1
|
Li L, Guan Y, Du Y, Chen Z, Xie H, Lu K, Kang J, Jin P. Exploiting omic-based approaches to decipher Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118936. [PMID: 39413937 DOI: 10.1016/j.jep.2024.118936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM), an ancient health system, faces significant research challenges due to the complexity of its active components and targets, as well as a historical lack of detailed annotation. However, recent advances in omics technologies have begun to unravel these complexities, providing a more informed and nuanced understanding of TCM's therapeutic potential in contemporary healthcare. AIM OF THE REVIEW This review summarizes the application of omics technologies in TCM modernization, emphasizing components analysis, quality control, biomarker discovery, target identification, and treatment optimization. In addition, future perspectives on using omics for precision TCM treatment are also discussed. MATERIALS AND METHODS We have explored several databases (including PubMed, ClinicalTrials, Google Scholar, and Web of Science) to review related articles, focusing on Traditional Chinese Medicine, Omics Strategy, Precision Medicine, Biomarkers, Quality Control, and Molecular Mechanisms. Paper selection criteria involved English grammar, publication date, high citations, and broad applicability, exclusion criteria included low credibility, non-English publications, and those full-text inaccessible ones. RESULTS TCM and the popularity of Chinese herbal medicines (CHMs) are gaining increasing attention worldwide. This is driven, in part, by a large number of technologies, especially omics strategy, which are aiding the modernization of TCM. They contribute to the quality control of CHMs, the identification of cellular targets, discovery of new drugs and, most importantly, the understanding of their mechanisms of action. CONCLUSION To fully integrate TCM into modern medicine, further development of robust omics strategies is essential. This vision includes personalized medicine, backed by advanced computational power and secure data infrastructure, to facilitate global acceptance and seamless integration of TCM practices.
Collapse
Affiliation(s)
- Lei Li
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yueyue Guan
- Department of Encephalopathy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Yongjun Du
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Zhen Chen
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Haoyang Xie
- School of Clinical Medicine of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Kejin Lu
- Yunnan Yunke Cheracteristic Plant Extraction Laboratory, Kunming, Yunnan, 650106, China.
| | - Jian Kang
- Department of anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine and Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Ping Jin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
2
|
Roy D, Ghosh M, Rangra NK. Herbal Approaches to Diabetes Management: Pharmacological Mechanisms and Omics-Driven Discoveries. Phytother Res 2024. [PMID: 39688013 DOI: 10.1002/ptr.8410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024]
Abstract
Diabetes mellitus is a chronic metabolic disorder marked by hyperglycemia, resistance to insulin, and impaired function of the pancreatic β-cells; it advances into more serious complications like nephropathy, neuropathy, cardiovascular disease, and retinopathy; herbal medicine has indicated promise in not just mitigating the symptoms but also in managing the complications. This review would aim to evaluate the pharmacological aspect of the botanical therapies Anacardium occidentale, Allium sativum, Urtica dioica, and Cinnamomum zeylanicum, as well as their bioactive phytochemicals, quercetin, resveratrol, berberine, and epigallocatechin gallate (EGCG). In this review, we discuss their mechanisms for secreting the insulin sensitizers, carbohydrate-hydrolyzing enzymes, reduction in oxidative stress and effectiveness against diabetic complications-all through sensitivity to insulin. Great emphasis is laid on the integration of multi-omics technologies such as genomics, proteomics, metabolomics, and transcriptomics in the discovery of bioactive compounds. The nature of the technologies can evaluate the intrinsic complexities of herbal pharmacology and even identify therapeutic candidates. Finally, the review refers to the meagre clinical trials on the efficiency of these compounds in the metabolism of humans. High-quality future research, such as human large-scale trials, would be emphasized; improvement in the clinical validity of a drug might come from improved study design, better selection of potentially usable biomarkers, and enhanced safety profiles to guarantee efficacy with lessened risks.
Collapse
Affiliation(s)
- Debajyoti Roy
- Faculty of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Maitrayee Ghosh
- Faculty of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Naresh Kumar Rangra
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
3
|
Yu T, Luo L, Xue J, Tang W, Wu X, Yang F. Gut microbiota-NLRP3 inflammasome crosstalk in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102458. [PMID: 39233138 DOI: 10.1016/j.clinre.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with metabolic dysfunction, ranging from hepatic steatosis with or without mild inflammation to nonalcoholic steatohepatitis, which can rapidly progress to liver fibrosis and even liver cancer. In 2023, after several rounds of Delphi surveys, a new consensus recommended renaming NAFLD as metabolic dysfunction-associated steatotic liver disease (MASLD). Ninety-nine percent of NAFLD patients meet the new MASLD criteria related to metabolic cardiovascular risk factors under the "multiple parallel hits" of lipotoxicity, insulin resistance (IR), a proinflammatory diet, and an intestinal microbiota disorder, and previous research on NAFLD remains valid. The NLRP3 inflammasome, a well-known member of the pattern recognition receptor (PRR) family, can be activated by danger signals transmitted by pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), as well as cytokines involved in immune and inflammatory responses. The activation of the NLRP3 inflammasome pathway by MASLD triggers the production of the inflammatory cytokines IL-1β and IL-18. In MASLD, while changes in the composition and metabolites of the intestinal microbiota occur, the disrupted intestinal microbiota can also generate the inflammatory cytokines IL-1β and IL-18 by damaging the intestinal barrier, negatively regulating the liver on the gut-liver axis, and further aggravating MASLD. Therefore, modulating the gut-microbiota-liver axis through the NLRP3 inflammasome may emerge as a novel therapeutic approach for MASLD patients. In this article, we review the evidence regarding the functions of the NLRP3 inflammasome and the intestinal microbiota in MASLD, as well as their interactions in this disease.
Collapse
Affiliation(s)
- Tingting Yu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Lei Luo
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Juan Xue
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430015, PR China
| | - Wenqian Tang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China
| | - Xiaojie Wu
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan 430000, PR China
| | - Fan Yang
- Department of Health Management Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Ezhilarasan D, Langeswaran K. Hepatocellular Interactions of Potential Nutraceuticals in the Management of Inflammatory NAFLD. Cell Biochem Funct 2024; 42:e4112. [PMID: 39238138 DOI: 10.1002/cbf.4112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells. These cells acquire a profibrogenic phenotype, leading to extracellular matrix accumulation and fibrosis. Persistent fibrosis can progress to cirrhosis. Fatty infiltration, oxidative stress, and inflammation exacerbate fatty liver diseases. Thus, many plant-derived antioxidants, like silymarin, silibinin, curcumin, resveratrol, berberine, and quercetin, have been extensively studied in experimental models and clinical patients with NAFLD. Experimentally, these compounds have shown beneficial effects in reducing lipid accumulation, oxidative stress, and inflammatory markers by modulating the ERK, NF-κB, AMPKα, and PPARγ pathways. They also help decrease metabolic endotoxemia, intestinal permeability, and gut inflammation. Clinically, silymarin and silibinin have been found to reduce transaminase levels, while resveratrol and curcumin help alleviate inflammation in NAFLD patients. However, these phytocompounds exhibit poor water solubility, leading to low oral bioavailability and hindering their biological efficacy. Additionally, inconclusive clinical results highlight the need for further trials with larger populations, longer durations, and standardized protocols.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Hepatology and Molecular Medicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Kulanthaivel Langeswaran
- Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
5
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
Roy D, Kaur P, Ghosh M, Choudhary D, Rangra NK. The therapeutic potential of typical plant-derived compounds for the management of metabolic disorders. Phytother Res 2024. [PMID: 38864713 DOI: 10.1002/ptr.8238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Obesity and Type 2 diabetes are prevalent metabolic dysfunctions that present significant health challenges worldwide. Available cures for these ailments have constraints with accompanying unwanted effects that persistently exist. Compounds originated from plants have recently been introduced as hopeful remedies to treat metabolic disorders because of their diverse pharmacological activities. This detailed observation gives an introduction into the treatment capacity of plant-derived compounds regarding metabolic syndromes while analyzing various groups alongside their performance in this field despite unique mechanisms designed by nature itself. Interestingly, this study provides some examples including curcumin, resveratrol, quercetin, berberine, epigallocatechin gallate (EGCG), and capsaicin, which highlights potential therapeutic impacts for future testing. However, current clinical trials inspecting human studies investigating efficacies concerning metabolism challenge present limitations. Finally, the review weighs up bad reactions possibly inflicted after administering plant-originated materials though suggestive insights will be provided later. Above all, it outlines the chance to identify novel therapies encapsulated within natural substances based upon recent developments could hold significant promise toward managing misplaced metabolisms globally.
Collapse
Affiliation(s)
- Debajyoti Roy
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Maitrayee Ghosh
- Department of Pharmacy, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Deepika Choudhary
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Naresh Kumar Rangra
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
8
|
Gao R, Lu Y, Zhang W, Zhang Z. The Application of Berberine in Fibrosis and the Related Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:753-773. [PMID: 38716621 DOI: 10.1142/s0192415x24500307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Rongmao Gao
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Yuanyu Lu
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Wei Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610057, P. R. China
| | - Zhao Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
9
|
Cervello M, Augello G, Cocco L, Ratti S, Follo MY, Martelli AM, Cusimano A, Montalto G, McCubrey JA. The potential of the nutraceutical berberine in the treatment of hepatocellular carcinoma and other liver diseases such as NAFLD and NASH. Adv Biol Regul 2024; 92:101032. [PMID: 38693042 DOI: 10.1016/j.jbior.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer which unfortunately has poor outcomes. Common anti-cancer treatments such as chemotherapy and targeted therapy have not increased patient survival significantly. A common treatment for HCC patients is transplantation, however, it has limitations and complications. Novel approaches are necessary to more effectively treat HCC patients. Berberine (BBR) is a nutraceutical derived from various fruits and trees, which has been used for centuries in traditional medicine to treat various diseases such as diabetes and inflammation. More recently, the anti-proliferation effects of BBR have been investigated in the treatment of patients with various cancers, especially colorectal cancer, and in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we will focus on studies with BBR in liver diseases.
Collapse
Affiliation(s)
- Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy
| | - Giuseppe Montalto
- Institute for Biomedical Research and Innovation, National Research Council (CNR), Palermo, Italy; Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo School of Medicine, Palermo, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
10
|
Ionita-Radu F, Patoni C, Nancoff AS, Marin FS, Gaman L, Bucurica A, Socol C, Jinga M, Dutu M, Bucurica S. Berberine Effects in Pre-Fibrotic Stages of Non-Alcoholic Fatty Liver Disease-Clinical and Pre-Clinical Overview and Systematic Review of the Literature. Int J Mol Sci 2024; 25:4201. [PMID: 38673787 PMCID: PMC11050387 DOI: 10.3390/ijms25084201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the predominant cause of chronic liver conditions, and its progression is marked by evolution to non-alcoholic steatosis, steatohepatitis, cirrhosis related to non-alcoholic steatohepatitis, and the potential occurrence of hepatocellular carcinoma. In our systematic review, we searched two databases, Medline (via Pubmed Central) and Scopus, from inception to 5 February 2024, and included 73 types of research (nine clinical studies and 64 pre-clinical studies) from 2854 published papers. Our extensive research highlights the impact of Berberine on NAFLD pathophysiology mechanisms, such as Adenosine Monophosphate-Activated Protein Kinase (AMPK), gut dysbiosis, peroxisome proliferator-activated receptor (PPAR), Sirtuins, and inflammasome. Studies involving human subjects showed a measurable reduction of liver fat in addition to improved profiles of serum lipids and hepatic enzymes. While current drugs for NAFLD treatment are either scarce or still in development or launch phases, Berberine presents a promising profile. However, improvements in its formulation are necessary to enhance the bioavailability of this natural substance.
Collapse
Affiliation(s)
- Florentina Ionita-Radu
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Cristina Patoni
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Andreea Simona Nancoff
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Flavius-Stefan Marin
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Laura Gaman
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Ana Bucurica
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Calin Socol
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Mariana Jinga
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Madalina Dutu
- Department of Anesthesiology and Intensive Care, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Sandica Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| |
Collapse
|
11
|
Li L, Sun L, Liang X, Ou Q, Tan X, Li F, Lai Z, Ding C, Chen H, Yu X, Wu Q, Wei J, Wu F, Wang L. Maternal betaine supplementation ameliorates fatty liver disease in offspring mice by inhibiting hepatic NLRP3 inflammasome activation. Nutr Res Pract 2023; 17:1084-1098. [PMID: 38053832 PMCID: PMC10694418 DOI: 10.4162/nrp.2023.17.6.1084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Previous research has shown maternal betaine supplementation alleviates fetal-derived hepatic steatosis. Therefore, this study examined the anti-inflammatory effect of maternal betaine intake in offspring mice and its mechanism. MATERIALS/METHODS Female C57BL/6J mice and their offspring were randomly divided into 3 groups according to the treatment received during gestation and lactation: control diet (CD), fatty liver disease (FLD), and fatty liver disease + 1% betaine (FLD-BET). The FLD group was given a high-fat diet and streptozotocin (HFD + STZ), and the FLD-BET group was treated with HFD + STZ + 1% betaine. After weaning, the offspring mice were given a normal diet for 5 weeks and then dissected to measure the relevant indexes. RESULTS Compared to the CD group, the offspring mice in the FLD group revealed obvious hepatic steatosis and increased serum levels of alanine aminotransferase, interleukin (IL)-6, and tumor necrosis factor (TNF)-α; maternal betaine supplementation reversed these changes. The hepatic mRNA expression levels of IL-6, IL-18, and Caspase-1 were significantly higher in the FLD group than in the CD group. Maternal betaine supplementation reduced the expression of IL-1β, IL-6, IL-18, and apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC). Maternal betaine supplementation also reversed the increasing protein expressions of nitric oxide dioxygenase-like receptor family pyrin domain containing 3 (NLRP3), ASC, Caspase-1, IL-1β, and IL-18 in offspring mice exposed to HFD + STZ. Maternal betaine supplementation decreased the homocysteine (Hcy) and s-adenosine homocysteine (SAH) levels significantly in the livers. Furthermore, the hepatic Hcy concentrations showed significant inverse relationships with the mRNA expression of TNF-α, NLRP3, ASC, and IL-18. The hepatic SAH concentration was inversely associated with the IL-1β mRNA expression. CONCLUSIONS The lipotropic and anti-inflammatory effect of maternal betaine supplementation may be associated with the inhibition of NLRP3 inflammasome in the livers of the offspring mice.
Collapse
Affiliation(s)
- Lun Li
- Department of Delivery Room, Guangzhou Women and Children’s Medical Center, Guangzhou 510623, People’s Republic of China
| | - Liuqiao Sun
- Department of Maternal, Child and Adolescent Health, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xiaoping Liang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qian Ou
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xuying Tan
- Department of Child Health Care, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, People’s Republic of China
| | - Fangyuan Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Zhiwei Lai
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Chenghe Ding
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Hangjun Chen
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Xinxue Yu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Qiongmei Wu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Jun Wei
- Department of Science and Technology, Guangzhou Customs, Guangzhou 510623, People’s Republic of China
| | - Feng Wu
- Department of Science and Technology, Guangzhou Customs, Guangzhou 510623, People’s Republic of China
| | - Lijun Wang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, People’s Republic of China
| |
Collapse
|
12
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
13
|
Wang L, Yan Y, Wu L, Peng J. Natural products in non-alcoholic fatty liver disease (NAFLD): Novel lead discovery for drug development. Pharmacol Res 2023; 196:106925. [PMID: 37714392 DOI: 10.1016/j.phrs.2023.106925] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
With changing lifestyles, non-alcoholic fatty liver disease (NAFLD) has become the most prevalent liver disease worldwide. A substantial increase in the incidence, mortality, and associated burden of NAFLD-related advanced liver disease is expected. Currently, the initial diagnosis of NAFLD is still based on ultrasound and there is no approved treatment method. Lipid-lowering drugs, vitamin supplementation, and lifestyle improvement treatments are commonly used in clinical practice. However, most lipid-lowering drugs can produce poor patient compliance and specific adverse effects. Therefore, the exploration of bio-diagnostic markers and active lead compounds for the development of innovative drugs is urgently needed. More and more studies have reported the anti-NAFLD effects and mechanisms of natural products (NPs), which have become an important source for new drug development to treat NAFLD due to their high activity and low side effects. At present, berberine and silymarin have been approved by the US FDA to enter clinical phase IV studies, demonstrating the potential of NPs against NAFLD. Studies have found that the regulation of lipid metabolism, insulin resistance, oxidative stress, and inflammation-related pathways may play important roles in the process. With the continuous updating of technical means and scientific theories, in-depth research on the targets and mechanisms of NPs against NAFLD can provide new possibilities to find bio-diagnostic markers and innovative drugs. As we know, FXR agonists, PPARα agonists, and dual CCR2/5 inhibitors are gradually coming on stage for the treatment of NAFLD. Whether NPs can exert anti-NAFLD effects by regulating these targets or some unknown targets remains to be further studied. Therefore, the study reviewed the potential anti-NAFLD NPs and their targets. Some works on the discovery of new targets and the docking of active lead compounds were also discussed. It is hoped that this review can provide some reference values for the development of non-invasive diagnostic markers and new drugs against NAFLD in the clinic.
Collapse
Affiliation(s)
- Lu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yonghuan Yan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Linfang Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jinyong Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
14
|
Khanmohammadi S, Ramos-Molina B, Kuchay MS. NOD-like receptors in the pathogenesis of metabolic (dysfunction)-associated fatty liver disease: Therapeutic agents targeting NOD-like receptors. Diabetes Metab Syndr 2023; 17:102788. [PMID: 37302383 DOI: 10.1016/j.dsx.2023.102788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS In metabolic (dysfunction)-associated fatty liver disease (MAFLD), activation of inflammatory processes marks the transition of simple steatosis to steatohepatitis, which can further evolve to advanced fibrosis or hepatocellular carcinoma. Under the stress of chronic overnutrition, the innate immune system orchestrates hepatic inflammation through pattern recognition receptors (PRRs). Cytosolic PRRs that include NOD-like receptors (NLRs) are crucial for inducing inflammatory processes in the liver. METHODS A literature search was performed with Medline (PubMed), Google Scholar and Scopus electronic databases till January 2023, using relevant keywords to extract studies describing the role of NLRs in the pathogenesis of MAFLD. RESULTS Several NLRs operate through the formation of inflammasomes, which are multimolecular complexes that generate pro-inflammatory cytokines and induce pyroptotic cell death. A multitude of pharmacological agents target NLRs and improve several aspects of MAFLD. In this review, we discuss the current concepts related to the role of NLRs in the pathogenesis of MAFLD and its complications. We also discuss the latest research on MAFLD therapeutics functioning through NLRs. CONCLUSIONS NLRs play a significant role in the pathogenesis of MAFLD and its consequences, especially through generation of inflammasomes, such as NLRP3 inflammasomes. Lifestyle changes (exercise, coffee consumption) and therapeutic agents (GLP-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, obeticholic acid) improve MAFLD and its complications partly through blockade of NLRP3 inflammasome activation. New studies are required to explore these inflammatory pathways fully for the treatment of MAFLD.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Bruno Ramos-Molina
- Obesity and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), 30120 Murcia, Spain
| | - Mohammad Shafi Kuchay
- Divison of Endocrinology and Diabetes, Medanta the Medicity Hospital, Gurugram 122001, Haryana, India.
| |
Collapse
|
15
|
Chen KQ, Ke BY, Cheng L, Yu XQ, Wang ZB, Wang SZ. Research and progress of inflammasomes in nonalcoholic fatty liver disease. Int Immunopharmacol 2023; 118:110013. [PMID: 36931172 DOI: 10.1016/j.intimp.2023.110013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
With the development of the social economy, unhealthy living habits and eating styles are gradually affecting people's health in recent years. As a chronic liver disease, NAFLD is deeply affected by unhealthy living habits and eating styles and has gradually become an increasingly serious public health problem. As a protein complex in clinical research, the inflammasomes play a crucial role in the development of NAFLD, atherosclerosis, and other diseases. This paper reviews the types, composition, characteristics of inflammasomes, and molecular mechanism of the inflammasome in NAFLD. Meanwhile, the paper reviews the drugs and non-drugs that target NLRP3 inflammasome in the treatment of NAFLD in the past decades. we also analyzed and summarized the related experimental models, mechanisms, and results of NAFLD. Although current therapeutic strategies for NAFLD are not effective, we expect that we will be able to find an appropriate treatment to address this problem in the future with further research on inflammasome.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Bo-Yi Ke
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lu Cheng
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiao-Qing Yu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zong-Bao Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
16
|
Lin D, Song Y. Dapagliflozin Presented Nonalcoholic Fatty Liver Through Metabolite Extraction and AMPK/NLRP3 Signaling Pathway. Horm Metab Res 2023; 55:75-84. [PMID: 36495240 DOI: 10.1055/a-1970-3388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, the incidence rate of nonalcoholic fatty liver disease (NAFLD) has been increasing year by year. The experiments conducted on rat elucidated the effect and underlying mechanism of dapagliflozin in NAFLD. Sprague Dawley rats were fed with HFD (Fat accounts for 52%, carbohydrate 34% and protein 14%) for 12 weeks as NAFLD model. Dapagliflozin presented NAFLD in rat model. Dapagliflozin reduced oxidative stress and inflammation in rat model of NAFLD. Dapagliflozin reduced oxidative stress and inflammation in vitro model of NAFLD. Dapagliflozin in a model of NAFLD metabolized into histamine H1 receptor, caffeine metabolism, mannose type O-glycan biosynthesis, choline metabolism in cancer, tryptophan metabolism, and glycerophospholipid metabolism. Dapagliflozin induced AMPK/NLRP3 signaling pathway. The regulation of AMPK/NLRP3 signaling pathway affected the effects of dapagliflozin on nonalcoholic fatty liver. In summary, dapagliflozin plays a preventative role in NAFLD through metabolite extraction, the inhibition of oxidative stress, and inflammation by AMPK/NLRP3 signaling pathway. Dapagliflozin may be a potential therapeutic agent for oxidative stress and inflammation in model of NAFLD.
Collapse
Affiliation(s)
- Deng Lin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuling Song
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Zhang Y, Liu D, Yao X, Wen J, Wang Y, Zhang Y. DMTHB ameliorates memory impairment in Alzheimer's disease mice through regulation of neuroinflammation. Neurosci Lett 2022; 785:136770. [PMID: 35810961 DOI: 10.1016/j.neulet.2022.136770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases. Growing evidence suggested that AD is associated with neuroinflammation, characterized with the chronic activation of microglial cells and astrocytes along with the subsequent excessive generation of the proinflammatory molecules. This study aimed to investigate the effect and molecular mechanism of Demethylenetetrahydroberberine (DMTHB) on Alzheimer's disease (AD). METHODS AD mice model were made by intracranial injection of Aβ25-35. DMTHB (50 mg/kg or 150 mg/kg) was intragastrically administered every day for three weeks. Morris water maze (MWM) was applied to evaluate the capacity of learning and memory of mice. Pathological change and neuronal death were detected by HE staining Moreover, the expressions of NLRP3, ASC, Caspase 1, IL-6, IL-1β, TNF-α and Tau in the brain tissue were measured by qRT-PCR and western blot. RESULTS Our results showed that the cognition of AD mice was significantly improved by DMTHB administration. DMTHB inhibited the activation of the microglia and significantly reduced the expression of Iba-1 in the brains of AD mice. In addition, DMTHB effectively suppressed the activation of NLRP3 inflammasome induced by Aβ25-35. The results showed that the content of inflammatory cytokine (TNF-α, IL-1β and IL-6) in the brains of AD mice were down-regulated by DMTHB treatment. More importantly, DMTHB treatment significantly alleviated hippocampus neuron deformation and apoptosis. CONCLUSION These results indicated that DMTHB could be a potential medicine against AD through regulation of neuroinflammation.
Collapse
Affiliation(s)
- Yuanqiang Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Dongqing Liu
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Xutao Yao
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Jing Wen
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China; Affitiated Hospital of Nantong University, Nantong, China
| | - Yuhang Wang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China
| | - Yubin Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
18
|
Huang Q, Xin X, Sun Q, An Z, Gou X, Feng Q. Plant-derived bioactive compounds regulate the NLRP3 inflammasome to treat NAFLD. Front Pharmacol 2022; 13:896899. [PMID: 36016562 PMCID: PMC9396216 DOI: 10.3389/fphar.2022.896899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by abnormal accumulation of hepatic fat and inflammatory response with complex pathogenesis. Over activation of the pyrin domain-containing protein 3 (NLRP3) inflammasome triggers the secretion of interleukin (IL)-1β and IL-18, induces pyroptosis, and promotes the release of a large number of pro-inflammatory proteins. All of which contribute to the development of NAFLD. There is a great deal of evidence indicating that plant-derived active ingredients are effective and safe for NAFLD management. This review aims to summarize the research progress of 31 active plant-derived components (terpenoids, flavonoids, alkaloids, and phenols) that alleviate lipid deposition, inflammation, and pyroptosis by acting on the NLRP3 inflammasome studied in both in vitro and in vivo NAFLD models. These studies confirmed that the NLRP3 inflammasome and its related genes play a key role in NAFLD amelioration, providing a starting point for further study on the correlation of plant-derived compounds treatment with the NLRP3 inflammasome and NAFLD.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziming An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
- *Correspondence: Qin Feng,
| |
Collapse
|
19
|
Bao S, Wang X, Ma Q, Wei C, Nan J, Ao W. Mongolian medicine in treating type 2 diabetes mellitus combined with nonalcoholic fatty liver disease via FXR/LXR-mediated P2X7R/NLRP3/NF-κB pathway activation. CHINESE HERBAL MEDICINES 2022; 14:367-375. [PMID: 36118003 PMCID: PMC9476729 DOI: 10.1016/j.chmed.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) are the most problematic metabolic diseases in the world. NAFLD encompasses a spectrum of severity, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis, increasing the risk of cirrhosis and hepatocellular carcinoma. Importantly, NAFLD is closely linked to obesity and tightly interrelated with insulin resistance and T2DM. T2DM and NAFLD (T2DM-NAFLD) are called as the Xike Rixijing Disease and Tonglaga Indigestion Disease respectively, in Mongolian medicine. Xike Rixijing Disease maybe develop into Tonglaga Indigestion Disease. Forturnately many Mongolian medicines show efficient treatment of T2DM-NAFLD, such as Agriophyllum squarrosum, Haliyasu (dried powder of camel placenta), Digeda-4 (herbs of Lomatogonium carinthiacum, rhizomata of Coptis chinensis, ripe fruits of Gardenia jasminoides, herbs of Dianthus superbus), Guangmingyan Siwei Decoction Powder (Halite, ripe fruits of Terminalia chebula, rhizomata of Zingiber officinale, fruit clusters of Piper longum), Tonglaga-5 (ripe fruits of Punica granatum, barks of Cinnamomum cassia, ripe fruits of Amomum kravanh, fruit clusters of Piper longum, flowers of Carthamus tinctorius), Tegexidegeqi (rhizomata of Inula helenium, ripe fruits of Gardenia jasminoides, rhizomata of Platycodon grandiflorum, rhizomata of Coptis chinensis, heartwood of Caesalpinia sappan), Ligan Shiliu Bawei San (ripe fruits of Punica granatum, barks of Cinnamomum cassia, ripe fruits of Amomum kravanh, fruit clusters of Piper longum, flowers of Carthamus tinctorius, ripe fruits of Amomum tsao-ko, rhizomata of Zingiber officinale), etc. Principles of Mongolian medicine in treating diseases: by balancing “three essences or roots” and “seven elements”, strengthening liver and kidney function, transporting nutrients to enhance physical strength and disease resistance, and combined with drugs for comprehensive conditioning treatment. However, their molecular mechanisms remain unclear. In this review, we prospect that Mongolian medicines might be a promising treatment for T2DM-NAFLD by activating P2X7R/NLRP3/NF-κB inflammatory pathway via lipid-sensitive nuclear receptors (i.e., FXR and LXR).
Collapse
Affiliation(s)
- Shuyin Bao
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao 028000, China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, China
- Jilin Key Laboratory for Traditional Chinese Korean Medicine, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xiuzhi Wang
- Department of Medicines and Foods, Tongliao Vocational College, Tongliao 028000, China
| | - Qianqian Ma
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao 028000, China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, China
| | - Chengxi Wei
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Tongliao 028000, China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao 028000, China
- Corresponding authors.
| | - Jixing Nan
- Jilin Key Laboratory for Traditional Chinese Korean Medicine, College of Pharmacy, Yanbian University, Yanji 133002, China
- Corresponding authors.
| | - Wuliji Ao
- Research and development center, Inner Mongolia Research Institute of Traditional Mongolian Medicine Engineering Technology, Tongliao 028000, China
- Mongolian Medicine R&D National Local Union Engineering Research Center, Inner Mongolia Minzu University, Tongliao 028000, China
- Corresponding authors.
| |
Collapse
|
20
|
HtrA2/Omi mitigates NAFLD in high-fat-fed mice by ameliorating mitochondrial dysfunction and restoring autophagic flux. Cell Death Dis 2022; 8:218. [PMID: 35449197 PMCID: PMC9023526 DOI: 10.1038/s41420-022-01022-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver metabolic syndrome which affects millions of people worldwide. Recently, improving mitochondrial function and autophagic ability have been proposed as a means to prevent NAFLD. It has been previously described that high-temperature requirement protein A2 (HtrA2/Omi) favors mitochondrial homeostasis and autophagy in hepatocytes. Thus, we explored the effects of HtrA2/Omi on regulating mitochondrial function and autophagy during NAFLD development. High-fat diet (HFD)-induced NAFLD in mice and free fatty acids (FFAs)-induced hepatocytes steatosis in vitro were established. Adeno-associated viruses (AAV) in vivo and plasmid in vitro were used to restore HtrA2/Omi expression. In this study, we reported that HtrA2/Omi expression considerably decreased in liver tissues from the HFD-induced NAFLD model and in L02 cells with FFA-treated. However, restoring HtrA2/Omi ameliorated hepatic steatosis, confirming by improved serum lipid profiles, glucose homeostasis, insulin resistance, histopathological lipid accumulation, and the gene expression related to lipid metabolism. Moreover, HtrA2/Omi also attenuated HFD-mediated mitochondrial dysfunction and autophagic blockage. TEM analysis revealed that liver mitochondrial structure and autophagosome formation were improved in hepatic HtrA2/Omi administration mice compared to HFD mice. And hepatic HtrA2/Omi overexpression enhanced mitochondrial fatty acid β-oxidation gene expression, elevated LC3II protein levels, induced LC3 puncta, and decreased SQSTM1/p62 protein levels. Furthermore, hepatic HtrA2/Omi increased respiratory exchange ratio and heat production in mice. Finally, HtrA2/Omi overexpression by plasmid significantly diminished lipid accumulation, mitochondrial dysfunction, and autophagic inhibition in FFA-treated L02 hepatocytes. Taken together, we demonstrated that HtrA2/Omi was a potential candidate for the treatment of NAFLD via improving mitochondrial functions, as well as restoring autophagic flux.
Collapse
|
21
|
WEN J, ZHANG YQ, LIU DQ, YAO XT, JIANG H, ZHANG YB. Demethylenetetrahydroberberine protects dopaminergic neurons in a mouse model of Parkinson's disease. Chin J Nat Med 2022; 20:111-119. [DOI: 10.1016/s1875-5364(22)60145-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/16/2022]
|
22
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|