1
|
Zhang Y, Chang M, Wang H, Xue Q, Liu Y, Wei H, Bao J, Li J. Music of Different Tones Maintains Intestinal Immunity by Regulating the Intestinal Barrier and Intestinal Microbiota. Int J Mol Sci 2025; 26:2482. [PMID: 40141126 PMCID: PMC11942615 DOI: 10.3390/ijms26062482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/20/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Music as an environmental factor can maintain intestinal health in animals, but it is unclear whether this effect is influenced by the tones of the music. In this study, 100 Kunming white mice were randomly divided into control group (C group) with no music, and three music groups were exposed to Mozart K.448 in D, A and G tone (D group, A group and G group), respectively. To study the effects of different tones of Mozart K.448 on intestinal barrier and intestinal microbiota, mice were given musical stimulation from 1 to 63 days of age. The results showed that no apparent abnormalities were observed in the structure of ileum among groups. The mRNA expression levels of genes related to intestinal physical barrier (Claudin-1, Claudin-12, ZO-2, Mucin2, ZO-1 and Claudin-5) were significantly higher in music groups than those in C group (p < 0.05), and the mRNA expression levels of intestinal barrier genes in D group were the highest (p < 0.05). The levels of intestinal mucosal permeability (DAO and D-lactate) in D group were significantly lower than those in other groups (p < 0.05). Ileum HSP60 mRNA level in D group were significantly lower than that in other groups (p < 0.05). The mRNA expression level of IgA was significantly higher in music groups than C group (p < 0.05). Additionally, the mRNA and protein expression levels of IgG were significantly higher in D group than other groups (p < 0.05). Music stimulation increased the abundance of beneficial microbiota, such as Lactobacillus and Sporosarcina (p < 0.05). Mozart K.448 can strengthen intestinal barrier function to reduce intestinal permeability and improve intestinal immunity, while also having a positive significance in promoting the colonization of beneficial intestinal microbiota. In addition, the effect of tone D was more significant.
Collapse
Affiliation(s)
- Yong Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.W.); (Q.X.); (Y.L.); (H.W.)
| | - Minghang Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Hongyu Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.W.); (Q.X.); (Y.L.); (H.W.)
| | - Qiang Xue
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.W.); (Q.X.); (Y.L.); (H.W.)
| | - Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.W.); (Q.X.); (Y.L.); (H.W.)
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.W.); (Q.X.); (Y.L.); (H.W.)
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.W.); (Q.X.); (Y.L.); (H.W.)
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| |
Collapse
|
2
|
Jiang D, Xiao Y, Yu Z, Deng M, Song Q, Huang J, Su J, Xu C, Hou Y. Unravelling the difference of immune microenvironment characteristics between esophageal basaloid squamous cell carcinoma and conventional esophageal squamous cell carcinoma. Hum Pathol 2025; 155:105716. [PMID: 39793931 DOI: 10.1016/j.humpath.2025.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
OBJECTIVES Esophageal basaloid squamous cell carcinoma (basaloid ESCC) is an uncommon variant of esophageal squamous cell carcinoma (ESCC). We characterized the tumor immune microenvironment features of basaloid ESCC, and compared them with conventional ESCC. METHODS AND RESULTS One hundred and four basaloid ESCC patients and 55 conventional ESCC patients were included in Cohort 1. Among 104 basaloid ESCC, 81 were pure basaloid ESCC, and 23 were mixed basaloid ESCC with invasive basaloid ESCC components and ESCC components. In pure basaloid ESCC, there were more immature desmoplastic reaction (P < 0.001), fewer peritumoral tertiary lymphoid structures (TLSs) (P < 0.001), and lower tumor proportional score (TPS) and combined positive score (CPS) (P < 0.001 and P = 0.004) than in conventional ESCC. In mixed basaloid ESCC, the number of mature or intermediate desmoplastic reaction (P < 0.001), the tumor-infiltrating lymphocytes (TILs) score (P = 0.043), the proportion of stromal CD8+ TILs (P = 0.047), the number of intratumoral CD20+ TILs (P < 0.001), the number of peritumoral TLSs (P = 0.001), the number of peritumoral matureTLSs (P = 0.021), and the PD-L1 (22C3) CPS (P = 0.016) were lower in the basaloid ESCC components than in the conventional ESCC components. In addition, the data of 141 ESCC patients with neoadjuvant chemoimmunotherapy (nICT) were collected to compare immunotherapeutic outcomes. Among 141 nICT-treated patients, 115 patients had residual tumor cells remaining, including 101 with conventional ESCC and 11 with basaloid ESCC. In basaloid ESCC, 18.2% patients had less than 10% residual viable tumor in the esophageal wall (effective response), which was lower than 58.6% in conventional ESCC (P = 0.025). CONCLUSIONS Our data indicated that basaloid ESCC had less benefits from immunotherapy than conventional ESCC, and manifested as immune "cold" with immature-type desmoplastic reaction, lower TILs, lower peritumoral TLSs, and lower PD-L1 expression than conventional ESCC.
Collapse
Affiliation(s)
- Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Yuhao Xiao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Minying Deng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
3
|
Zinovkin DA, Wang H, Yu Z, Zhang Q, Zhang Y, Wei S, Zhou T, Zhang Q, Zhang J, Nadyrov EA, Farooq A, Lyzikova Y, Vejalkin IV, Slepokurova II, Pranjol MZI. The vasculogenic mimicry, CD146 + and CD105 + microvessel density in the prognosis of endometrioid endometrial adenocarcinoma: a single-centre immunohistochemical study. Biomarkers 2024; 29:459-465. [PMID: 39392041 DOI: 10.1080/1354750x.2024.2415078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
The microvessel compartment is crucial in the tumour microenvironment of endometrioid adenocarcinoma (EA). This study investigated the role of vasculogenic mimicry (VM), CD146, and CD105 microvessel density in the clinical prognosis of EA. A total of 188 EA cases were analyzed, with VM channels and microvessels detected using PAS/CD31, CD146, and CD105 staining. Mann-Whitney and Fisher exact tests were used to compare the study groups according to the evaluated criteria. ROC analysis included determination of the confidence interval (CI) and area under the ROC curve. The Mantel-Cox test was used to analyze progression-free survival. Multivariate Cox proportional hazard analysis was performed using stepwise regression. Results showed that VM channels and CD146 and CD105 microvessels were significantly higher (p < 0.0001) in cases with unfavourable prognosis. Univariate survival analysis highlighted the significant role of these factors in progression-free survival, while multivariate Cox analysis identified VM and CD146+ vessels as predictive factors. This study demonstrates, for the first time, that VM, CD146, and CD105-positive vessels are involved in EA prognosis, suggesting their potential as independent prognostic indicators and targets for antiangiogenic therapy. However, these findings require further validation through large-scale studies.
Collapse
Affiliation(s)
- Dmitry A Zinovkin
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, People's Republic of China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Eldar A Nadyrov
- Department of Histology, Embryology and Cellular Biology, Gomel State Medical University, Gomel, Belarus
| | - Abdullah Farooq
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Yulia Lyzikova
- Department of Obstetrics and Gynecology, Gomel State Medical University, Gomel, Belarus
| | - Ilya V Vejalkin
- Laboratory of Epidemiology, Republican Research Center for Radiation Medicine and Human Ecology, Gomel, Belarus
| | | | | |
Collapse
|
4
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
5
|
Zhang Q, Liu Y, Wang X, Zhang C, Hou M, Liu Y. Integration of single-cell RNA sequencing and bulk RNA transcriptome sequencing reveals a heterogeneous immune landscape and pivotal cell subpopulations associated with colorectal cancer prognosis. Front Immunol 2023; 14:1184167. [PMID: 37675100 PMCID: PMC10477986 DOI: 10.3389/fimmu.2023.1184167] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/27/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a highly heterogeneous cancer. The molecular and cellular characteristics differ between the colon and rectal cancer type due to the differences in their anatomical location and pathological properties. With the advent of single-cell sequencing, it has become possible to analyze inter- and intra-tumoral tissue heterogeneities. Methods A comprehensive CRC immune atlas, comprising 62,398 immune cells, was re-structured into 33 immune cell clusters at the single-cell level. Further, the immune cell lineage heterogeneity of colon, rectal, and paracancerous tissues was explored. Simultaneously, we characterized the TAM phenotypes and analyzed the transcriptomic factor regulatory network of each macrophage subset using SCENIC. In addition, monocle2 was used to elucidate the B cell developmental trajectory. The crosstalk between immune cells was explored using CellChat and the patterns of incoming and outgoing signals within the overall immune cell population were identified. Afterwards, the bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) were combined and the relative infiltration abundance of the identified subpopulations was analyzed using CIBERSORT. Moreover, cell composition patterns could be classified into five tumor microenvironment (TME) subtypes by employing a consistent non-negative matrix algorithm. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells in the tumor microenvironment were analyzed by multiplex immunohistochemistry. Results In the T cell lineage, we found that CXCL13+T cells were more widely distributed in colorectal cancer tissues, and the proportion of infiltration was increased. In addition, Th17 was found accounted for the highest proportion in CD39+CD101+PD1+T cells. Mover, Ma1-SPP1 showed the characteristics of M2 phenotypes and displayed an increased proportion in tumor tissues, which may promote angiogenesis. Plasma cells (PCs) displayed a significantly heterogeneous distribution in tumor as well as normal tissues. Specifically, the IgA+ PC population could be shown to be decreased in colorectal tumor tissues whereas the IgG+ PC one was enriched. In addition, information flow mediated by SPP1 and CD44, regulate signaling pathways of tumor progression. Among the five TME subtypes, the TME-1 subtype displayed a markedly reduced proportion of T-cell infiltration with the highest proportion of macrophages which was correlated to the worst prognosis. Finally, the co-expression and interaction between SPP1+TAMs and Treg cells were observed in the CD44 enriched region. Discussion The heterogeneity distribution and phenotype of immune cells were analyzed in colon cancer and rectal cancer at the single-cell level. Further, the prognostic role of major tumor-infiltrating lymphocytes and TME subtypes in CRC was evaluated by integrating bulk RNA. These findings provide novel insight into the immunotherapy of CRC.
Collapse
Affiliation(s)
- Qian Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| | - Yang Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xinyu Wang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Cheng Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Mingxiao Hou
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Wu Y, Liu X, Liu F, Li Y, Xiong X, Sun H, Lin B, Li Y, Xu B. A multi-class classification algorithm based on hematoxylin-eosin staining for neoadjuvant therapy in rectal cancer: a retrospective study. PeerJ 2023; 11:e15408. [PMID: 37334122 PMCID: PMC10269576 DOI: 10.7717/peerj.15408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/21/2023] [Indexed: 06/20/2023] Open
Abstract
Neoadjuvant therapy (NAT) is a major treatment option for locally advanced rectal cancer. With recent advancement of machine/deep learning algorithms, predicting the treatment response of NAT has become possible using radiological and/or pathological images. However, programs reported thus far are limited to binary classifications, and they can only distinguish the pathological complete response (pCR). In the clinical setting, the pathological NAT responses are classified as four classes: (TRG0-3), with 0 as pCR, 1 as moderate response, 2 as minimal response and 3 as poor response. Therefore, the actual clinical need for risk stratification remains unmet. By using ResNet (Residual Neural Network), we developed a multi-class classifier based on Hematoxylin-Eosin (HE) images to divide the response to three groups (TRG0, TRG1/2, and TRG3). Overall, the model achieved the AUC 0.97 at 40× magnification and AUC 0.89 at 10× magnification. For TRG0, the model under 40× magnification achieved a precision of 0.67, a sensitivity of 0.67, and a specificity of 0.95. For TRG1/2, a precision of 0.92, a sensitivity of 0.86, and a specificity of 0.89 were achieved. For TRG3, the model obtained a precision of 0.71, a sensitivity of 0.83, and a specificity of 0.88. To find the relationship between the treatment response and pathological images, we constructed a visual heat map of tiles using Class Activation Mapping (CAM). Notably, we found that tumor nuclei and tumor-infiltrating lymphocytes appeared to be potential features of the algorithm. Taken together, this multi-class classifier represents the first of its kind to predict different NAT responses in rectal cancer.
Collapse
Affiliation(s)
- Yihan Wu
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaohua Liu
- Bioengineering College of Chongqing University, Chongqing, China
| | - Fang Liu
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yi Li
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
- Bioengineering College of Chongqing University, Chongqing, China
| | - Xiaomin Xiong
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
- Bioengineering College of Chongqing University, Chongqing, China
| | - Hao Sun
- Department of Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Bo Lin
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| | - Yu Li
- Department of Pathology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Bo Xu
- School of Medicine, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
7
|
Liu H, Li Z, Han X, Li Z, Zhao Y, Liu F, Zhu Z, Lv Y, Liu Z, Zhang N. The prognostic impact of tumor-infiltrating B lymphocytes in patients with solid malignancies: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2023; 181:103893. [PMID: 36481308 DOI: 10.1016/j.critrevonc.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
This study reviewed the prognostic effect of tumor-infiltrating B lymphocytes (TIBLs) on solid malignancies, to determine the potential role of TIBLs in predicting cancer patient's prognosis and their response to immunotherapy. A total of 45 original papers involving 11,099 individual patients were included in this meta-analysis covering 7 kinds of cancer. The pooled results suggested that high levels of TIBLs were correlated with favorable OS in lung, esophageal, gastric, colorectal, liver, and breast cancer; improved RFS in lung cancer; and improved DFS in gastrointestinal neoplasms. Additionally, TIBLs were significantly correlated with negative lymphatic invasion in gastric cancer, small tumor size in hepatocellular carcinoma, and negative distant metastasis in colorectal cancer. Additionally, TIBLs were reported as a discriminative feature of patients treated with immunotherapy with improved survival. We concluded that TIBLs play a favorable prognostic role among the common solid malignancie, providing theoretical evidence for further prognosis prediction for solid tumors.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuan Han
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Fenghua Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
8
|
Melia F, Udomjarumanee P, Zinovkin D, Arghiani N, Pranjol MZI. Pro-tumorigenic role of type 2 diabetes-induced cellular senescence in colorectal cancer. Front Oncol 2022; 12:975644. [PMID: 36059680 PMCID: PMC9434004 DOI: 10.3389/fonc.2022.975644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. The disease still remains incurable and highly lethal in the advanced stage, representing a global health concern. Therefore, it is essential to understand the causes and risk factors leading to its development. Because age-related cellular senescence and type 2 diabetes (T2D) have been recognised as risk factors for CRC development, the recent finding that type 2 diabetic patients present an elevated circulating volume of senescent cells raises the question whether type 2 diabetes facilitates the process of CRC tumorigenesis by inducing premature cell senescence. In this review, we will discuss the mechanisms according to which T2D induces cellular senescence and the role of type 2 diabetes-induced cellular senescence in the pathogenesis and progression of colorectal cancer. Lastly, we will explore the current therapeutic approaches and challenges in targeting senescence.
Collapse
Affiliation(s)
- Francesco Melia
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Palita Udomjarumanee
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitry Zinovkin
- Department of Pathology, Gomel State Medical University, Gomel, Belarus
| | - Nahid Arghiani
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| | - Md Zahidul Islam Pranjol
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- *Correspondence: Nahid Arghiani, ; Md Zahidul Islam Pranjol,
| |
Collapse
|
9
|
Peng X, Xu Z, Guo Y, Zhu Y. Necroptosis-Related Genes Associated With Immune Activity and Prognosis of Colorectal Cancer. Front Genet 2022; 13:909245. [PMID: 35783272 PMCID: PMC9243386 DOI: 10.3389/fgene.2022.909245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022] Open
Abstract
This study aims at screening out the key necroptosis-related genes in colorectal cancer and elucidating the role of necroptosis-related genes in the immune activity and prognosis of colorectal cancer (CRC). The CRC patients’ data were downloaded from The Cancer Genome Atlas (TCGA). The non-negative matrix factorization method was applied to identify new molecular subgroups. Survival analysis and single sample Gene Set Enrichment Analysis were performed to determinate the differences in the overall survival time and immune status of the subgroups. Prognostic model was constructed on the basis of univariate Cox regression and LASSO analysis. Functional analyses were used to explore the potential mechanisms. Based on prognostic related necroptosis genes, we identify two molecular subgroups with significantly different survival. The better prognosis was associated with more active immune infiltration and upregulated expression of immune checkpoints. We screened nine necroptosis related genes as key prognostic genes and established a risk model, which showed a good potential for survival prediction in colorectal cancer. Nomogram assessment showed that the model had high reliability for predicting the prognosis of colorectal cancer patients. The high-risk and low-risk group also has different sensitivity to immunotherapy and commonly used drugs for colorectal cancer. Overall, necroptosis related genes were involved in the immune microenvironment of colorectal cancer patient, could be utilized to predict the prognosis of colorectal cancer and develop more individualized treatment.
Collapse
Affiliation(s)
- Xinyi Peng
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Zhili Xu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Yong Guo
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Yong Guo, ; Ying Zhu,
| | - Ying Zhu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Yong Guo, ; Ying Zhu,
| |
Collapse
|