1
|
Cruz LLD, Sinzato YK, Paula VG, Fioretto MN, Gallego FQ, Barco VS, Camargo ACL, Corrente JE, Justulin LA, Rodrigues T, Volpato GT, Damasceno DC. Maternal hyperglycemia and postnatal high-fat diet impair metabolic regulation and autophagy response in the liver of adult female rats. J Dev Orig Health Dis 2025; 16:e11. [PMID: 39973168 DOI: 10.1017/s204017442400045x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
This study aimed to investigate the mechanisms by which the association between maternal hyperglycemia and postnatal high-fat diet (HFD) exposure compromises metabolic parameters and hepatic autophagy in adult female pups. For this, Sprague Dawley rats, female pups from nondiabetic (control = FC) or diabetic (FD) mothers, were fed a standard diet (SD) or HFD from weaning until adulthood (n minimum = 5 rats/group): FC/SD, FC/HFD, FD/SD, and FD/HFD. In adulthood, these rats were tested with the oral glucose tolerance test, euthanized, and serum biochemistry parameters were analyzed. Liver samples were collected to evaluate cytokines, redox status, and protein expression autophagy and apoptosis markers. Histomorphometric analyses and an assessment of lipofuscin accumulation were also performed to reflect incomplete autolysosomal digestion. The FC/HFD, FD/SD, and FD/HFD groups showed glucose intolerance and an increased number of hepatocytes. Furthermore, FD/SD and FD/HFD rats showed hyperlipidemia and insulin resistance. Adaptations in hepatic redox pathways were observed in the FD/SD group with increased antioxidant defense marker activity. The FD/SD group also exhibited increased autophagy protein expression, such as p-AMPK, LC3-II/LC3-I, and p62/SQSTM1, lipofuscin accumulation, and caspase-3 activation. After exposure to HFD, the adult female pups of diabetic rats had a reduced p-AMPK and LC3-II/LC3-I ratio, the presence of steatosis, oxidative stress, and inflammation. The reduction of autophagy, stimulated by HFD, may be of vital importance for the susceptibility to metabolic dysfunction-associated fatty liver disease induced by maternal diabetes.
Collapse
Affiliation(s)
- Larissa Lopes da Cruz
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Yuri Karen Sinzato
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Verônyca Gonçalves Paula
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Franciane Quintanilha Gallego
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vinícius Soares Barco
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Tiago Rodrigues
- Center of Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Gustavo Tadeu Volpato
- Institute of Biological and Health Sciences, Laboratory of System Physiology and Reproductive Toxicology, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Débora Cristina Damasceno
- Postgraduate Course on Tocogynecology and Laboratory of Experimental Research on Gynecology and Obstetrics - UNIPEX, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Balasubramanian P, Kiss T, Gulej R, Nyul Toth A, Tarantini S, Yabluchanskiy A, Ungvari Z, Csiszar A. Accelerated Aging Induced by an Unhealthy High-Fat Diet: Initial Evidence for the Role of Nrf2 Deficiency and Impaired Stress Resilience in Cellular Senescence. Nutrients 2024; 16:952. [PMID: 38612986 PMCID: PMC11013792 DOI: 10.3390/nu16070952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
High-fat diets (HFDs) have pervaded modern dietary habits, characterized by their excessive saturated fat content and low nutritional value. Epidemiological studies have compellingly linked HFD consumption to obesity and the development of type 2 diabetes mellitus. Moreover, the synergistic interplay of HFD, obesity, and diabetes expedites the aging process and prematurely fosters age-related diseases. However, the underlying mechanisms driving these associations remain enigmatic. One of the most conspicuous hallmarks of aging is the accumulation of highly inflammatory senescent cells, with mounting evidence implicating increased cellular senescence in the pathogenesis of age-related diseases. Our hypothesis posits that HFD consumption amplifies senescence burden across multiple organs. To scrutinize this hypothesis, we subjected mice to a 6-month HFD regimen, assessing senescence biomarker expression in the liver, white adipose tissue, and the brain. Aging is intrinsically linked to impaired cellular stress resilience, driven by dysfunction in Nrf2-mediated cytoprotective pathways that safeguard cells against oxidative stress-induced senescence. To ascertain whether Nrf2-mediated pathways shield against senescence induction in response to HFD consumption, we explored senescence burden in a novel model of aging: Nrf2-deficient (Nrf2+/-) mice, emulating the aging phenotype. Our initial findings unveiled significant Nrf2 dysfunction in Nrf2+/- mice, mirroring aging-related alterations. HFD led to substantial obesity, hyperglycemia, and impaired insulin sensitivity in both Nrf2+/- and Nrf2+/+ mice. In control mice, HFD primarily heightened senescence burden in white adipose tissue, evidenced by increased Cdkn2a senescence biomarker expression. In Nrf2+/- mice, HFD elicited a significant surge in senescence burden across the liver, white adipose tissue, and the brain. We postulate that HFD-induced augmentation of senescence burden may be a pivotal contributor to accelerated organismal aging and the premature onset of age-related diseases.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tamas Kiss
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- International Training Program in Geroscience, First Department of Pediatrics, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam Nyul Toth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
3
|
Ferreira G, Vieira P, Alves A, Nunes S, Preguiça I, Martins-Marques T, Ribeiro T, Girão H, Figueirinha A, Salgueiro L, Pintado M, Gomes P, Viana S, Reis F. Effect of Blueberry Supplementation on a Diet-Induced Rat Model of Prediabetes-Focus on Hepatic Lipid Deposition, Endoplasmic Stress Response and Autophagy. Nutrients 2024; 16:513. [PMID: 38398840 PMCID: PMC10892331 DOI: 10.3390/nu16040513] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Blueberries, red fruits enriched in polyphenols and fibers, are envisaged as a promising nutraceutical intervention in a plethora of metabolic diseases. Prediabetes, an intermediate state between normal glucose tolerance and type 2 diabetes, fuels the development of complications, including hepatic steatosis. In previous work, we have demonstrated that blueberry juice (BJ) supplementation benefits glycemic control and lipid profile, which was accompanied by an amelioration of hepatic mitochondrial bioenergetics. The purpose of this study is to clarify the impact of long-term BJ nutraceutical intervention on cellular mechanisms that govern hepatic lipid homeostasis, namely autophagy and endoplasmic reticulum (ER) stress, in a rat model of prediabetes. Two groups of male Wistar rats, 8-weeks old, were fed a prediabetes-inducing high-fat diet (HFD) and one group was fed a control diet (CD). From the timepoint where the prediabetic phenotype was achieved (week 16) until the end of the study (week 24), one of the HFD-fed groups was daily orally supplemented with 25 g/kg body weight (BW) of BJ (HFD + BJ). BW, caloric intake, glucose tolerance and insulin sensitivity were monitored throughout the study. The serum and hepatic lipid contents were quantified. Liver and interscapular brown and epidydimal white adipose tissue depots (iBAT and eWAT) were collected for histological analysis and to assess thermogenesis, ER stress and autophagy markers. The gut microbiota composition and the short-chain fatty acids (SCFAs) content were determined in colon fecal samples. BJ supplementation positively impacted glycemic control but was unable to prevent obesity and adiposity. BJ-treated animals presented a reduction in fecal SCFAs, increased markers of arrested iBAT thermogenesis and energy expenditure, together with an aggravation of HFD-induced lipotoxicity and hepatic steatosis, which were accompanied by the inhibition of autophagy and ER stress responses in the liver. In conclusion, despite the improvement of glucose tolerance, BJ supplementation promoted a major impact on lipid management mechanisms at liver and AT levels in prediabetic animals, which might affect disease course.
Collapse
Affiliation(s)
- Gonçalo Ferreira
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3045-043 Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3045-043 Coimbra, Portugal
| | - Inês Preguiça
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Tânia Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.R.); (M.P.)
| | - Henrique Girão
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- CERES, Chemical Engineering and Renewable Resources for Sustainability, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.R.); (M.P.)
| | - Pedro Gomes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sofia Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, 3045-043 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (G.F.); (P.V.); (A.A.); (S.N.); (I.P.); (T.M.-M.); (H.G.); (P.G.); (S.V.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004–504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-531 Coimbra, Portugal
| |
Collapse
|
4
|
Yang X, Ding W, Chen Z, Lai K, Liu Y. The role of autophagy in insulin resistance and glucolipid metabolism and potential use of autophagy modulating natural products in the treatment of type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3762. [PMID: 38287719 DOI: 10.1002/dmrr.3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/31/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a severe, long-term condition characterised by disruptions in glucolipid and energy metabolism. Autophagy, a fundamental cellular process, serves as a guardian of cellular health by recycling and renewing cellular components. To gain a comprehensive understanding of the vital role that autophagy plays in T2DM, we conducted an extensive search for high-quality publications across databases such as Web of Science, PubMed, Google Scholar, and SciFinder and used keywords like 'autophagy', 'insulin resistance', and 'type 2 diabetes mellitus', both individually and in combinations. A large body of evidence underscores the significance of activating autophagy in alleviating T2DM symptoms. An enhanced autophagic activity, either by activating the adenosine monophosphate-activated protein kinase and sirtuin-1 signalling pathways or inhibiting the mechanistic target of rapamycin complex 1 signalling pathway, can effectively improve insulin resistance and balance glucolipid metabolism in key tissues like the hypothalamus, skeletal muscle, liver, and adipose tissue. Furthermore, autophagy can increase β-cell mass and functionality in the pancreas. This review provides a narrative summary of autophagy regulation with an emphasis on the intricate connection between autophagy and T2DM symptoms. It also discusses the therapeutic potentials of natural products with autophagy activation properties for the treatment of T2DM conditions. Our findings suggest that autophagy activation represents an innovative approach of treating T2DM.
Collapse
Affiliation(s)
- Xiaoxue Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenwen Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyi Lai
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Dordevic AL, Williamson G. Systematic Review and Quantitative Data Synthesis of Peripheral Blood Mononuclear Cell Transcriptomics Reveals Consensus Gene Expression Changes in Response to a High Fat Meal. Mol Nutr Food Res 2023; 67:e2300512. [PMID: 37817369 DOI: 10.1002/mnfr.202300512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Indexed: 10/12/2023]
Abstract
SCOPE Metabolic flexibility is essential for a healthy response to a high fat meal, and is assessed by measuring postprandial changes in blood markers including peripheral blood mononuclear cells (PBMCs; lymphocytes and monocytes). However, there is no clear consensus on postprandial gene expression and protein changes in these cells. METHOD AND RESULTS The study systematically reviews the literature reporting transcriptional and proteomic changes in PBMCs after consumption of a high fat meal. After re-analysis of the raw data to ensure equivalence between studies, ≈85 genes are significantly changed (defined as in the same direction in ≥3 studies) with about half involved in four processes: inflammation/oxidative stress, GTP metabolism, apoptosis, and lipid localization/transport. For meals consisting predominantly of unsaturated fatty acids (UFA), notable additional processes are phosphorylation and glucocorticoid response. For saturated fatty acids (SFA), genes related to migration/angiogenesis and platelet aggregation are also changed. CONCLUSION Despite differences in study design, common gene changes are identified in PBMCs following a high fat meal. These common genes and processes will facilitate definition of the postprandial transcriptome as part of the overall postcibalome, linking all molecules and processes that change in the blood after a meal.
Collapse
Affiliation(s)
- Aimee L Dordevic
- Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, VIC3168, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics & Food, Monash University, Notting Hill, VIC3168, Australia
| |
Collapse
|
6
|
Liu J, Qiao B, Cai Y, Tan Z, Deng N. Diarrhea accompanies intestinal inflammation and intestinal mucosal microbiota dysbiosis during fatigue combined with a high-fat diet. BMC Microbiol 2023; 23:151. [PMID: 37231328 PMCID: PMC10210424 DOI: 10.1186/s12866-023-02896-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVE It was reported fatigue or a high-fat diet triggers diarrhea, and intestinal microbiota may play central roles in diarrhea. Therefore, we investigated the association between the intestinal mucosal microbiota and the intestinal mucosal barrier from fatigue combined with a high-fat diet. METHOD This study divided the Specific pathogen-free (SPF) male mice into the normal group (MCN) and the standing united lard group (MSLD). The MSLD group stood on water environment platform box for 4 h/day for 14 days, and 0.4 mL lard was gavaged from day 8, twice daily for 7 days. RESULT After 14 days, Mice in the MSLD group showed diarrhea symptoms. The pathological analysis showed structural damage to the small intestine in the MSLD group, with an increasing trend of interleukin-6 (IL-6) and IL-17, and inflammation accompanied by structural damage to the intestine. Fatigue combined with a high-fat diet considerably decreased Limosilactobacillus vaginalis and Limosilactobacillus reuteri, and among them, Limosilactobacillus reuteri positively associated with Muc2 and negatively with IL-6. CONCLUSION The interactions between Limosilactobacillus reuteri and intestinal inflammation might be involved in the process of intestinal mucosal barrier impairment in fatigue combined with high-fat diet-induced diarrhea.
Collapse
Affiliation(s)
- Jing Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bo Qiao
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ying Cai
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Na Deng
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
7
|
Yin Y, Shen H. Melatonin ameliorates acute lung injury caused by paraquat poisoning by promoting PINK1 and BNIP3 expression. Toxicology 2023; 490:153506. [PMID: 37028639 DOI: 10.1016/j.tox.2023.153506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Paraquat (PQ) poisoning can result in multiple organ dysfunction syndrome, mainly manifesting as acute lung injury and acute respiratory distress syndrome. No specific cure exists for PQ poisoning. However, by scavenging mitochondrial DNA (mtDNA), the damage-associated molecular pattern during PQ poisoning, mitophagy can ameliorate the downstream inflammatory pathways activated by mtDNA. Melatonin (MEL), however, can promote the expression of PINK1 and BNIP3, which are key proteins involved in mitophagy. In this study, we first explored whether MT could reduce PQ-induced acute lung injury by affecting mitophagy in animal models, and then, we studied the specific mechanism associated with this process through in vitro experiments. We also evaluated MEL intervention in the PQ group, while inhibiting the expression of PINK1 and BNIP3, to further determine whether the protective effects of MEL are associated with its effect on mitophagy. We found that when the expression of PINK1 and BNIP3 was inhibited, MEL intervention could not reduce mtDNA leakage and the release of inflammatory factors caused by PQ exposure, suggesting that the protective effect of MEL was blocked. These results suggest that by promoting the expression of PINK1 and BNIP3 and activating mitophagy, MEL can reduce mtDNA/TLR9-mediated acute lung injury during PQ poisoning. The results of this study could provide guidance for the clinical treatment of PQ poisoning to reduce associated mortality.
Collapse
|
8
|
Gao L, Yang T, Xue Z, Chan CKD. Hot Spots and Trends in the Relationship between Cancer and Obesity: A Systematic Review and Knowledge Graph Analysis. Life (Basel) 2023; 13:life13020337. [PMID: 36836694 PMCID: PMC9961916 DOI: 10.3390/life13020337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer is one of the most difficult medical problems in today's world. There are many factors that induce cancer in humans, and obesity has become an important factor in inducing cancer. This study systematically and quantitatively describes the development trend, current situation and research hotspot of the relationship between cancer and obesity by using document statistics and knowledge graph visualization technology. Through the visualization technology analysis of knowledge graph in this study, the research hotspot and knowledge base source of the relationship between cancer and obesity in the last 20 years have been ascertained. Obesity-related factors, such as immunity, insulin, adiponectin, adipocytokines, nonalcoholic fatty liver and inflammatory reaction, may affect the occurrence of obesity and increase the risk of cancer. Obesity-related cancers include respiratory cancer, colorectal cancer, hepatocellular cancer, prostate cancer, gastric cancer, etc. Our research provides direction and basis for future research in this field, as well as technical and knowledge basis support for experts and researchers in related medical fields.
Collapse
Affiliation(s)
- Le Gao
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529000, China
- Correspondence: (L.G.); (T.Y.)
| | - Tian Yang
- Institute for Guangdong Qiaoxiang Studies, Wuyi University, Jiangmen 529000, China
- Correspondence: (L.G.); (T.Y.)
| | - Ziru Xue
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529000, China
| | | |
Collapse
|
9
|
Kostoff RN, Briggs MB, Kanduc D, Dewanjee S, Kandimalla R, Shoenfeld Y, Porter AL, Tsatsakis A. Modifiable contributing factors to COVID-19: A comprehensive review. Food Chem Toxicol 2023; 171:113511. [PMID: 36450305 PMCID: PMC9701571 DOI: 10.1016/j.fct.2022.113511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. The current study identifies eighty immune system dysfunction-enabling toxic stressors and behaviors (hereafter called modifiable contributing factors (CFs)) that also link directly to COVID-19. Each CF is assigned to one of the five categories in the CF taxonomy shown in Section 3.3.: Lifestyle (e.g., diet, substance abuse); Iatrogenic (e.g., drugs, surgery); Biotoxins (e.g., micro-organisms, mycotoxins); Occupational/Environmental (e.g., heavy metals, pesticides); Psychosocial/Socioeconomic (e.g., chronic stress, lower education). The current study shows how each modifiable factor contributes to decreased immune system capability, increased inflammation and coagulation, and increased neural damage and neurodegeneration. It is unclear how real progress can be made in combatting COVID-19 and other similar diseases caused by viral variants without addressing and eliminating these modifiable CFs.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- Independent Consultant, Gainesville, VA, 20155, USA,Corresponding author. Independent Consultant, 13500 Tallyrand Way, Gainesville, VA, 20155, USA
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - Alan L. Porter
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|