ferroptosis in tumor progression and metastasis has been demonstrated. Nonetheless, potential biological function of ferroptosis regulatory pattern in nasopharyngeal carcinoma (NPC) remains unknown. Ferroptosis regulatory patterns of nasopharyngeal carcinoma samples were evaluated based on 113 ferroptosis regulators and three distinct ferroptosis subtypes were determined by unsupervised clustering. The ferroptosis score (FEP score) was identified to quantify ferroptosis patterns within individual tumors by Gaussian finite mixture model and systematically correlated with representative tumor characteristics. Subtype 1 and subtype 3 were consistent with immune activated phenotype, while subtype 2 was consistent with immune suppressed phenotype. High ferroptosis score, characterized by immune activation and suppression of mRNA based stemness index (mRNAsi) and Epstein-Barr virus (EBV) genes, indicated an immune activated tumor microenvironment (TME) phenotype, with better progression free survival (PFS) and lower risk of recurrence and metastasis. Low ferroptosis score, characterized by activation of Wnt and NF-κB signaling pathways and lack of effective immune infiltration, indicated an immune suppressed tumor microenvironment phenotype and poorer survival. High ferroptosis score was also correlated to enhanced response to immunotherapy, and was confirmed to correlate with therapeutic advantages and clinical benefits in an anti-programmed cell death 1 ligand 1 (PD-L1) immunotherapy cohort. As ferroptosis played a crucial role in the tumor microenvironment’s diversity, assessing the ferroptosis pattern within individual tumor with ferroptosis score could enhance our understanding of tumor microenvironment infiltration characterization and help develop more effective immunotherapy.
Collapse
Affiliation(s)
- Zijian Liu
- Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlan He
- Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaolin Hu,
| |
Collapse
|
19
|
He X, Yao Q, Fan D, You Y, Lian W, Zhou Z, Duan L. Combination of levofloxacin and cisplatin enhances anticancer efficacy via co-regulation of eight cancer-associated genes. Discov Oncol 2022; 13:76. [PMID: 35984577 PMCID: PMC9391551 DOI: 10.1007/s12672-022-00541-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 04/17/2023] Open
Abstract
Chemosensitizer or combined chemotherapy can sensitize cancer cells to therapy and minimize drug resistance. We reveal that levofloxacin has broad-spectrum anticancer activity. Here we report that combination of levofloxacin and cisplatin further enhanced cytotoxicity in cancer cells by further promotion of apoptosis. Levofloxacin concentration-dependently promoted the inhibition of clone formation in cancer cells treated by cisplatin, and their combination further suppressed the tumor growth in mice. Levofloxacin and cisplatin co-regulated genes in directions supporting the enhancement of anticancer efficacy, of which, THBS1, TNFAIP3, LAPTM5, PI3 and IL24 were further upregulated, NCOA5, SRSF6 and SFPQ were further downregulated. Out of the 24 apoptotic pathways significantly enriched in the combination group, TNFAIP3, THBS1, SRSF6 and SFPQ overlapped in 14, 13, 3 and 1 pathway respectively. Jak-STAT/Cytokine-cytokine receptor interaction pathway network and extrinsic apoptotic signaling pathway were significantly enriched in levofloxacin group, cisplatin group and combination group. Jak-STAT/Cytokine-cytokine receptor interaction/Focal adhesion/EMC-receptor interaction pathway network was significantly enriched in the combination group, and IL24 and THBS1 were the overlapped genes. In conclusion, enhancement of anticancer efficacy in combination group was associated with the further regulation of THBS1, TNFAIP3, LAPTM5, PI3, IL24 and NCOA5, SFPQ, SRSF6. Targeting of Jak-STAT/Cytokine-cytokine receptor interaction/Focal adhesion/EMC-receptor interaction pathway network was correlated to the enhancement. With additional benefit to cancer patients for treatment or prophylaxis of an infectious syndrome, levofloxacin can benefit cancer chemotherapy no matter it is used independently or used with other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiaoqiong He
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China.
| | - Qian Yao
- Institute of Yunnan Tumor, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, Yunnan Province, People's Republic of China
| | - Dan Fan
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Yutong You
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Wenjing Lian
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Zhangping Zhou
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Ling Duan
- School of Public Health, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| |
Collapse
|
20
|
Huang C, Zhan L. Network Pharmacology Identifies Therapeutic Targets and the Mechanisms of Glutathione Action in Ferroptosis Occurring in Oral Cancer. Front Pharmacol 2022; 13:851540. [PMID: 35359830 PMCID: PMC8963897 DOI: 10.3389/fphar.2022.851540] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 01/06/2023] Open
Abstract
Oral cancer (OC) is one of the most pernicious cancers with increasing incidence and mortality worldwide. Surgery is the primary approach for the treatment of early-stage OC, which reduces the quality of life of the patients. Therefore, there is an urgent need to discover novel treatments for OC. Targeting ferroptosis to induce cell death through the modulation of lipid oxidation has been used as a new approach to treat many cancers. Glutathione (GSH) is a coenzyme factor of GSH peroxidase 4, and it carries potential applicability in treating OC. By using network pharmacology and molecular docking followed by systematic bioinformatic analysis, we aimed to study GSH-targeting ferroptosis to treat OC. We identified 14 core molecular targets, namely, EGFR, PTGS2, HIF1A, VEGFA, TFRC, SLC2A1, CAV1, CDKN2A, SLC3A2, IFNG, NOX4, DDIT4, CA9, and DUSP1, involved in ferroptosis that were targeted by GSH for OC treatment. Functional characterization of these molecular targets showed their importance in the control of cell apoptosis, cell proliferation, and immune responses through various kinase activities such as the mitogen-activated protein kinase activity (e.g., ERK1 and ERK2 cascades) and modulation of TOR signaling (e.g., the HIF-1 signaling pathway). Molecular docking further revealed the direct binding of GSH with EGFR, PTGS2, and HIF1A proteins. These findings provide a novel insight into the targets of GSH in ferroptosis as well as possible molecular mechanisms involved, suggesting the possible use of GSH as a combined therapy for treating OC.
Collapse
Affiliation(s)
- Chen Huang
- The Center for Data Science in Health and Medicine, Business School, Qingdao University, Qingdao, China
| | - Lei Zhan
- Department of Ophthalmology, The Second People’s Hospital of Guilin, Guilin, China
| |
Collapse
|
21
|
Li HL, Deng NH, Xiao JX, He XS. Cross-link between ferroptosis and nasopharyngeal carcinoma: New approach to radiotherapy sensitization. Oncol Lett 2021; 22:770. [PMID: 34589149 PMCID: PMC8442204 DOI: 10.3892/ol.2021.13031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Ferroptosis is a recently discovered special type of regulated cell death that is strongly associated with both homeostasis maintenance and cancer development. Previous studies have indicated that a number of small-molecular agents inducing ferroptosis have great potential in the treatment of different types of cancer, including breast, pancreatic, prostate and head and neck cancer. However, the role of ferroptosis in nasopharyngeal carcinoma (NPC) has remained to be fully determined. To the best of our knowledge, no review of the currently available studies on this subject has been published to date. The metabolism and expression of specific genes that regulate ferroptosis may represent a promising radiosensitization target in cancer treatment. The aim of the present review was to describe the cross-link between ferroptosis and NPC and to discuss the potential value of regulators and the possible mechanism underlying the role of ferroptosis in the radiosensitization of NPC, in the hope that linking the mechanism of ferroptosis with the development of NPC will accelerate the development of novel ferroptosis-based targets and radiotherapy strategies in NPC.
Collapse
Affiliation(s)
- Hai-Long Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jia-Xin Xiao
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiu-Sheng He
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|