1
|
Marcato F, Schokker D, Kar SK, Bossers A, Harders F, Rebel JMJ, Jansen CA, van der Valk E, Kruijt L, te Beest DE, de Jong IC. Effects of breed and early feeding on intestinal microbiota, inflammation markers, and behavior of broiler chickens. Front Vet Sci 2024; 11:1492274. [PMID: 39687852 PMCID: PMC11648218 DOI: 10.3389/fvets.2024.1492274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024] Open
Abstract
Recently, the Netherlands has shifted toward more welfare-friendly broiler production systems using slower-growing broiler breeds. Early post-hatch feeding (EF) is a dietary strategy that is currently used in commercial broiler production to modulate the gut microbiota and improve performance and welfare. However, there is a knowledge gap in how both breed and EF and their interplay affect gut microbiota composition and diversity, inflammatory status, and broiler behavior. Therefore, the aim of this study was to investigate the effects of breed (fast vs. slower-growing), EF, and their interaction on jejunum microbiota, inflammation, and behavior of broiler chickens. The study included a total of 416 Ross 308 and 416 Hubbard JA757 day-old male broiler chickens, observed until they were 37 days and 51 days old, respectively. Within each breed, one-half of the chickens received EF and the other half did not. A total of two chickens per pen were euthanized at two time points, that is, target body weight (BW) of 200 g and 2.5 kg, and jejunum samples were collected. The jejunum content samples (N = 96) were analyzed for their microbiota, whereas the jejunum tissue (N = 96) was used for the detection of mRNA levels of cytokines (IL-17, IL-22, and IFNγ). Two behavioral tests were performed to assess fear responses: (1) a novel environment test at a target BW of 200 g and (2) a tonic immobility test at a target BW of 2.5 kg. Breed affected the microbiota at a target BW of 2.5 kg (p = 0.04). A breed × EF interaction (p = 0.02) was present for IFNγ at a target BW of 200 g. During the novel environment test, Ross 308 chickens exhibited a shorter latency to vocalize and a higher number of vocalizations compared to Hubbard JA757 chickens (p < 0.05). Early-fed broiler chickens vocalized less compared to not early-fed chickens (Δ = -27.8 on average; p < 0.01). During the tonic immobility test, Hubbard JA757 chickens exhibited a shorter latency to stand compared to Ross 308 chickens. In conclusion, using a slower-growing breed has beneficial effects on gut microbiota and fear responses of broilers, especially at slaughter age, whereas EF seems to have an impact only at an early stage of the life of broilers.
Collapse
Affiliation(s)
- Francesca Marcato
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| | - Dirkjan Schokker
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | - Soumya Kanti Kar
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | - Johanna M. J. Rebel
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, Netherlands
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Elianne van der Valk
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| | - Leo Kruijt
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| | | | - Ingrid C. de Jong
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
2
|
Aruwa CE, Sabiu S. Interplay of poultry-microbiome interactions - influencing factors and microbes in poultry infections and metabolic disorders. Br Poult Sci 2024; 65:523-537. [PMID: 38920059 DOI: 10.1080/00071668.2024.2356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 06/27/2024]
Abstract
1. The poultry microbiome and its stability at every point in time, either free range or reared under different farming systems, is affected by several environmental and innate factors. The interaction of the poultry birds with their microbiome, as well as several inherent and extraneous factors contribute to the microbiome dynamics. A poor understanding of this could worsen poultry heath and result in disease/metabolic disorders.2. Many diseased states associated with poultry have been linked to dysbiosis state, where the microbiome experiences some perturbation. Dysbiosis itself is too often downplayed; however, it is considered a disease which could lead to more serious conditions in poultry. The management of interconnected factors by conventional and emerging technologies (sequencing, nanotechnology, robotics, 3D mini-guts) could prove to be indispensable in ensuring poultry health and welfare.3. Findings showed that high-throughput technological advancements enhanced scientific insights into emerging trends surrounding the poultry gut microbiome and ecosystem, the dysbiotic condition, and the dynamic roles of intrinsic and exogenous factors in determining poultry health. Yet, a combination of conventional, -omics based and other techniques further enhance characterisation of key poultry microbiome actors, their mechanisms of action, and roles in maintaining gut homoeostasis and health, in a bid to avert metabolic disorders and infections.4. In conclusion, there is an important interplay of innate, environmental, abiotic and biotic factors impacting on poultry gut microbiome homoeostasis, dysbiosis, and overall health. Associated infections and metabolic disorders can result from the interconnected nature of these factors. Emerging concepts (interkingdom or network signalling and neurotransmitter), and future technologies (mini-gut models, cobots) need to include these interactions to ensure accurate control and outcomes.
Collapse
Affiliation(s)
- C E Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - S Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
3
|
Zhou X, Zhang H, Li S, Jiang Y, Deng J, Yang C, Chen X, Jiang L. Effects of different levels of Citri Sarcodactylis Fructus by-products fermented feed on growth performance, serum biochemical, and intestinal health of cyan-shank partridge birds. Sci Rep 2023; 13:20130. [PMID: 37978234 PMCID: PMC10656579 DOI: 10.1038/s41598-023-47303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023] Open
Abstract
This research aimed to investigate the effects of supplements containing fermented feed made from Citri Sarcodactylis Fructus by-products (CSFBP-Fermented feed) on the growth performance, immunological function, and gut health of broilers. 1080 cyan-shank partridge birds aged 47 days were chosen and casually distributed to four groups, each with 6 replicates and 45 birds per replicate. The experimental groups were provided with 1% (group T2), 3% (group T3) and 5% (group T4) of CSFBP-fermented feed in the basic diet, while the control group (group T1) received the basic diet. The findings revealed that supplementation with CSFBP-Fermented feed reduced ADFI and FCR and improved ADG in birds (P < 0.05). MDA levels in the serum of birds fed CSFBP-fermented feed were lower than in the control group (P < 0.05). The CAT activity in the serum of broilers increased after supplementation with 3% CSFBP-Fermented feed (P < 0.05). Supplementing broilers with CSFBP-fermented feed enhanced VH in the ileum, jejunum, and duodenum (P < 0.05). The addition of 3% CSFBP-Fermented feed decreased CD in the jejunum (P < 0.05). The addition of 3% and 5% CSFBP-Fermented feed increased the mRNA expression of ZO-1 and Occludin in the jejunum of broiler chickens and reduced the mRNA expression of IL-6 (P < 0.05). The addition of 3% CSFBP-Fermented feed increased the mRNA expression of Claudin in the jejunum of broiler chickens and reduced IL-1β mRNA expression (P < 0.05). Compared to the control group, all experimental groups exhibited decreased mRNA expression of TNF-α and INF-γ in the jejunal mucosa of the birds (P < 0.05). According to research using high-throughput sequencing of microorganisms' 16S rDNA, and an analysis of α-diversity found that supplementing broilers with 3% CSFBP-Fermented feed decreased the number of bacteria in their cecum (P < 0.05). Bacteroidota was higher in all groups after supplementation with CSFBP-Fermented feed. At the genus level, after addition with 3% CSFBP-Fermented feed, the abundance of Bacteroide and Prevotellaceae_Ga6A1_group were higher than the control group (33.36% vs 29.95%, 4.35% vs 2.94%). The abundance of Rikenellaceae_RC9_gut_group and Fusobacterium were lower than the control group (5.52% vs. 7.17%,0.38% vs. 1.33%). In summary, supplementing the diet with CSFBP-Fermented feed can promote the growth of performance by enhancing intestinal morphology, and barrier function, as well as modulating intestinal inflammatory factors and microbial composition in broilers.
Collapse
Affiliation(s)
- Xinhong Zhou
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Huaidan Zhang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Shiyi Li
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Yilong Jiang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Jicheng Deng
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Chuanpeng Yang
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China
| | - Xianxin Chen
- Leshan Academy of Agriculture Science, Leshan, 614001, Sichuan, China.
| | - Li Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| |
Collapse
|
4
|
Hoving-Bolink RAH, Antonis AFG, te Pas MFW, Schokker D. An observational study of the presence and variability of the microbiota composition of goat herd milk related to mainstream and artisanal farm management. PLoS One 2023; 18:e0292650. [PMID: 37797079 PMCID: PMC10553829 DOI: 10.1371/journal.pone.0292650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
Goat milk is produced on mainstream and artisanal farms. It was expected that the farm management may influence the microbial population of the milk. Therefore, we investigated the bacterial content and microbiota composition of raw milk in relation to Dutch goat farm management. After amplicon sequencing we analyzed the taxa at phylum and genus levels, and used the relative values enabling to provide information about the variation among the different samples. On ten farms our results indicated that the number of bacterial colony forming units and microbiota composition of the milk, directly after milking was variable among farms and not related to the farm management system. At the phylum level the phyla Firmicutes, Actinobacteria, Proteobacteria, and to a minor extend Bacteriodota were the dominant phyla in the raw goat milk, together usually comprising 90% of the total bacterial phyla. The most dominant genera were Staphylococcus, Pseudomonas, Lactococcus, Microbacteria, Acinetobacteria, and Corinebacteria. The number of bacterial phyla and genera does not differ between the mainstream and artisanal farms, although the Shannon index may be numerically higher in the mainstream farms as compared to artisanal farms. In addition, the variability is higher among artisanal farms, which may be due to less standardization of the management. The milk microbiota composition differed among farms. Repeated sampling of a farm showed that this changed over time. The lactic acid producing bacteria showed a similar pattern. Variable microbiota richness amount and diversity of microorganisms were present in different farming systems. We concluded that farm-specific management and sampling moment were the major determining factors for the milk microbiota composition.
Collapse
|
5
|
Marcato F, Rebel JMJ, Kar SK, Wouters IM, Schokker D, Bossers A, Harders F, van Riel JW, Wolthuis-Fillerup M, de Jong IC. Host genotype affects endotoxin release in excreta of broilers at slaughter age. Front Genet 2023; 14:1202135. [PMID: 37359374 PMCID: PMC10285083 DOI: 10.3389/fgene.2023.1202135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Host genotype, early post-hatch feeding, and pre- and probiotics are factors known to modulate the gut microbiome. However, there is a knowledge gap on the effect of both chicken genotype and these dietary strategies and their interplay on fecal microbiome composition and diversity, which, in turn, can affect the release of endotoxins in the excreta of broilers. Endotoxins are a major concern as they can be harmful to both animal and human health. The main goal of the current study was to investigate whether it was possible to modulate the fecal microbiome, thereby reducing endotoxin concentrations in the excreta of broiler chickens. An experiment was carried out with a 2 × 2 × 2 factorial arrangement including the following three factors: 1) genetic strain (fast-growing Ross 308 vs. slower growing Hubbard JA757); 2) no vs. combined use of probiotics and prebiotics in the diet and drinking water; and 3) early feeding at the hatchery vs. non-early feeding. A total of 624 Ross 308 and 624 Hubbard JA757 day-old male broiler chickens were included until d 37 and d 51 of age, respectively. Broilers (N = 26 chicks/pen) were housed in a total of 48 pens, and there were six replicate pens/treatment groups. Pooled cloacal swabs (N = 10 chickens/pen) for microbiome and endotoxin analyses were collected at a target body weight (BW) of 200 g, 1 kg, and 2.5 kg. Endotoxin concentration significantly increased with age (p = 0.01). At a target BW of 2.5 kg, Ross 308 chickens produced a considerably higher amount of endotoxins (Δ = 552.5 EU/mL) than the Hubbard JA757 chickens (p < 0.01). A significant difference in the Shannon index was observed for the interaction between the use of prebiotics and probiotics, and host genotype (p = 0.02), where Ross 308 chickens with pre-/probiotics had lower diversity than Hubbard JA757 chickens with pre-/probiotics. Early feeding did not affect both the fecal microbiome and endotoxin release. Overall, the results suggest that the chicken genetic strain may be an important factor to take into account regarding fecal endotoxin release, although this needs to be further investigated under commercial conditions.
Collapse
Affiliation(s)
- F. Marcato
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - J. M. J. Rebel
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - S. K. Kar
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - I. M. Wouters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - D. Schokker
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - A. Bossers
- Wageningen Bioveterinary Research, Lelystad, Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - F. Harders
- Wageningen Bioveterinary Research, Lelystad, Netherlands
| | - J. W. van Riel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - M. Wolthuis-Fillerup
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| | - I. C. de Jong
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Greene G, Koolman L, Whyte P, Burgess C, Bolton D. The Gut Microbiota of Broilers Reared with and without Antibiotic Treatment. Microorganisms 2023; 11:microorganisms11040876. [PMID: 37110298 PMCID: PMC10143014 DOI: 10.3390/microorganisms11040876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The aim of this study was to examine the microbiota in broilers reared with and without antibiotics and to investigate differences between the upper, middle and lower sections of the gastrointestinal tract (GIT). One of two commercial flocks was treated with an antibiotic (T) (20 mg trimethoprim and 100 mg sulfamethoxazole per ml in the drinking water for 3 days) and the other was left untreated (UT). The GIT contents of 51 treated and untreated birds were aseptically removed from the upper (U), middle (M) and lower (L) sections. These were pooled in triplicate (n = 17 per section per flock), the DNA extracted and purified, 16S amplicon metagenomic sequencing performed and the resultant data analysed using a range of bioinformatics software. There were significant differences in the microbiota of the upper, middle and lower GIT, and treatment with the antibiotic significantly affected the microbiota in each of these sections. This study provides new data on broiler GIT microbiota and suggests that GIT location is a more important determinant of the constituent bacterial flora rather than the use or otherwise of antimicrobial treatments, at least when applied early in the production cycle.
Collapse
|
7
|
Zwirzitz B, Oladeinde A, Johnson J, Zock G, Milfort MC, Fuller AL, Ghareeb AFA, Foutz JC, Teran JA, Woyda R, Abdo Z, Looft T, Lawrence JP, Cudnik D, Aggrey SE. Temporal dynamics of the cecal and litter microbiome of chickens raised in two separate broiler houses. Front Physiol 2023; 14:1083192. [PMID: 36935743 PMCID: PMC10018173 DOI: 10.3389/fphys.2023.1083192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
In this study, we investigated the dynamics of the ceca and litter microbiome of chickens from post-hatch through pre-harvest. To achieve this, six hundred one-day old Cobb 500 broiler chicks were raised on floor pens for 49 days in two separate houses. We performed short-read and full-length sequencing of the bacterial 16S rRNA gene present in the meconium and in cecal and litter samples collected over the duration of the study. In addition, we determined the antimicrobial resistance (AMR) phenotype of Escherichia coli and Enterococcus spp. isolated from the meconium and the ceca of 49-day old chickens. We monitored the relative humidity, temperature, and ammonia in each house daily and the pH and moisture of litter samples weekly. The overall microbial community structure of the ceca and litter consistently changed throughout the course of the grow-out and correlated with some of the environmental parameters measured (p < 0.05). We found that the ceca and litter microbiome were similar in the two houses at the beginning of the experiment, but over time, the microbial community separated and differed between the houses. When we compared the environmental parameters in the two houses, we found no significant differences in the first half of the growth cycle (day 0-21), but morning temperature, morning humidity, and ammonia significantly differed (p < 0.05) between the two houses from day 22-49. Lastly, the prevalence of AMR in cecal E. coli isolates differed from meconium isolates (p < 0.001), while the AMR phenotype of cecal Enterococcus isolates differed between houses (p < 0.05).
Collapse
Affiliation(s)
- Benjamin Zwirzitz
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation FFoQSI GmbH, Tulln, Austria
| | | | - Jasmine Johnson
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Gregory Zock
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Marie C. Milfort
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Ahmed F. A. Ghareeb
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - James C. Foutz
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jose Alexis Teran
- College of Engineering, University of Georgia, Athens, GA, United States
| | - Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Torey Looft
- USDA-ARS, National Animal Disease Center, Ames, IA, United States
| | | | - Denice Cudnik
- USDA-ARS, U.S. National Poultry Research Center, Athens, GA, United States
| | - Samuel E. Aggrey
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
8
|
Weinroth MD, Oakley B, Ramírez GA, Reyes A, Harris CE, Buhr RJ. 16S rRNA gene-based assessment of common broiler chicken sampling methods: Evaluating intra-flock sample size, cecal pair similarity, and cloacal swab similarity to other alimentary tract locations. Front Physiol 2022; 13:996654. [PMID: 36338471 PMCID: PMC9627029 DOI: 10.3389/fphys.2022.996654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/03/2022] [Indexed: 08/25/2024] Open
Abstract
16S rRNA gene sequencing for characterization of microbiomes has become more common in poultry research and can be used to both answer specific research questions and help inform experimental design choices. The objective of this study was to use 16S rRNA gene sequencing to examine common sampling practices in broiler chicken studies such as: the required number of birds selected from a flock to adequately capture microbiome diversity, the differences between cecal pairs within the same bird, and whether cloacal swabs are representative of other alimentary tract (AT) locations. To do this, nine market age broilers were euthanized and immediately sampled in ten AT locations: crop, gizzard, proventriculus, duodenum, jejunum, ileum, cecal samples from each pouch, colon, and cloacal swab. DNA was extracted and subjected to 16S rRNA gene amplification and sequencing. Each location within the broiler AT hosts distinct microbial communities. When each sampling location was considered, it was found that sampling after 2.8 birds (range 2-4) resulted in less than 10% new amplicon sequencing variants (ASV) being added while sampling after 7.6 birds (range 6-10) increases new observed ASVs by less than 1%. Additionally, when cecal pairs from the same bird were evaluated, it was found that cecal pair mates are an adequate replication if interested in the total cecal microbiome but may be less useful if a rare lineage is of interest. Furthermore, when compared to other AT locations, the cecal microbiome was enriched in Firmicutes and Bacteroides while several lineages, most notably Lactobacillus, were under-represented. Finally, when cloacal swabs were compared to other AT locations, community similarity exhibited a direct distance relationship, i.e., the more aborad samples were the more similar they were to the swab. These findings indicate that while cloacal swabs can approximate overall changes in microbiome composition, they are not adequate for inferring changes to specific taxa in other parts of the AT tract-even those that are highly abundant within the microbial community. These data provide new insights guiding appropriate sample size selection within flocks and add to the consensus data regarding cecal pair similarity and destructive versus non-destructive sampling methods.
Collapse
Affiliation(s)
| | - Brian Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Gustavo A. Ramírez
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
- Department of Biological Sciences, California State University, Los Angeles, CA, United States
| | - Arquimides Reyes
- Department of Animal and Food Science, University of Wisconsin-River Falls, River Falls, WI, United States
| | - Caitlin E. Harris
- PMSPRU, USNPRC, USDA-ARS, Athens, GA, United States
- Department of Poultry Science, The University of Georgia, Athens, GA, United States
| | - R. Jeff Buhr
- PMSPRU, USNPRC, USDA-ARS, Athens, GA, United States
| |
Collapse
|
9
|
Sheets TR, Wickware CL, Snyder AM, Weimer SL, Johnson TA. Ileal and cecal microbiota response to Salmonella Typhimurium challenge in conventional and slow-growing broilers. Front Physiol 2022; 13:971255. [PMID: 36267582 PMCID: PMC9577007 DOI: 10.3389/fphys.2022.971255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/24/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the negative impacts of Salmonella intestinal colonization on human health, Salmonella is a natural colonizer of the gastrointestinal tract and is not overtly pathogenic to the avian host. It is of interest to understand the impacts and colonization rates of Salmonella across selected genetic lines such as slow-growing (SG) and conventional (CONV) broilers. The objective of this study was to characterize the relationship between Salmonella enterica serovar Typhimurium challenge and selected broiler genetic lines on the ileal and cecal microbiome. Male chicks of two broiler breeds (n = 156/breed) were cohoused in an open floor pen until day 7. On day 13, the chicks were then separated into 12 isolators per breed (4 rooms, 6 isolators/room, 11 chicks/isolator). On day 14, chicks in the 12 treatment isolators (6 isolators/breed, 108 total) were challenged with Salmonella Typhimurium (ST) (1 × 108 CFU/ml) via oral gavage while the remaining chicks (n = 108) were given an oral gavage of sterile tryptic soy broth control (C). Ileal and cecal contents were collected on day 7 from 24 chicks of each breed, and on days 13, 17, 21, and 24 from two chicks per isolator. Samples underwent DNA extraction and PCR amplification to obtain 16S rRNA amplicons that were sequenced with Illumina MiSeq. Salmonella Typhimurium colonization in the cecum was not different in the two broiler breeds. The main effect of breed had the greatest impact on the ileum microbiota of broilers 7 days of age where SG broilers had significantly lower diversity and richness compared to CONV broilers (p < 0.05). Salmonella Typhimurium challenge consistently caused a change in beta diversity. Regardless of day or intestinal location, challenged broilers had many amplicon sequence variants (ASVs) with decreased abundance of likely beneficial bacteria such as Mollicutes RF39, Shuttleworthia, Flavonifractor, and Oscillibacter compared to broilers that were unchallenged with Salmonella Typhimurium (p < 0.05). Additionally, there was a difference in the timing of when the microbiota alpha and beta diversity of each breed responded to Salmonella Typhimurium challenge. Thus, both broiler breed and Salmonella Typhimurium can impact the intestinal microbiota.
Collapse
Affiliation(s)
- Tessa R. Sheets
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Carmen L. Wickware
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Ashlyn M. Snyder
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Shawna L. Weimer
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- *Correspondence: Timothy A. Johnson,
| |
Collapse
|
10
|
Kogut MH. Role of diet-microbiota interactions in precision nutrition of the chicken: facts, gaps, and new concepts. Poult Sci 2022; 101:101673. [PMID: 35104729 PMCID: PMC8814386 DOI: 10.1016/j.psj.2021.101673] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
In the intestine, host-derived factors are genetically hardwired and difficult to modulate. However, the intestinal microbiome is more plastic and can be readily modulated by dietary factors. Further, it is becoming more apparent that the microbiome can potentially impact poultry physiology by participating in digestion, the absorption of nutrients, shaping of the mucosal immune response, energy homeostasis, and the synthesis or modulation of several potential bioactive metabolites. These activities are dependent on the quantity and quality of the microbiota alongside its metabolic potential, which are dictated in large part by diet. Thus, diet-induced microbiota alterations may be harnessed to induce changes in host physiology, including disease development and progression. In this regard, the gut microbiome is malleable and renders the gut microbiome a candidate 'organ' for the possibility of precision nutrition to induce precision microbiomics-the use of the gut microbiome as a biomarker to predict responsiveness to specific dietary constituents to generate precision diets and interventions for optimal poultry performance and health. However, it is vital to identify the causal relationships and mechanisms by which dietary components and additives affect the gut microbiome which then ultimately influence avian physiology. Further, an improved understanding of the spatial and functional relationships between the different sections of the avian gut and their regional microbiota will provide a better understanding of the role of the diet in regulating the intestinal microbiome.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA.
| |
Collapse
|