1
|
Jiang J, Deng X, Xu C, Wu Y, Huang J. Naringenin inhibits ferroptosis to reduce radiation-induced lung injury: insights from network Pharmacology and molecular docking. PHARMACEUTICAL BIOLOGY 2025; 63:1-10. [PMID: 39969099 PMCID: PMC11841155 DOI: 10.1080/13880209.2025.2465312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
CONTEXT Naringenin is a natural flavanone with potent pharmacological properties. It has demonstrated therapeutic potential in treating various diseases and organ injuries, including radiation-induced lung injury (RILI). Ferroptosis is a newly type of cell death, and naringenin has been shown to attenuates ferroptosis. OBJECTIVE To evaluate the inhibitory effect and molecular mechanism of naringenin on ferroptosis during RILI process. MATERIALS & METHODS Firstly, BEAS-2B and HUVECs cells were pre-incubated with naringenin for 1 h prior to 8 Gy of X-ray irradiation to evaluate oxidative stress, inflammation, and the mRNA levels of ferroptosis-related genes. Next, target genes of naringenin, RILI, and ferroptosis were identified using the TCMSP, SwissTargetPrediction, and GeneCards databases. The target network was constructed with Cytoscape and STRING. Finally, the core target genes were identified through in vitro experiments by qRT-PCR, western blot and immunofluorescence staining. RESULTS Naringenin effectively reduced radiation-induced increasement of oxidative stress, inflammation, and ferroptosis markers in both cell lines. Network pharmacology identified 14 target genes, with prostaglandin endoperoxide synthase (PTGS2) and Valosin-containing protein (VCP) mRNA levels being prominent, which were crucial for ferroptosis regulation. Molecular docking revealed strong binding interactions between naringenin and the two target proteins. Subsequently, experimental validation confirmed that naringenin reduced the elevated levels of PTGS2 and VCP induced by radiation. DISCUSSION & CONCLUSION Naringenin alleviates radiation-induced lung damage by inhibiting ferroptosis, with PTGS2 and VCP emerging as potential therapeutic targets.
Collapse
Affiliation(s)
- Junlin Jiang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xianhui Deng
- Department of Neonatology, Jiangyin People’s Hospital of Nantong University, Wuxi, China
| | - Chengkai Xu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Mishra V, Agrawal S, Malik D, Mishra D, Bhavya B, Pathak E, Mishra R. Targeting Matrix Metalloproteinase-1, Matrix Metalloproteinase-7, and Serine Protease Inhibitor E1: Implications in preserving lung vascular endothelial integrity and immune modulation in COVID-19. Int J Biol Macromol 2025; 306:141602. [PMID: 40024412 DOI: 10.1016/j.ijbiomac.2025.141602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND SARS-CoV-2 disrupts lung vascular endothelial integrity, contributing to severe COVID-19 complications. However, the molecular mechanisms driving endothelial dysfunction remain underexplored, and targeted therapeutic strategies are lacking. OBJECTIVE This study investigates Naringenin-7-O-glucoside (N7G) as a multi-target therapeutic candidate for modulating vascular integrity and immune response by inhibiting MMP1, MMP7, and SERPINE1-key regulators of extracellular matrix (ECM) remodeling and inflammation. METHODS & RESULTS RNA-seq analysis of COVID-19 lung tissues identified 17 upregulated N7G targets, including MMP1, MMP7, and SERPINE1, with the latter exhibiting the highest expression. PPI network analysis linked these targets to ECM degradation, IL-17, HIF-1, and AGE-RAGE signaling pathways, and endothelial dysfunction. Disease enrichment associated these genes with idiopathic pulmonary fibrosis and asthma. Molecular docking, 200 ns MD simulations (triplicate), and MMGBSA calculations confirmed N7G's stable binding affinity to MMP1, MMP7, and SERPINE1. Immune profiling revealed increased neutrophils and activated CD4+ T cells, alongside reduced mast cells, NK cells, and naïve B cells, indicating immune dysregulation. Correlation analysis linked MMP1, MMP7, and SERPINE1 to distinct immune cell populations, supporting N7G's immunomodulatory role. CONCLUSION These findings suggest that N7G exhibits multi-target therapeutic potential by modulating vascular integrity, ECM remodeling, and immune dysregulation, positioning it as a promising candidate for mitigating COVID-19-associated endothelial dysfunction.
Collapse
Affiliation(s)
- Vibha Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Shivangi Agrawal
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Divya Malik
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Divya Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Bhavya Bhavya
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India
| | - Ekta Pathak
- Institute of Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Rajeev Mishra
- Bioinformatics Department, MMV, Institute of Science, Banaras Hindu University, India.
| |
Collapse
|
3
|
Jia Y, Zhou X, Liu Y, Liu X, Ren F, Liu H. Novel Insights Into Naringenin: A Multifaceted Exploration of Production, Synthesis, Health Effects, Nanodelivery Systems, and Molecular Simulation. Mol Nutr Food Res 2025:e70066. [PMID: 40223444 DOI: 10.1002/mnfr.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Naringenin, a flavonoid widely present in citrus fruits, has garnered considerable attention due to its diverse biological activities and health-promoting benefits. As research on naringenin advances, the application scope of naringenin has significantly expanded. This paper provides a systematic overview of the production and synthesis methods of naringenin, focusing especially on the application of green extraction techniques and the strategies for constructing microbial metabolic engineering. Naringenin not only achieves its diverse biological activities including antioxidant, antiinflammatory, and glucolipid metabolism regulation through multiple mechanisms but also modulates the balance of gut microbiota, thereby mediating synergistic health effects via the host-microbial metabolic axis. Given the low oral bioavailability of naringenin, various nanodelivery systems have been developed to improve its bioavailability. Meanwhile, molecular simulation techniques elucidate the binding conformation characteristics with receptors at the molecular level, providing novel insights into its mechanisms of action. In conclusion, this review seeks to offer a theoretical basis and future directions for further research and application of naringenin.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xinjing Zhou
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | | | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Hongzhi Liu
- Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Zhou Y, Hu T, Zeng H, Lin L, Xie H, Lin R, Huang M. Naringenin Inhibits Ferroptosis in Renal Tubular Epithelial Cells of Diabetic Nephropathy Through SIRT1/FOXO3a Signaling Pathway. Drug Dev Res 2025; 86:e70044. [PMID: 39799560 DOI: 10.1002/ddr.70044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models. HK-2 cells were cultured in HG medium to establish the DN cell model. HK-2 cells were treated with different doses of naringenin to explore the effect of naringenin. The CCK-8 results show that 50 μM ~ 200 μM of naringenin do not affect the viability of HK-2 cells and the viability of HG-induced HK-2 cells increase in a dose-dependent manner with naringenin treatment. Additionally, naringenin increased the levels of IL-10 while decreasing the levels of IL-1β, TNF-α, IL-6, and ROS in HG-induced HK-2 cells. Naringenin also reduced the levels of Fe2+, oxidized lipid ROS, MDA, 4-HNE, ACSL4, and TFR1 in HG-induced HK-2 cells, while increasing the levels of non-oxidized lipid ROS, SOD, GSH-Px, SLC7A11, and GPX4. Meanwhile, naringenin restored the levels of MMP, ATP and MPTP opening, reduced OCR in HG-induced HK-2 cells. Furthermore, naringenin reversed the decreased expression of SIRT1, p-FOXO3a, Nrf2 and Nuclear Nrf2 caused by HG. SIRT1 inhibitor EX527 and Nrf2 inhibitor ML385 attenuated the effects of naringenin on ferroptosis in HG-induced HK-2 cells, with EX527 demonstrating a stronger reversal effect on ferroptosis than ML385. These results suggest that naringenin inhibits ferroptosis in HG-induced HK-2 cells mainly through SIRT1/FOXO3a signaling pathway. This finding further enhanced our understanding of the mechanism behind naringenin's protective effect on DN.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Tianchi Hu
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Huarong Zeng
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Lin Lin
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Huan Xie
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Rong Lin
- Department of Endocrinology, Xiamen Hospital, Beijing University of Chinese Medicine/Xiamen TCM Hospital Affiliated to Fujian University of Traditional Chinese Medicine/Xiamen Hospital of Traditional Chinese Medicine, Xiamen City, People's Republic of China
| | - Mengya Huang
- Graduate School, Fujian University of Traditional Chinese Medicine, Fuzhou City, People's Republic of China
| |
Collapse
|
6
|
Kaźmierczak T, Cyboran-Mikołajczyk S, Trochanowska-Pauk N, Walski T, Nowicka P, Bonarska-Kujawa D. Insights on the Mechanisms of the Protective Action of Naringenin, Naringin and Naringin Dihydrochalcone on Blood Cells in Terms of Their Potential Anti-Atherosclerotic Activity. Molecules 2025; 30:547. [PMID: 39942651 PMCID: PMC11820682 DOI: 10.3390/molecules30030547] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Atherosclerosis is caused by injury to the blood arteries and progressive oxidative stress. Blood cells play an important role in its development; thus, their protection is important. Naringenin (N) is documented to possess a protective action against atherosclerosis, and we hypothesize that its derivatives, naringin (Nr) and naringin dihydrochalcone (Nd), with slightly different structures, possess similar or better activity. Therefore, this research aimed to find the mechanism of protective action of N, Nr and Nd in relation to erythrocytes, peripheral blood mononuclear cells (PBMCs) and platelets in terms of their potential anti-atherosclerotic effect. Moreover, their physicochemical properties and the interaction of flavonoids with liposomes were studied. All flavonoids protected erythrocytes from AAPH- and H2O2-induced oxidation to varying degrees. None of them had a destructive effect on erythrocyte membrane, and they did not impact the metabolic activity of PBMC and platelets. Nr and Nd inhibited collagen-induced platelet aggregation better in tested concentrations than N. Studied compounds did not induce liposome aggregation, but N and Nd changed their dipole potential. Obtained results show that Nd possesses slightly better activity than N and may have a better potential health effect on blood cells, which is very important in the design of anti-atherosclerotic therapeutics.
Collapse
Affiliation(s)
- Teresa Kaźmierczak
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25 St., 50-375 Wrocław, Poland
| | - Sylwia Cyboran-Mikołajczyk
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25 St., 50-375 Wrocław, Poland
| | - Natalia Trochanowska-Pauk
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25 St., 50-375 Wrocław, Poland
| | - Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 27 Wyb. Wyspiańskiego St., 50-370 Wrocław, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Chełmońskiego St. 37, 51-630 Wrocław, Poland
| | - Dorota Bonarska-Kujawa
- Department of Physics and Biophysics, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Norwida 25 St., 50-375 Wrocław, Poland
| |
Collapse
|
7
|
Ma Y, Wang L, He J, Ma X, Wang J, Yan R, Ma W, Ma H, Liu Y, Sun H, Zhang X, Jia S, Wang H. Sodium Selenite Ameliorates Silver Nanoparticles Induced Vascular Endothelial Cytotoxic Injury by Antioxidative Properties and Suppressing Inflammation Through Activating the Nrf2 Signaling Pathway. Biol Trace Elem Res 2024; 202:4567-4585. [PMID: 38150116 PMCID: PMC11339151 DOI: 10.1007/s12011-023-04014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Silver nanoparticles (AgNP) are the dominant nanomaterials in commercial products and the medical field, but the widespread occurrence of AgNP has become a global threat to human health. Growing studies indicate that AgNP exposure can induce vascular endothelial toxicity by excessive oxidative stress and inflammation, which is closely related to cardiovascular disease (CVD), but the potential intrinsic mechanism remains poorly elucidated. Thus, it has been crucial to control the toxicological effects of AgNP in order to improve their safety and increase the outcome of their applications.Multiple researches have demonstrated that sodium selenite (Se) possesses the capability to counteract the toxicity of AgNP, but the functional role of Se in AgNP-induced CVD is largely unexplored. The aim of this study was to explore the potential protective effect of Se on AgNP-induced vascular endothelial lesion and elucidate the underlying mechanisms. An in vivo model of toxicity in animals was established by the instillation of 200 µL of AgNP into the trachea of rats both with (0.2 mg/kg/day) and without Se treated. In vitro experiments, human umbilical vein endothelial cells (HUVECs) were incubated with AgNP (0.3 µg/mL ) and Se for a duration of 24 h. Utilizing transmission electron microscopy, we observed that the internalization of AgNP-induced endothelial cells was desquamated from the internal elastic lamina, the endoplasmic reticulum was dilated, and the medullary vesicle formed. Se treatment reduced the levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), inhibited the release of pro-inflammatory cytokines (specifically tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6), improved endothelial cell permeability, integrity, and dysfunction, and prevented damage to the aortic endothelium caused by AgNP. Importantly, we found that Se showed the capacity against AgNP with biological functions in guiding the intracellular reactive oxygen species (ROS) scavenging and meanwhile exhibiting anti-inflammation effects. Se supplementation decreased the intracellular ROS release and suppressed NOD-like receptor protein 3 (NLRP3) and nuclear factor kappa-B (NF-κB) mediated inflammation within AgNP-intoxicated rats and HUVECs. The anti-oxidant stress and anti-inflammatory effects of Se were at least partly dependent on nuclear factor erythroid 2-related factor 2 (Nrf2). Overall, our results indicated that the protectiveness of Se against AgNP-induced vascular endothelial toxicity injury was at least attributed to the inhibition of oxidative ROS and pro-inflammatory NF-κB/NLRP3 inflammasome by activating the Nrf2 and antioxidant enzyme (HO-1) signal pathway.
Collapse
Affiliation(s)
- Yunyun Ma
- General Hospital of Ningxia Medical University (the First Clinical Medical College of Ningxia Medical University), Yinchuan, 750004, Ningxia, China
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jing He
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xueping Ma
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jingjing Wang
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ru Yan
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wanrui Ma
- Department of General Medicine, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Huiyan Ma
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yajuan Liu
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hongqian Sun
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Shaobin Jia
- Heart Centre &, Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
8
|
Karaboduk H, Adiguzel C, Apaydin FG, Uzunhisarcikli M, Kalender S, Kalender Y. The ameliorative effect of Naringenin on fenamiphos induced hepatotoxicity and nephrotoxicity in a rat model: Oxidative stress, inflammatory markers, biochemical, histopathological, immunohistochemical and electron microscopy study. Food Chem Toxicol 2024; 192:114911. [PMID: 39134134 DOI: 10.1016/j.fct.2024.114911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Fenamiphos (FNP) is an organophospate pesticide that causes many potential toxicities in non-target organisms. Naringenin (NAR) has protective properties against oxidative stress. In this study, FNP (0.76 mg/kg bw) toxicity and the effect of NAR (50 mg/kg bw) on the liver and kidney of rats were investigated via biochemical, oxidative stress, immunohistochemical, cytopathological and histopathologically. As a result of biochemical studies, FNP caused oxidative stress in tissues with a change in total antioxidant/oxidant status. After treatment with FNP, hepatic and renal levels of AChE were significantly reduced while 8-OHdG and IL-17 levels, caspase-3 and TNF-α immunoreactivity increased compared to the control group. It also changed in serum biochemical markers such as ALT, AST, BUN, creatinine. Exposure to FNP significantly induced cytopathological, histopathological and immunohistochemical changes through tissue damage. NAR treatment restored biochemical parameters, renal/hepatic AChE, ultrastructural, histopathological and immunohistochemical changes modulated and blocked the increasing effect of FNP on tissues caspase-3 and TNF-α expressions, 8-OHdG and IL-17 levels. In electron microscopy studies, swelling was observed in the mitochondria of the cells in both tissues of the FNP-treated rats, while less ultrastructural changes in the FNP plus NAR-treated rats.
Collapse
Affiliation(s)
- Hatice Karaboduk
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey.
| | - Caglar Adiguzel
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | | | | | - Suna Kalender
- Department of Science Education, Gazi Education Faculty, Gazi University, Ankara, Turkey
| | - Yusuf Kalender
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Song Z, Han C, Luo G, Jia G, Wang X, Zhang B. Yinqin Qingfei granules alleviate Mycoplasma pneumoniae pneumonia via inhibiting NLRP3 inflammasome-mediated macrophage pyroptosis. Front Pharmacol 2024; 15:1437475. [PMID: 39257401 PMCID: PMC11383775 DOI: 10.3389/fphar.2024.1437475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mycoplasma pneumoniae pneumonia (MPP) is a prevalent respiratory infectious disease in children. Given the increasing resistance of M. pneumoniae (MP) to macrolide antibiotics, the identification of new therapeutic agents is critical. Yinqin Qingfei granules (YQQFG), a Chinese patent medicine formulated specifically for pediatric MPP, lacks a clear explanation of its mechanism. METHODS The primary components of YQQFG were identified using LC-MS/MS. In vitro, RAW264.7 cells infected with MP underwent morphological examination via scanning electron microscopy. Drug-containing serum was prepared, and its intervention concentration was determined using the CCK-8 assay. The active components of YQQFG were molecularly docked with NLRP3 protein using Autodock Vina software. A RAW264.7 cell line overexpressing NLRP3 was created using lentivirus to pinpoint the target of YQQFG. In vivo, MPP model mice were established via nasal instillation of MP. Lung damage was assessed by lung index and H&E staining. Pyroptosis-associated protein levels in cells and lung tissue were measured by western blot, while interleukin (IL)-1β and IL-18 levels in cell supernatants and mouse serum were quantified using ELISA. Immunofluorescence double staining of lung tissue sections was conducted to assess the correlation between NLRP3 protein expression and macrophages. The expression of the community-acquired respiratory distress syndrome toxin (CARDS TX) was evaluated by qPCR. RESULTS 25 effective components with favorable oral bioavailability were identified in YQQFG. Both in vitro and in vivo studies demonstrated that YQQFG substantially reduced the expression of the NLRP3/Caspase-1/GSDMD pathway, decreasing the release of IL-1β and IL-18, and inhibited MP exotoxin. Molecular docking indicated strong affinity between most YQQFG components and NLRP3 protein. Lentivirus transfection and immunofluorescence double staining confirmed that YQQFG significantly suppressed NLRP3 expression in macrophages, outperforming azithromycin (AZM). The combination of YQQFG and AZM yielded the optimal therapeutic effect for MPP. CONCLUSION YQQFG mitigates inflammatory responses by suppressing NLRP3 inflammasome-mediated macrophage pyroptosis, thereby ameliorating MP-induced acute lung injury. YQQFG serves as an effective adjunct and alternative medication for pediatric MPP treatment.
Collapse
Affiliation(s)
- Zhe Song
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengen Han
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangzhi Luo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangyuan Jia
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao Wang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baoqing Zhang
- Department of Pediatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Yuan B, Mao J, Wang J, Luo S, Luo B. Naringenin mitigates cadmium-induced cell death, oxidative stress, mitochondrial dysfunction, and inflammation in KGN cells by regulating the expression of sirtuin-1. Drug Chem Toxicol 2024; 47:445-456. [PMID: 38647073 DOI: 10.1080/01480545.2023.2288798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/05/2023] [Indexed: 04/25/2024]
Abstract
The objective of this study was to examine the potential protective role of naringenin against the harmful effects induced by cadmium in KGN cell line. Cell viability was evaluated by cell counting kit-8 assay. Caspase-3/-9 activities were determined by caspase-3/-9 activity assay kits, respectively. Intracellular reactive oxygen species (ROS) level was detected by ROS-Glo™ H2O2 Assay, antioxidant capacity was determined by a total antioxidant capacity assay kit. Mitochondrial membrane potential (MMP), ATP level, and ATP synthase activity were determined by JC-1, ATP assay kit, and ATP synthase activity assay kit, respectively. The mRNA expression was determined by qRT-PCR. Cadmium reduced cell viability and increased caspase-3/-9 activities in a concentration-dependent manner. Naringenin improved cell viability and reduced caspase-3/-9 activities in cadmium-stimulated KGN cells in a concentration-dependent manner. Cadmium diminished the antioxidant capacity, increased ROS production, and induced mitochondrial dysfunction in KGN cells. These effects were ameliorated by naringenin treatment in a concentration-dependent manner. Furthermore, naringenin reduced the levels of pro-inflammatory cytokines in KGN cells exposed to cadmium. SIRT1 knockdown downregulated its expression in KGN cells and compromised the protective effects of naringenin on cell viability and caspase-3/-9 activities in cadmium-stimulated KGN cells. Naringenin prevented the reduction of MMP, ATP levels, and ATP synthase activity in cadmium-stimulated KGN cells in a concentration-dependent manner. However, these protective effects were significantly reversed by SIRT1 knockdown. In conclusion, this study suggests that naringenin protects against cadmium-induced damage by regulating oxidative stress, mitochondrial function, and inflammation in KGN cells, with SIRT1 playing a potential mediating role.
Collapse
Affiliation(s)
- Ben Yuan
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| | - Junbiao Mao
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| | - Junling Wang
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Shuhong Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| | - Bingbing Luo
- Department of Reproductive Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
- Huangshi Key Laboratory of Assisted Reproduction and Reproductive Medicine, Huangshi, China
| |
Collapse
|
11
|
Chen H, Chen J, Feng L, Shao H, Zhou Y, Shan J, Lin L, Ye J, Wang S. Integrated network pharmacology, molecular docking, and lipidomics to reveal the regulatory effect of Qingxuan Zhike granules on lipid metabolism in lipopolysaccharide-induced acute lung injury. Biomed Chromatogr 2024; 38:e5853. [PMID: 38486466 DOI: 10.1002/bmc.5853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/21/2024]
Abstract
Qingxuan Zhike granules (QXZKG), a traditional Chinese patent medication, has shown therapeutic potential against acute lung injury (ALI). However, the precise mechanism underlying its lung-protective effects requires further investigation. In this study, integrated network pharmacology, molecular docking, and lipidomics were used to elucidate QXZKG's regulatory effect on lipid metabolism in lipopolysaccharide-induced ALI. Animal experiments were conducted to substantiate the efficacy of QXZKG in reducing pro-inflammatory cytokines and mitigating pulmonary pathology. Network pharmacology analysis identified 145 active compounds that directly targeted 119 primary targets of QXZKG against ALI. Gene Ontology function analysis emphasized the roles of lipid metabolism and mitogen-activated protein kinase (MAPK) cascade as crucial biological processes. The MAPK1 protein exhibited promising affinities for naringenin, luteolin, and kaempferol. Lipidomic analysis revealed that 12 lipids showed significant restoration following QXZKG treatment (p < 0.05, FC >1.2 or <0.83). Specifically, DG 38:4, DG 40:7, PC O-40:8, TG 18:1_18:3_22:6, PI 18:2_20:4, FA 16:3, FA 20:3, FA 20:4, FA 22:5, and FA 24:5 were downregulated, while Cer 18:0;2O/24:0 and SM 36:1;2O/34:5 were upregulated in the QXZKG versus model groups. This study enhances our understanding of the active compounds and targets of QXZKG, as well as the potential of lipid metabolism in the treatment of ALI.
Collapse
Affiliation(s)
- Hui Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiabin Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Feng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Shao
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Yang Zhou
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lili Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ye
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Pediatrics Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Zhang L, Luo YL, Xiang Y, Bai XY, Qiang RR, Zhang X, Yang YL, Liu XL. Ferroptosis inhibitors: past, present and future. Front Pharmacol 2024; 15:1407335. [PMID: 38846099 PMCID: PMC11153831 DOI: 10.3389/fphar.2024.1407335] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis is a non-apoptotic mode of programmed cell death characterized by iron dependence and lipid peroxidation. Since the ferroptosis was proposed, researchers have revealed the mechanisms of its formation and continue to explore effective inhibitors of ferroptosis in disease. Recent studies have shown a correlation between ferroptosis and the pathological mechanisms of neurodegenerative diseases, as well as diseases involving tissue or organ damage. Acting on ferroptosis-related targets may provide new strategies for the treatment of ferroptosis-mediated diseases. This article specifically describes the metabolic pathways of ferroptosis and summarizes the reported mechanisms of action of natural and synthetic small molecule inhibitors of ferroptosis and their efficacy in disease. The paper also describes ferroptosis treatments such as gene therapy, cell therapy, and nanotechnology, and summarises the challenges encountered in the clinical translation of ferroptosis inhibitors. Finally, the relationship between ferroptosis and other modes of cell death is discussed, hopefully paving the way for future drug design and discovery.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yi Lin Luo
- School of Medicine, Yan’an University, Yan’an, China
| | - Yang Xiang
- College of Physical Education, Yan’an University, Yan’an, China
| | - Xin Yue Bai
- School of Medicine, Yan’an University, Yan’an, China
| | | | - Xin Zhang
- School of Medicine, Yan’an University, Yan’an, China
| | - Yan Ling Yang
- School of Medicine, Yan’an University, Yan’an, China
| | - Xiao Long Liu
- School of Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
13
|
Yin F, Zhou Y, Xie D, Liang Y, Luo X. Evaluating the adverse effects and mechanisms of nanomaterial exposure on longevity of C. elegans: A literature meta-analysis and bioinformatics analysis of multi-transcriptome data. ENVIRONMENTAL RESEARCH 2024; 247:118106. [PMID: 38224941 DOI: 10.1016/j.envres.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
14
|
Zhang J, Fan W, Wu H, Yao Y, Jin L, Chen R, Xu Z, Su W, Wang Y, Li P. Naringenin attenuated airway cilia structural and functional injury induced by cigarette smoke extract via IL-17 and cAMP pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155053. [PMID: 38359483 DOI: 10.1016/j.phymed.2023.155053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Cigarette smoke impairs mucociliary clearance via mechanisms such as inflammatory response and oxidative injury, which in turn induces various respiratory diseases. Naringenin, a naturally occurring flavonoid in grapes and grapefruit, has exhibited pharmacological properties such as anti-inflammatory, expectorant, and antioxidant properties. However, it is still unclear whether naringenin protects airway cilia from injury caused by cigarette smoke. PURPOSE This study aimed to investigate the effect of naringenin on cigarette smoke extract (CSE)-induced structural and functional abnormalities in airway cilia and highlight the potential regulatory mechanism. METHODS Initially, network pharmacology was used to predict the mechanism of action of naringenin in ciliary disease. Next, HE staining, immunofluorescence, TEM, qRT-PCR, western blot, and ELISA were performed to assess the effects of naringenin on airway cilia in tracheal rings and air-liquid interface (ALI) cultures of Sprague Dawley rats after co-exposure to CSE (10% or 20%) and naringenin (0, 25, 50, 100 μM) for 24 h. Finally, transcriptomics and molecular biotechnology methods were conducted to elucidate the mechanism by which naringenin protected cilia from CSE-induced damage in ALI cultures. RESULTS The targets of ciliary diseases regulated by naringenin were significantly enriched in inflammation and oxidative stress pathways. Also, the CSE decreased the number of cilia in the tracheal rings and ALI cultures and reduced the ciliary beat frequency (CBF). However, naringenin prevented CSE-induced cilia damage via mechanisms such as the downregulation of cilia-related genes (e.g., RFX3, DNAI1, DNAH5, IFT88) and ciliary marker proteins such as DNAI2, FOXJ1, and β-tubulin IV, the upregulation of inflammatory factors (e.g., IL-6, IL-8, IL-13), ROS and MDA. IL-17 signaling pathway might be involved in the protective effect of naringenin on airway cilia. Additionally, the cAMP signaling pathway might also be related to the enhancement of CBF by naringenin. CONCLUSION In this study, we first found that naringenin reduces CSE-induced structural disruption of airway cilia in part via modulation of the IL-17 signaling pathway. Furthermore, we also found that naringenin enhances CBF by activating the cAMP signaling pathway. This is the first report to reveal the beneficial effects of naringenin on airway cilia and the potential underlying mechanisms.
Collapse
Affiliation(s)
- Jiashuo Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiyang Fan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue Yao
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linlin Jin
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruiqi Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziyan Xu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Chen T, Ding L, Zhao M, Song S, Hou J, Li X, Li M, Yin K, Li X, Wang Z. Recent advances in the potential effects of natural products from traditional Chinese medicine against respiratory diseases targeting ferroptosis. Chin Med 2024; 19:49. [PMID: 38519984 PMCID: PMC10958864 DOI: 10.1186/s13020-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.
Collapse
Affiliation(s)
- Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
16
|
Chen YL, Xiong LA, Ma LF, Fang L, Zhan ZJ. Natural product-derived ferroptosis mediators. PHYTOCHEMISTRY 2024; 219:114002. [PMID: 38286199 DOI: 10.1016/j.phytochem.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
It has been 11 years since ferroptosis, a new mode of programmed cell death, was first proposed. Natural products are an important source of drug discovery. In the past five years, natural product-derived ferroptosis regulators have been discovered in an endless stream. Herein, 178 natural products discovered so far to trigger or resist ferroptosis are classified into 6 structural classes based on skeleton type, and the mechanisms of action that have been reported are elaborated upon. If pharmacodynamic data are sufficient, the structure and bioactivity relationship is also presented. This review will provide medicinal chemists with some effective ferroptosis regulators, which will promote the research of natural product-based treatment of ferroptosis-related diseases in the future.
Collapse
Affiliation(s)
- Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lin-An Xiong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, PR China.
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
17
|
Fan W, Xu Z, Zhang J, Guan M, Zheng Y, Wang Y, Wu H, Su W, Li P. Naringenin regulates cigarette smoke extract-induced extracellular vesicles from alveolar macrophage to attenuate the mouse lung epithelial ferroptosis through activating EV miR-23a-3p/ACSL4 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155256. [PMID: 38181527 DOI: 10.1016/j.phymed.2023.155256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alveolar macrophages are one of the momentous regulators in pulmonary inflammatory responses, which can secrete extracellular vesicles (EVs) packing miRNAs. Ferroptosis, an iron-dependent cell death, is associated with cigarette smoke-induced lung injury, and EVs have been reported to regulate ferroptosis by transporting intracellular iron. However, the regulatory mechanism of alveolar macrophage-derived EVs has not been clearly illuminated in smoking-related pulmonary ferroptosis. Despite the known anti-ferroptosis effects of naringenin in lung injury, whether naringenin controls EVs-mediated ferroptosis has not yet been explored. PURPOSE We explore the effects of EVs from cigarette smoke-stimulated alveolar macrophages in lung epithelial ferroptosis, and elucidate the EV miRNA-mediated pharmacological mechanism of naringenin. STUDY DESIGN AND METHODS Differential and ultracentrifugation were conducted to extract EVs from different alveolar macrophages treatment groups in vitro. Both intratracheal instilled mice and treated epithelial cells were used to investigate the roles of EVs from alveolar macrophages involved in ferroptosis. Small RNA sequencing analysis was performed to distinguish altered miRNAs in EVs. The ferroptotic effects of EV miRNAs were examined by applying dual-Luciferase reporter assay and miRNA inhibitor transfection experiment. RESULTS Here, we firstly reported that EVs from cigarette smoke extract-induced alveolar macrophages (CSE-EVs) provoked pulmonary epithelial ferroptosis. The ferroptosis inhibitor ferrostatin-1 treatment reversed these changes in vitro. Moreover, EVs from naringenin and CSE co-treated alveolar macrophages (CSE+Naringenin-EVs) markedly attenuated the lung epithelial ferroptosis compared with CSE-EVs. Notably, we identified miR-23a-3p as the most dramatically changed miRNA among Normal-EVs, CSE-EVs, and CSE+Naringenin-EVs. Further experimental investigation showed that ACSL4, a pro-ferroptotic gene leading to lipid peroxidation, was negatively regulated by miR-23a-3p. The inhibition of miR-23a-3p diminished the efficacy of CSE+Naringenin-EVs. CONCLUSION Our findings firstly provided evidence that naringenin elevated the EV miR-23a-3p level from CSE-induced alveolar macrophages, thereby inhibiting the mouse lung epithelial ferroptosis via targeting ACSL4, and further complemented the mechanism of cigarette-induced lung injury and the protection of naringenin in a paracrine manner. The administration of miR-23a-3p-enriched EVs has the potential to ameliorate pulmonary ferroptosis.
Collapse
Affiliation(s)
- Weiyang Fan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziyan Xu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiashuo Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minyi Guan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuying Zheng
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
18
|
K Kasat Y, Potale Y, Kumar A, Jamwal V. Exploring the Pharmacological Potential of Naringenin and its Nanoparticles: A Review on Bioavailability and Solubility Enhancement Strategies. BIO WEB OF CONFERENCES 2024; 86:01030. [DOI: 10.1051/bioconf/20248601030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Citrus fruits are rich in differentflavonoid compounds. One of them is naringenin, which exhibits a huge variety of pharmacological benefits such as anti-inflammatory, antioxidant, anticancer, and cardioprotective properties. Butpoor bioavailability and solubility are the main reason for its limited clinical application. To overcome these limitations, several strategies, including complexation, formulation, and nanotechnology-based approaches, have been developed to boost its solubility and bioavailability.Among these approaches, nanoparticle-based delivery systems have shown remarkable potential in improving the therapeutic efficacy of naringenin. This review is based on the recent advances in the development of naringenin nanoparticles and their incorporation into drug delivery systems. We discuss over the numerous methods used to make naringenin more soluble and bioavailable, such as complexing it with cyclodextrins, combining it with lipids and surfactants, and adding it to polymeric nanoparticles. We also highlight the In-vivo and In-vitro studies conducted to check the efficacy of naringenin nanoparticles in various disease models. Finally, we conclude that the development of naringenin nanoparticles and their incorporation into drug delivery systems can be a promising strategy for the efficient delivery of naringenin, ultimately leading to improved health outcomes.
Collapse
|
19
|
Liu X, Zhao T, Shi Z, Hu C, Li Q, Sun C. Synergism Antiproliferative Effects of Apigenin and Naringenin in NSCLC Cells. Molecules 2023; 28:4947. [PMID: 37446609 DOI: 10.3390/molecules28134947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading cancer killers. Apigenin (Api) and Naringenin (Nar) are natural bioactive substances obtained in various vegetables and fruits, possessing anti-tumor effects across multiple studies. This study investigated the latent synergistic antiproliferative functions of Api and Nar in A549 and H1299 NSCLC cells. Cell viability was determined after incubating with different concentrations of Api, Nar, or the combination of Api and Nar (CoAN) for 24 h. Analysis using the CompuSyn software revealed that the CI value of each combined dose was < 1, depicting that the two drugs had a synergistic inhibitory effect. The CoAN (A:N = 3:2) group with the lowest CI value was selected for subsequent experiments. The IC50 of CoAN (A:N = 3:2) was used to determine the cell cycle, the expression ratio of Bax to Bcl2, Caspase 3 activity, and mitochondrial function to assess oxidative stress and apoptosis. The results established that CoAN treatment caused significant cytotoxicity with cell cycle arrest at G2/M phases. Furthermore, CoAN significantly enhanced mitochondria dysfunction, elevated oxidative stress, and activated the apoptotic pathway versus Api or Nar alone groups. Thus, the CoAN chemotherapy approach is promising and deserves further research.
Collapse
Affiliation(s)
- Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Zheng G, Zhang J, Zhang X, Zhang Z, Liu S, Zhang S, Zhang C. Implications of ferroptosis in silver nanoparticle-induced cytotoxicity of macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115057. [PMID: 37229872 DOI: 10.1016/j.ecoenv.2023.115057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Metal nanoparticles (NPs) are widely used in daily life and commercial activities owing to their unique physicochemical properties. Consequently, there is an increasing risk of daily and occupational exposure to metal NPs, which raises concerns regarding their health hazards. Programmed cell deaths (PCDs) have been clarified to be involved in metal NP-induced cytotoxicity, including apoptosis, autophagy, and pyroptosis. However, whether and how ferroptosis, a newly recognized PCD, contributes to metal NP-induced cell death remain unclear. In this study, we investigated the ferroptotic effects of two representative metal NPs, silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs), on macrophages in vitro. Our results revealed that AgNPs, rather than AuNPs, induced non-apoptotic PCD, accompanied by lipid peroxidation and iron homeostasis disorders, which are two hallmarks of ferroptosis, in macrophages. Treatment with a ferroptosis inhibitor (ferrostatin-1) and iron chelator (deferoxamine) reversed AgNP-induced PCD, corroborating the induction of ferroptosis upon exposure to AgNPs. Moreover, our results revealed that smaller AgNPs elicited greater ferroptotic effects on macrophages than larger ones. Importantly, ferroptosis in AgNP-treated macrophages was mainly triggered by AgNPs per se rather than by Ag ions. Overall, our study highlights the ferroptotic effects elicited by AgNPs in macrophages, which will promote the understanding of their cytotoxic effects and facilitate the safer design of metal nanoproducts.
Collapse
Affiliation(s)
- Guangzhe Zheng
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Xuan Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Zhihong Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Sijin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Changwen Zhang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
21
|
Zhou Z, Li J, Zhang X. Natural Flavonoids and Ferroptosis: Potential Therapeutic Opportunities for Human Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027486 DOI: 10.1021/acs.jafc.2c08128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Flavonoids are a class of bioactive phytochemicals containing a core 2-phenylchromone skeleton and are widely found in fruits, vegetables, and herbs. Such natural compounds have gained significant attention due to their various health benefits. Ferroptosis is a recently discovered unique iron-dependent mode of cell death. Unlike traditional regulated cell death (RCD), ferroptosis is associated with excessive lipid peroxidation on cellular membranes. Accumulating evidence suggests that this form of RCD is involved in a variety of physiological and pathological processes. Notably, multiple flavonoids have been shown to be effective in preventing and treating diverse human diseases by regulating ferroptosis. In this review, we introduce the key molecular mechanisms of ferroptosis, including iron metabolism, lipid metabolism, and several major antioxidant systems. Additionally, we summarize the promising flavonoids targeting ferroptosis, which provides novel ideas for the management of diseases such as cancer, acute liver injury, neurodegenerative diseases, and ischemia/reperfusion (I/R) injury.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jiye Li
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Xiaochuan Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
22
|
Yu H, Peng Y, Dong W, Shen B, Yang G, Nie Q, Tian Y, Qin L, Song C, Chen B, Zhao Y, Li L, Hong S. Nrf2 attenuates methamphetamine-induced myocardial injury by regulating oxidative stress and apoptosis in mice. Hum Exp Toxicol 2023; 42:9603271231219488. [PMID: 38031934 DOI: 10.1177/09603271231219488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
OBJECTIVES Methamphetamine (MA) abuse is a serious social problem worldwide. Cardiovascular complications were the second leading cause of death among MA abusers. We aimed to clarify the effects of MA on myocardial injury, oxidative stress, and apoptosis in myocardial cells and to explore the potential mechanism of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) in MA-induced oxidative stress and apoptosis. METHODS An acute cardiac toxicity model of MA was established by intraperitoneal injection of MA (2 mg/kg) for 5 days. Nrf2 activation (by sulforaphane (SFN) 1 h before MA injection) and Nrf2 gene knockout were performed to explore the regulatory effects of Nrf2 on cardiac toxicity. RESULTS The protein expressions of Nrf2 (p < .001) and heme oxygenase-1 (HO-1) were increased (p < .01), suggesting that MA activated the Nrf2/HO-1 pathway. In the MA group, cardiac injury score (p < .001) and cardiac troponin I (cTnI) protein expression increased (p < .01). Malondialdehyde (MDA) content increased (p < .001), superoxide dismutase (SOD) activity decreased (p < .05). Protein expressions of Caspase-3 (p < .001) and Bax (p < .001) increased, and Bcl-2 decreased (p < .001) as well. These changes were reversed by activation of Nrf2 but became more pronounced after Nrf2 knockout, suggested that the activation and knockout of Nrf2 attenuated and aggravated MA-induced myocardial injury, oxidative stress and apoptosis in myocardial cells, respectively. CONCLUSIONS MA administration induced myocardial injury, oxidative stress, and apoptosis in mice. Nrf2 attenuated MA-induced myocardial injury by regulating oxidative stress and apoptosis, thus playing a protective role.
Collapse
Affiliation(s)
- Hao Yu
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Yanxia Peng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Wenjuan Dong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Baoyu Shen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Qianyun Nie
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yan Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Lixiang Qin
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chunhui Song
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Bingzheng Chen
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yongna Zhao
- Key Laboratory of Natural Medicine Pharmacology of Yunnan Province, Kunming Medical University, Kunming, China
| | - Lihua Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Shijun Hong
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|