1
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Barba A, López-Vilaró L, Ferre M, Majem M, Martinez-Recio S, Bell O, Arranz MJ, Salazar J, Sullivan I. ERCC1 and ERCC2 Polymorphisms Predict the Efficacy and Toxicity of Platinum-Based Chemotherapy in Small Cell Lung Cancer. Pharmaceutics 2024; 16:1121. [PMID: 39339159 PMCID: PMC11434779 DOI: 10.3390/pharmaceutics16091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Standard first-line chemotherapy in small cell lung cancer (SCLC) is based on the platinum plus etoposide combination. Despite a high objective response rate, responses are not durable and chemotherapy-induced toxicity may compromise treatment. Genetic variants in genes involved in the DNA-repair pathways and in etoposide metabolization could predict treatment efficacy and safety and help personalize platinum-based chemotherapy. Germline polymorphisms in XRCC1, ERCC1, ERCC2, ABCB1, ABCC3, UGT1A1 and GSTP1 genes were investigated in 145 patients with SCLC. The tumor expression of ERCC1 was determined using immunohistochemistry, and the tumor expression of ERCC1-XPF was determined via a proximity ligation assay. Survival analyses showed a statistically significant association between the ERCC1 rs11615 variant and median progression-free survival (PFS) in patients with limited-stage (LS) SCLC (multivariate: hazard ratio 3.25, [95% CI 1.38-7.70]; p = 0.007). Furthermore, we observed differences between the ERCC1-XPF complex and median PFS in LS-SCLC, although statistical significance was not reached (univariate: positive expression 10.8 [95% CI 4.09-17.55] months versus negative expression 13.3 [95% CI 7.32-19.31] months; p = 0.06). Safety analyses showed that the ERCC2 rs1799793 variant was significantly associated with the risk of grade ≥ 3 thrombocytopenia in the total cohort (multivariate: odds ratio 3.15, [95% CI 1.08-9.17]; p = 0.04). Our results provide evidence that ERCC1 and ERCC2 variants may predict the efficacy and safety of platinum-based chemotherapy in SCLC patients. LS-SCLC patients may benefit most from ERCC1 determination, but prospective studies are needed.
Collapse
Affiliation(s)
- Andrés Barba
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Laura López-Vilaró
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Malena Ferre
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Sergio Martinez-Recio
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Olga Bell
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - María J Arranz
- Research Laboratory Unit, Fundació Docència i Recerca Mútua Terrassa, 08221 Terrassa, Spain
| | - Juliana Salazar
- Translational Medical Oncology Laboratory, Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain
| | - Ivana Sullivan
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| |
Collapse
|
4
|
Shi J, Pabon K, Ding R, Scotto KW. ABCG2 and SLC1A5 functionally interact to rewire metabolism and confer a survival advantage to cancer cells under oxidative stress. J Biol Chem 2024; 300:107299. [PMID: 38641063 PMCID: PMC11131071 DOI: 10.1016/j.jbc.2024.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024] Open
Abstract
ABCG2, a member of the ABC transporter superfamily, is overexpressed in many human tumors and has long been studied for its ability to export a variety of chemotherapeutic agents, thereby conferring a multidrug resistance (MDR) phenotype. However, several studies have shown that ABCG2 can also confer an MDR-independent survival advantage to tumor cells exposed to stress. While investigating the mechanism by which ABCG2 enhances survival in stressful milieus, we have identified a physical and functional interaction between ABCG2 and SLC1A5, a member of the solute transporter superfamily and the primary transporter of glutamine in cancer cells. This interaction was accompanied by increased glutamine uptake, increased glutaminolysis, and rewired cellular metabolism, as evidenced by an increase in key metabolic enzymes and alteration of glutamine-dependent metabolic pathways. Specifically, we observed an increase in glutamine metabolites shuttled to the TCA cycle, and an increase in the synthesis of glutathione, accompanied by a decrease in basal levels of reactive oxygen species and a marked increase in cell survival in the face of oxidative stress. Notably, the knockdown of SLC1A5 or depletion of exogenous glutamine diminished ABCG2-enhanced autophagy flux, further implicating this solute transporter in ABCG2-mediated cell survival. This is, to our knowledge, the first report of a functionally significant physical interaction between members of the two major transporter superfamilies. Moreover, these observations may underlie the protective role of ABCG2 in cancer cells under duress and suggest a novel role for ABCG2 in the regulation of metabolism in normal and diseased states.
Collapse
Affiliation(s)
- Jia Shi
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kirk Pabon
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Rui Ding
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA; Clinical Pharmacology, Translational Medicine, Servier Pharmaceuticals LLC, Boston, Massachusetts, USA
| | - Kathleen W Scotto
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
5
|
Sałagacka-Kubiak A, Zawada D, Saed L, Kordek R, Jeleń A, Balcerczak E. ABCG2 Gene and ABCG2 Protein Expression in Colorectal Cancer-In Silico and Wet Analysis. Int J Mol Sci 2023; 24:10539. [PMID: 37445716 DOI: 10.3390/ijms241310539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
ABCG2 (ATP-binding cassette superfamily G member 2) is a cell membrane pump encoded by the ABCG2 gene. ABCG2 can protect cells against compounds initiating and/or intensifying neoplasia and is considered a marker of stem cells responsible for cancer growth, drug resistance and recurrence. Expression of the ABCG2 gene or its protein has been shown to be a negative prognostic factor in various malignancies. However, its prognostic significance in colorectal cancer remains unclear. Using publicly available data, ABCG2 was shown to be underexpressed in colon and rectum adenocarcinomas, with lower expression compared to both the adjacent nonmalignant lung tissues and non-tumour lung tissues of healthy individuals. This downregulation could result from the methylation level of some sites of the ABCG2 gene. This was connected with microsatellite instability, weight and age among patients with colon adenocarcinoma, and with tumour localization, population type and age of patients for rectum adenocarcinoma. No association was found between ABCG2 expression level and survival of colorectal cancer patients. In wet analysis of colorectal cancer samples, neither ABCG2 gene expression, analysed by RT-PCR, nor ABCG2 protein level, assessed by immunohistochemistry, was associated with any clinicopathological factors or overall survival. An ABCG2-centered protein-protein interaction network build by STRING showed proteins were found to be involved in leukotriene, organic anion and xenobiotic transport, endodermal cell fate specification, and histone methylation and ubiquitination. Hence, ABCG2 underexpression could be an indicator of the activity of certain signalling pathways or protein interactors essential for colorectal carcinogenesis.
Collapse
Affiliation(s)
- Aleksandra Sałagacka-Kubiak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Dawid Zawada
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lias Saed
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Radzisław Kordek
- Department of Pathology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
6
|
Omori M, Noro R, Seike M, Matsuda K, Hirao M, Fukuizumi A, Takano N, Miyanaga A, Gemma A. Inhibitors of ABCB1 and ABCG2 overcame resistance to topoisomerase inhibitors in small cell lung cancer. Thorac Cancer 2022; 13:2142-2151. [PMID: 35719112 PMCID: PMC9346178 DOI: 10.1111/1759-7714.14527] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is a highly aggressive disease with a poor prognosis. Although most patients initially respond to topoisomerase inhibitors, resistance rapidly emerges. The aim, therefore, is to overcome resistance to topoisomerase I (irinotecan) or II (etoposide) inhibitors in SCLCs. Methods To identify key factors in the chemoresistance of SCLCs, we established four cell lines resistant to etoposide or an active metabolite of irinotecan, SN‐38, from SCLC cell lines and evaluated RNA profiles using parental and newly established cell lines. Results We found that the drug efflux protein, ATP‐binding cassette sub‐family B member 1 (ABCB1), was associated with resistance to etoposide, and ATP‐binding cassette sub‐family G member 2 (ABCG2) was associated with resistance to SN‐38 by RNA sequencing. The inhibition of ABCB1 or ABCG2 in each resistant cell line induced synergistic apoptotic activity and promoted drug sensitivity in resistant SCLC cells. The ABC transporter inhibitors, elacridar and tariquidar, restored sensitivity to etoposide or SN‐38 in in vitro and in vivo studies, and promoted apoptotic activity and G2‐M arrest in resistant SCLC cells. Conclusions ABC transporter inhibitors may be a promising therapeutic strategy for the purpose of overcoming resistance to topoisomerase inhibitors in patients with SCLC.
Collapse
Affiliation(s)
- Miwako Omori
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Aya Fukuizumi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Natsuki Takano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
7
|
Wong ILK, Zhu X, Chan KF, Liu Z, Chan CF, Chow TS, Chong TC, Law MC, Cui J, Chow LMC, Chan TH. Flavonoid Monomers as Potent, Nontoxic, and Selective Modulators of the Breast Cancer Resistance Protein (ABCG2). J Med Chem 2021; 64:14311-14331. [PMID: 34606270 DOI: 10.1021/acs.jmedchem.1c00779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We synthesize various substituted triazole-containing flavonoids and identify potent, nontoxic, and highly selective BCRP inhibitors. Ac18Az8, Ac32Az19, and Ac36Az9 possess m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moiety and substituted triazole at C-4' of the B-ring. They show low toxicity (IC50 toward L929 > 100 μM), potent BCRP-inhibitory activity (EC50 = 1-15 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 67-714). They inhibit the efflux activity of BCRP, elevate the intracellular drug accumulation, and restore the drug sensitivity of BCRP-overexpressing cells. Like Ko143, Ac32Az19 remarkably exhibits a 100% 5D3 shift, indicating that it can bind and cause a conformational change of BCRP. Moreover, it significantly reduces the abundance of functional BCRP dimers/oligomers by half to retain more mitoxantrone in the BCRP-overexpressing cell line and that may account for its inhibitory activity. They are promising candidates to be developed into combination therapy to overcome MDR cancers with BCRP overexpression.
Collapse
Affiliation(s)
- Iris L K Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Kin-Fai Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Zhen Liu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Chin-Fung Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Tsun Sing Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR 999077, China.,Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| |
Collapse
|
8
|
Hu J, Zhang H, Liu L, Han B, Zhou G, Su P. TRPS1 Confers Multidrug Resistance of Breast Cancer Cells by Regulating BCRP Expression. Front Oncol 2020; 10:934. [PMID: 32695669 PMCID: PMC7338551 DOI: 10.3389/fonc.2020.00934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
Multidrug resistance (MDR) is the major obstruction in the successful treatment of breast cancer (BCa). The elucidation of molecular events that confer chemoresistance of BCa is of major therapeutic importance. Several studies have elucidated the correlation of TRPS1 and BCa. Here we focused on the role of TRPS1 in acquisition of chemoresistance, and reported a unique role of TRPS1 renders BCa cells resistant to chemotherapeutic drugs via the regulation of BCRP expression. Bioinformation analysis based on publicly available BCa data suggested that TRPS1 overexpression linked to chemoresistance. Mechanistically, TRPS1 regulated BCRP expression and efflux transportation. Overexpression of TRPS1 led to upregulation of BCRP while its inhibition resulted in repression of BCRP. The correlation of TRPS1 and BCRP was further confirmed by immunohistochemistry in 180 BCa samples. MTT assay demonstrated that manipulation of TRPS1 expression affects the chemosensitivity of BCa cells. In total, high expression of TRPS1 confers MDR of BCa which is mediated by BCRP. Our data demonstrated a new insight into mechanisms and strategies to overcome chemoresistance in BCa.
Collapse
Affiliation(s)
- Jing Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Long Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo Han
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Gengyin Zhou
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng Su
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Cruceriu D, Baldasici O, Balacescu O, Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: molecular insights and therapeutic approaches. Cell Oncol (Dordr) 2020; 43:1-18. [PMID: 31900901 DOI: 10.1007/s13402-019-00489-1] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is the most prevalent cancer among women worldwide and the fifth cause of death among all cancer patients. Breast cancer development is driven by genetic and epigenetic alterations, with the tumor microenvironment (TME) playing an essential role in disease progression and evolution through mechanisms like inflammation promotion. TNF-α is one of the essential pro-inflammatory cytokines found in the TME of breast cancer patients, being secreted both by stromal cells, mainly by tumor-associated macrophages, and by the cancer cells themselves. In this review, we explore the biological and clinical impact of TNF-α in all stages of breast cancer development. First of all, we explore the correlation between TNF-α expression levels at the tumor site or in plasma/serum of breast cancer patients and their respective clinical status and outcome. Secondly, we emphasize the role of TNF-α signaling in both estrogen-positive and -negative breast cancer cells. Thirdly, we underline TNF-α involvement in epithelial-to-mesenchymal transition (EMT) and metastasis of breast cancer cells, and we point out the contribution of TNF-α to the development of acquired drug resistance. CONCLUSIONS Collectively, these data reveal a pro-tumorigenic role of TNF-α during breast cancer progression and metastasis. We systemize the knowledge regarding TNF-α-related therapies in breast cancer, and we explain how TNF-α may act as both a target and a drug in different breast cancer therapeutic approaches. By corroborating the known molecular effects of TNF-α signaling in breast cancer cells with the results from several preclinical and clinical trials, including TNF-α-related clinical observations, we conclude that the potential of TNF-α in breast cancer therapy promises to be of great interest.
Collapse
Affiliation(s)
- Daniel Cruceriu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania.,Department of Molecular Biology and Biotechnology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Oana Baldasici
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,11th Department of Medical Oncology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania. .,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. .,MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337, Cluj-Napoca, Romania.
| |
Collapse
|
10
|
Sava GP, Fan H, Fisher RA, Lusvarghi S, Pancholi S, Ambudkar SV, Martin LA, Charles Coombes R, Buluwela L, Ali S. ABC-transporter upregulation mediates resistance to the CDK7 inhibitors THZ1 and ICEC0942. Oncogene 2020; 39:651-663. [PMID: 31530935 PMCID: PMC6962093 DOI: 10.1038/s41388-019-1008-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/26/2019] [Accepted: 08/24/2019] [Indexed: 12/22/2022]
Abstract
The CDK7 inhibitors (CDK7i) ICEC0942 and THZ1, are promising new cancer therapeutics. Resistance to targeted drugs frequently compromises cancer treatment. We sought to identify mechanisms by which cancer cells may become resistant to CDK7i. Resistant lines were established through continuous drug selection. ABC-transporter copy number, expression and activity were examined using real-time PCR, immunoblotting and flow cytometry. Drug responses were measured using growth assays. ABCB1 was upregulated in ICEC0942-resistant cells and there was cross-resistance to THZ1. THZ1-resistant cells upregulated ABCG2 but remained sensitive to ICEC0942. Drug resistance in both cell lines was reversible upon inhibition of ABC-transporters. CDK7i response was altered in adriamycin- and mitoxantrone-resistant cell lines demonstrating ABC-transporter upregulation. ABCB1 expression correlated with ICEC0942 and THZ1 response, and ABCG2 expression with THZ2 response, in a panel of cancer cell lines. We have identified ABCB1 upregulation as a common mechanism of resistance to ICEC0942 and THZ1, and confirmed that ABCG2 upregulation is a mechanism of resistance to THZ1. The identification of potential mechanisms of CDK7i resistance and differences in susceptibility of ICEC0942 and THZ1 to ABC-transporters, may help guide their future clinical use.
Collapse
Affiliation(s)
- Georgina P Sava
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Hailing Fan
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rosemary A Fisher
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sunil Pancholi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R Charles Coombes
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Lakjaya Buluwela
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
11
|
Zhu X, Wong ILK, Chan KF, Cui J, Law MC, Chong TC, Hu X, Chow LMC, Chan TH. Triazole Bridged Flavonoid Dimers as Potent, Nontoxic, and Highly Selective Breast Cancer Resistance Protein (BCRP/ABCG2) Inhibitors. J Med Chem 2019; 62:8578-8608. [PMID: 31465686 DOI: 10.1021/acs.jmedchem.9b00963] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present work describes the syntheses of diverse triazole bridged flavonoid dimers and identifies potent, nontoxic, and highly selective BCRP inhibitors. A homodimer, Ac22(Az8)2, with m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moieties and a bis-triazole-containing linker (21 atoms between the two flavones) showed low toxicity (IC50 toward L929, 3T3, and HFF-1 > 100 μM), potent BCRP-inhibitory activity (EC50 = 1-2 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 455-909). Ac22(Az8)2 inhibits BCRP-ATPase activity, blocks the drug efflux activity of BCRP, elevates the intracellular drug accumulation, and finally restores the drug sensitivity of BCRP-overexpressing cells. It does not down-regulate the surface BCRP protein expression to enhance the drug retention. Therefore, Ac22(Az8)2 and similar flavonoid dimers appear to be promising candidates for further development into combination therapy to overcome MDR cancers with BCRP overexpression.
Collapse
Affiliation(s)
- Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Iris L K Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Kin-Fai Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Jiahua Cui
- School of Environmental Science and Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Xuesen Hu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery , Hong Kong Polytechnic University , Hong Kong SAR, China.,Department of Chemistry , McGill University , Montreal , Quebec H3A 2K6 , Canada
| |
Collapse
|
12
|
Zhou J, Li Z, Li J, Gao B, Song W. Chemotherapy Resistance Molecular Mechanism in Small Cell Lung Cancer. Curr Mol Med 2019; 19:157-163. [PMID: 30813876 DOI: 10.2174/1566524019666190226104909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/08/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
The malignancy of small cell lung cancer (SCLC) is the highest amongst all
lung cancer types. It is characterized by rapid growth, early occurrence of distant sites
metastasis, poor survival rates and is initially sensitive to chemotherapy and
radiotherapy. However, most patients eventually relapse or disease progresses because
of chemotherapy resistance. Because of lack of effective second-line therapies, the
prognosis of SCLC patients is usually poor. For the development of novel therapies, it is
necessary to understand the mechanisms of chemotherapy resistance in SCLC. The
mechanism is complex, because multiple factors could lead to chemotherapy resistance.
An overview of multiple events triggering the formation of chemotherapy resistance
phenotypes of SCLC cells is discussed.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zhaopei Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jun Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Binbin Gao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
13
|
Ranjbar S, Khonkarn R, Moreno A, Baubichon-Cortay H, Miri R, Khoshneviszadeh M, Saso L, Edraki N, Falson P, Firuzi O. 5-Oxo-hexahydroquinoline derivatives as modulators of P-gp, MRP1 and BCRP transporters to overcome multidrug resistance in cancer cells. Toxicol Appl Pharmacol 2019; 362:136-149. [DOI: 10.1016/j.taap.2018.10.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
|
14
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
15
|
Krapf MK, Gallus J, Namasivayam V, Wiese M. 2,4,6-Substituted Quinazolines with Extraordinary Inhibitory Potency toward ABCG2. J Med Chem 2018; 61:7952-7976. [PMID: 30075623 DOI: 10.1021/acs.jmedchem.8b01011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several members of the ABC transporter superfamily play a decisive role in the development of multidrug resistance (MDR) in cancer. One of these MDR associated efflux transporters is ABCG2. One way to overcome this MDR is the coadministration of potent inhibitors of ABCG2. In this study, we identified novel inhibitors containing a 2,4,6-substituted quinazoline scaffold. Introduction of a 6-nitro function led to extraordinarily potent compounds that were highly selective for ABCG2 and also able to reverse the MDR toward the chemotherapeutic drugs SN-38 and mitoxantrone. The binding of substrate Hoechst 33342 and the two potent inhibitors 31 and 41 which differ in their mechanism of inhibition was rationalized using the recently published cryo-EM structures of ABCG2. For a better understanding of the interaction between the inhibitors and ABCG2, additional investigations regarding the ATPase activity, the interaction with Hoechst 33342, and with the conformational sensitive 5D3 antibody were carried out.
Collapse
Affiliation(s)
- Michael K Krapf
- Pharmaceutical Institute University of Bonn An der Immenburg 4 53121 Bonn , Germany
| | - Jennifer Gallus
- Pharmaceutical Institute University of Bonn An der Immenburg 4 53121 Bonn , Germany
| | | | - Michael Wiese
- Pharmaceutical Institute University of Bonn An der Immenburg 4 53121 Bonn , Germany
| |
Collapse
|
16
|
Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling - lung cancer is no exception. Respir Res 2017; 18:167. [PMID: 28870231 PMCID: PMC5584342 DOI: 10.1186/s12931-017-0650-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis. Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling are also reviewed.
Collapse
Affiliation(s)
- Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Luca Jaromi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gyorgy Miskei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
17
|
Polcari D, Hernández-Castro JA, Li K, Geissler M, Mauzeroll J. Determination of the Relationship between Expression and Functional Activity of Multidrug Resistance-Associated Protein 1 using Scanning Electrochemical Microscopy. Anal Chem 2017; 89:8988-8994. [DOI: 10.1021/acs.analchem.7b01601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Polcari
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A
0B8, Canada
| | | | - Kebin Li
- Life Sciences
Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Matthias Geissler
- Life Sciences
Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Janine Mauzeroll
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A
0B8, Canada
| |
Collapse
|
18
|
Dartier J, Lemaitre E, Chourpa I, Goupille C, Servais S, Chevalier S, Mahéo K, Dumas JF. ATP-dependent activity and mitochondrial localization of drug efflux pumps in doxorubicin-resistant breast cancer cells. Biochim Biophys Acta Gen Subj 2017; 1861:1075-1084. [PMID: 28214549 DOI: 10.1016/j.bbagen.2017.02.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND We hypothesized that, among the mechanisms of drug-resistance acquired by doxorubicin (DOX)-resistant breast cancer cells to maintain cell survival, ATP-dependent drug efflux pumps could be expressed in their mitochondrial membranes and this might limit the accumulation of DOX in this subcellular compartment in relation to mitochondrial ATP production. METHODS/RESULTS Mitochondrial DOX accumulation: the presence and the activity of mitochondrial efflux pumps and their relationship with mitochondrial ATP synthesis were analyzed in DOX-resistant (MCF-7doxR) and -sensitive (MCF-7S) breast cancer cells. Mitochondrial accumulation of DOX (autofluorescence) was decreased when ATP was produced, but only in MCF-7doxR. In these DOX-resistant cells, breast cancer resistance protein (BCRP) and multidrug resistance-associated protein (MRP1) were expressed and localized in mitochondria (confocal microscopy and confocal spectral imaging studies). In addition, mitochondrial accumulation of DOX was increased by BCRP and MRP1 inhibitors and, to a lower extent, by the mitochondrial ATP synthase inhibitor, oligomycin, in MCF-7doxR. CONCLUSIONS Both BCRP and MRP1 were localized in mitochondria and participated to the reduction of mitochondrial accumulation of DOX in MCF-7doxR. This process was partly dependent of mitochondrial ATP synthesis. GENERAL SIGNIFICANCE The present study provides novel insights in the involvement of mitochondria in the underlying mechanisms of DOX-resistance in breast cancer cells.
Collapse
Affiliation(s)
- Julie Dartier
- INSERM UMR1069, "Nutrition, Croissance et Cancer", Tours, France; Université François Rabelais, Tours, France
| | - Elsa Lemaitre
- INSERM UMR1069, "Nutrition, Croissance et Cancer", Tours, France
| | - Igor Chourpa
- Université François Rabelais, Tours, France; EA 6295 "Nanomédicaments et Nanosondes", Tours, France; UFR Sciences Pharmaceutiques, Tours, France
| | - Caroline Goupille
- INSERM UMR1069, "Nutrition, Croissance et Cancer", Tours, France; CHRU Bretonneau, Tours, France
| | - Stéphane Servais
- INSERM UMR1069, "Nutrition, Croissance et Cancer", Tours, France; Université François Rabelais, Tours, France; IUT, Tours, France
| | - Stéphan Chevalier
- INSERM UMR1069, "Nutrition, Croissance et Cancer", Tours, France; Université François Rabelais, Tours, France; UFR Sciences Pharmaceutiques, Tours, France
| | - Karine Mahéo
- INSERM UMR1069, "Nutrition, Croissance et Cancer", Tours, France; Université François Rabelais, Tours, France; UFR Sciences Pharmaceutiques, Tours, France.
| | - Jean-François Dumas
- INSERM UMR1069, "Nutrition, Croissance et Cancer", Tours, France; Université François Rabelais, Tours, France; UFR Sciences Pharmaceutiques, Tours, France.
| |
Collapse
|
19
|
Zambo I, Hermanova M, Zapletalova D, Skoda J, Mudry P, Kyr M, Zitterbart K, Sterba J, Veselska R. Expression of nestin, CD133 and ABCG2 in relation to the clinical outcome in pediatric sarcomas. Cancer Biomark 2017; 17:107-16. [PMID: 27314299 DOI: 10.3233/cbm-160623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nestin, CD133 and ABCG2 are recently discussed as putative markers, co-expression of which might determine a cancer stem cell (CSC) phenotype in sarcomas. OBJECTIVE Our study is focused on immunohistochemical analysis of nestin, CD133 and ABCG2 expression in rhabdomyosarcoma, Ewing sarcoma and osteosarcoma. Furthermore, we also analyzed the possible correlation of nestin, CD133 and ABCG2 expression levels with the patient outcome to identify potential prognostic values of these three putative CSC markers in the same cohorts. METHODS Using immunohistochemistry, expression of nestin, CD133 and ABCG2 was analyzed in 24 rhabdomyosarcoma, 22 Ewing sarcoma and 10 osteosarcoma tissue samples and expression levels of these markers were correlated with clinical outcome. RESULTS High nestin levels indicate poor prognosis in patients with Ewing sarcoma (P = 0.001), and high CD133 expression is associated with shorter survival in rhabdomyosarcoma patients (P = 0.002). In contrast, no significant relationship was found between ABCG2 expression and the clinical outcome. CONCLUSIONS Our analysis represents the first complex study of these three putative CSCs markers together in three different types of pediatric sarcomas and showed their possible prognostic values in these tumors.
Collapse
Affiliation(s)
- Iva Zambo
- Department of Pathological Anatomy, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Marketa Hermanova
- Department of Pathological Anatomy, Medical Faculty, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Danica Zapletalova
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jan Skoda
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic.,Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Peter Mudry
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Michal Kyr
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Karel Zitterbart
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jaroslav Sterba
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Renata Veselska
- Department of Pediatric Oncology, Medical Faculty, Masaryk University and University Hospital Brno, Brno, Czech Republic.,Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
20
|
Zhang W, Chen Z, Chen L, Wang F, Li F, Wang X, Fu L. ABCG2-overexpressing H460/MX20 cell xenografts in athymic nude mice maintained original biochemical and cytological characteristics. Sci Rep 2017; 7:40064. [PMID: 28059154 PMCID: PMC5216358 DOI: 10.1038/srep40064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/30/2016] [Indexed: 12/03/2022] Open
Abstract
H460/MX20 are derived from large cell lung cancer H460 cell line and then transformed into ABCG2-overexpressing cells by mitoxantrone’s induction, which are widely used in study of multidrug resistance (MDR) in vitro. To establish and spread the model of H460/MX20 cell xenografts, we investigated whether cell biological characteristics and the MDR phenotype were maintained in vivo model. Our results demonstrated that the cell proliferation, cell cycle, and ABCG2 expression level in xH460/MX20 cells isolated from H460/MX20 cell xenografts were similar to H460/MX20 cells in vitro. Importantly, xH460/MX20 cells exhibited high levels of resistance to ABCG2 substrates such as mitoxantrone and topotecan as H460/MX20 cells did. Furthermore, lapatinib, the inhibitor of ABCG2, potently reversed mitoxantrone- and topotecan-resistance of xH460/MX20 cells. Taken together, these results suggest that H460/MX20 cell xenografts in athymic nude mice still retain their original cytological characteristics and MDR phenotype. Thus, the H460/MX20 cell xenografts model could serve as a sound model in vivo for study on reversal MDR.
Collapse
Affiliation(s)
- Wei Zhang
- Experimental Animal Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhen Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Likun Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Fang Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Furong Li
- Experimental Animal Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaokun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, China
| |
Collapse
|
21
|
Tuy HD, Shiomi H, Mukaisho KI, Naka S, Shimizu T, Sonoda H, Mekata E, Endo Y, Kurumi Y, Sugihara H, Tani M, Tani T. ABCG2 expression in colorectal adenocarcinomas may predict resistance to irinotecan. Oncol Lett 2016; 12:2752-2760. [PMID: 27698852 DOI: 10.3892/ol.2016.4937] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/09/2016] [Indexed: 02/01/2023] Open
Abstract
Irinotecan is a key drug for patients with advanced and recurrent colorectal carcinoma. However, the efficacy of irinotecan is not sufficient; partly, as there is no useful marker to predict chemosensitivity to the drug. The aim of the present study was to evaluate whether the expression levels of adenosine triphosphate-binding cassette sub-family G (WHITE) member 2 (Junior blood group) (ABCG2) in primary colorectal tumors predict chemoresistance to irinotecan. Using the resected primary tumor specimens of 189 patients with colorectal cancer, the association between the immunohistochemical expression of ABCG2 protein and the results of the collagen gel droplet embedded culture drug sensitivity test, performed to evaluate the chemosensitivity to SN-38 (an active metabolite of irinotecan), was investigated. Among the 189 patients, 17 received irinotecan-based chemotherapy, and their responses and progression-free survival (PFS) were analyzed. The tumors of patients with increased ABCG2 expression accounted for 60% of the tumors examined, and were significantly more resistant to SN-38, compared with patients with low ABCG2 expression (P<0.001). In a multivariate logistic regression analysis, increased expression of ABCG2 protein was an independent and significant predictor of resistance to SN-38, increasing the risk of resistance by 12-fold. Increased expression of ABCG2 and a low sensitivity to SN-38 was significantly associated with resistance to irinotecan-based chemotherapy (P=0.01 and 0.028, respectively). The median PFS of patients with increased expression of ABCG2 was significantly shorter, compared with patients with low expression levels of ABCG2 (104 vs. 242 days; P=0.047). The increased immunohistochemical expression of ABCG2 in primary tumors may be a useful predictive biomarker of resistance to irinotecan-based chemotherapy for patients with recurrent or metastatic colorectal cancer.
Collapse
Affiliation(s)
- Hoang Dinh Tuy
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hisanori Shiomi
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Ken Ichi Mukaisho
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Shigeyuki Naka
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Tomoharu Shimizu
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiromichi Sonoda
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Eiji Mekata
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yoshihiro Endo
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yoshimasa Kurumi
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroyuki Sugihara
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Tohru Tani
- Department of Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
22
|
Fan LX, Zhang Y, Zhou Y, Wang ZD, Zhang YM, Chen HL. Clinical Significance of ABC Transporter Expression in Patients with Hepatocellular Carcinoma. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Li-xin Fan
- Combine Traditional Chinese and Western Medicine Postdoctoral Station, Dalian Medical University
- Department of Medical Oncology, The Third Hospital of Dalian
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Department of Pathology, The Sixth Hospital of Dalian
| | - Yi Zhou
- Department of Medical Oncology, The Third Hospital of Dalian
| | - Zhi-dong Wang
- Department of Hepatobiliary Surgery, Department of Pathology, The Sixth Hospital of Dalian
| | - Yong-mei Zhang
- Department of Medical Oncology, The Third Hospital of Dalian
| | - Hai-long Chen
- Combine Traditional Chinese and Western Medicine Postdoctoral Station, Dalian Medical University
| |
Collapse
|
23
|
Westover D, Li F. New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:159. [PMID: 26714461 PMCID: PMC4696234 DOI: 10.1186/s13046-015-0275-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/17/2015] [Indexed: 12/18/2022]
Abstract
ATP-binding cassette (ABC) transporters make up a superfamily of transmembrane proteins that play a critical role in the development of drug resistance. This phenomenon is especially important in oncology, where superfamily member ABCG2 (also called BCRP - breast cancer resistance protein) is known to interact with dozens of anti-cancer agents that are ABCG2 substrates. In addition to the well-studied and well-reviewed list of cytotoxic and targeted agents that are substrates for the ABCG2 transporter, a growing body of work links ABCG2 to multiple photodynamic therapy (PDT) agents, and there is a limited body of evidence suggesting that ABCG2 may also play a role in resistance to radiation therapy. In addition, the focus of ABC transporter research in regards to therapeutic development has begun to shift in the past few years. The shift has been away from using pump inhibitors for reversing resistance, toward the development of therapeutic agents that are poor substrates for these efflux pump proteins. This approach may result in the development of drug regimens that circumvent ABC transporter-mediated resistance entirely. Here, it is our intention to review: 1) recent discoveries that further characterize the role of ABCG2 in oncology, and 2) advances in reversing and circumventing ABC transporter-mediated resistance to anti-cancer therapies.
Collapse
Affiliation(s)
- David Westover
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
24
|
Millis SZ, Ejadi S, Demeure MJ. Molecular Profiling of Refractory Adrenocortical Cancers and Predictive Biomarkers to Therapy. BIOMARKERS IN CANCER 2015; 7:69-76. [PMID: 26715866 PMCID: PMC4686344 DOI: 10.4137/bic.s34292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE Current first-line chemotherapy for patients with metastatic adrenocortical cancer (ACC) includes doxorubicin, etoposide, cisplatin, and mitotane with a reported response rate of only 23.2%. New therapeutic leads for patients with refractory tumors are needed; there is no standard second-line treatment. METHODS Samples from 135 ACC tumors were analyzed by immunohistochemistry, in situ hybridization (FISH or CISH), and/or gene sequencing at a single commercial reference laboratory (Caris Life Sciences) to identify markers associated with drug sensitivity and resistance. RESULTS Overexpression of proteins related to demonstrated chemotherapy sensitivity or resistance included topoisomerase 1, progesterone receptor, and topoisomerase 2-alpha in 46%, 63%, and 42% of cases, respectively. Loss of excision repair cross-complementary group 1 (ERCC1), phosophatase and tensin homolog, O(6)-methylguanine-methyltransferase, and ribonucleotide reductase M1 (RRM1) was identified in 56%, 59%, 71%, and 58% of cases, respectively. Other aberrations included overexpression of programmed death-ligand 1 or programmed cell death protein 1 tumor-infiltrating lymphocytes in >40% of cases. In all, 35% of cases had a mutation in the canonical Wnt signaling pathway (either CTNNB1 or APC) and 48% had a mutation in TP53. No other genomic alterations were identified. CONCLUSION Biomarker alterations in ACC may be used to direct therapies, including recommendations for and potential resistance of some patients to traditional chemotherapies, which may explain the low response rate in the unselected population. Limited outcomes data support the use of mitotane and platinum therapies for patients with low levels of the proteins RRM1 and ERCC1.
Collapse
Affiliation(s)
- Sherri Z Millis
- Former affiliation: Caris Life Sciences, Medical Affairs, Phoenix, AZ, USA. ; Current affiliation: Ashion Analytics, LLC. Phoenix, AZ, USA
| | - Samuel Ejadi
- Scottsdale Healthcare, Virginia G. Piper Cancer Center, Scottsdale, AZ, USA. ; Translational Genomics Research Institute, Phoenix, AZ, USA
| | | |
Collapse
|
25
|
Koo SH, Lo YL, Yee JY, Lee EJD. Genetic and/or non-genetic causes for inter-individual and inter-cellular variability in transporter protein expression: implications for understanding drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:1821-37. [DOI: 10.1517/17425255.2015.1104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Yang G, Wang XJ, Huang LJ, Zhou YA, Tian F, Zhao JB, Chen P, Liu BY, Wen MM, Li XF, Zhang ZP. High ABCG4 Expression Is Associated with Poor Prognosis in Non-Small-Cell Lung Cancer Patients Treated with Cisplatin-Based Chemotherapy. PLoS One 2015; 10:e0135576. [PMID: 26270652 PMCID: PMC4535915 DOI: 10.1371/journal.pone.0135576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 07/23/2015] [Indexed: 12/15/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are associated with poor response to chemotherapy, and confer a poor prognosis in various malignancies. However, the association between the expression of the ABC sub-family G member 4 (ABCG4) and prognosis in patients with non-small-cell lung cancer (NSCLC) remains unclear. NSCLC tissue samples (n = 140) and normal lung tissue samples (n = 90) were resected from patients with stage II to IV NSCLC between May 2004 and May 2009. ABCG4 mRNA and protein expressions were detected by RT-PCR, western blot, and immunohistochemistry. Patients received four cycles of cisplatin-based post-surgery chemotherapy and were followed up until May 31st, 2014. ABCG4 positivity rate was higher in NSCLC than in normal lung tissues (48.6% vs. 0%, P<0.001) and ABCG4 expression was significantly associated with poor differentiation, higher tumor node metastasis (TNM) stage, and adenocarcinoma histological type (all P<0.001). Univariate (HR = 2.284, 95%CI: 1.570-3.324, P<0.001) and multivariate (HR = 2.236, 95%CI: 1.505-3.321, P<0.001) analyses showed that ABCG4 expression was an independent factor associated with a poor prognosis in NSCLC. Patients with ABCG4-positive NSCLC had shorter median survival than ABCG4-negative NSCLC (20.1 vs. 43.2 months, P<0.001). The prognostic significance of ABCG4 expression was apparent in stages III and IV NSCLC. In conclusion, high ABCG4 expression was associated with a poor prognosis in patients with NSCLC treated with cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Guang Yang
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
| | - Xue-Jiao Wang
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
| | - Li-Jun Huang
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
| | - Yong-An Zhou
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
| | - Feng Tian
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
| | - Jin-Bo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
| | - Peng Chen
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
| | - Bo-Ya Liu
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
| | - Miao-Miao Wen
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
| | - Xiao-Fei Li
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
- * E-mail: (XFL); (ZPZ)
| | - Zhi-Pei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, the Fourth Military Medical University, Xi’an, 710038, China
- * E-mail: (XFL); (ZPZ)
| |
Collapse
|
27
|
Mundra V, Li W, Mahato RI. Nanoparticle-mediated drug delivery for treating melanoma. Nanomedicine (Lond) 2015; 10:2613-33. [PMID: 26244818 DOI: 10.2217/nnm.15.111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Melanoma originated from melanocytes is the most aggressive type of skin cancer with limited treatment options. New targeted therapeutic options with the discovery of BRAF and MEK inhibitors have shown significant survival benefits. Despite the recent progress, development of chemoresistance and systemic toxicity remains a challenge for treating metastatic melanoma. While the response from the first line of treatment against melanoma using dacarbazine remains only 5-10%, the prolonged use of targeted therapy against mutated oncogene BRAF develops chemoresistance. In this review, we will discuss the nanoparticle-based strategies for encapsulation and conjugation of drugs to the polymer for maximizing their tumor distribution through enhanced permeability and retention effect. We will also highlight photodynamic therapy and design of melanoma-targeted nanoparticles.
Collapse
Affiliation(s)
- Vaibhav Mundra
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| |
Collapse
|
28
|
Kang D, Park JM, Jung CK, Lee BI, Oh ST, Choi MG. Prognostic impact of membranous ATP-binding cassette Sub-family G member 2 expression in patients with colorectal carcinoma after surgical resection. Cancer Biol Ther 2015; 16:1438-44. [PMID: 26176272 DOI: 10.1080/15384047.2015.1071736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ATP-binding cassette sub-family G member 2 (ABCG2) is a transporter protein that has been associated with multidrug resistance and poor prognosis in several types of cancers. In colorectal cancers, however, the prognostic value of ABCG2 expression is not yet clear. ABCG2 expression was analyzed by immunohistochemistry using tissue microarrays in 234 consecutive patients who underwent surgical resection. The ABCG2 expression level was defined by the composite score, determined by multiplying intensity and percentage of tumor staining scores. This was dichotomized at the median, and the association of ABCG2 expression with disease severity and patient survival was determined. ABCG2 expression in the cytoplasm and membrane was observed in 77.8% and 61.5% of the samples, respectively. High expression of ABCG2 in both the cytoplasm and membrane was found more frequently in well-differentiated lesions (P < 0.05). High expression of membranous ABCG2 was significantly associated with better overall survival (hazard ratio [HR], 0.624; 95% confidence interval [CI], 0.411-0.948; P = 0.027) and disease-specific survival (HR, 0.499; 95% CI, 0.308 - 0.808; P = 0.005) compared to low expression. However, cytoplasmic expression of ABCG2 was not significantly associated with patient survival. The expression level of membranous ABCG2 in colorectal tumors can predict post-operative patient survival, suggesting the potential for ABCG2 as a prognostic biomarker.
Collapse
Affiliation(s)
- Donghoon Kang
- a Department of Internal Medicine ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Jae Myung Park
- a Department of Internal Medicine ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Chan Kwon Jung
- b Hospital Pathology ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Bo-In Lee
- a Department of Internal Medicine ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Seong Taek Oh
- c Surgery: College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| | - Myung-Gyu Choi
- a Department of Internal Medicine ; College of Medicine ; The Catholic University of Korea ; Seoul , Korea
| |
Collapse
|
29
|
Kanno S, Utsunomiya K, Kono Y, Tanigawa N, Sawada S. The effect of radiation exposure on multidrug resistance: in vitro and in vivo studies using non-small lung cancer cells. EJNMMI Res 2015; 5:11. [PMID: 25853017 PMCID: PMC4385263 DOI: 10.1186/s13550-015-0091-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/24/2015] [Indexed: 12/01/2022] Open
Abstract
Background Technetium-99m methoxyisobutylisonitrile (Tc MIBI) is a substrate with the same uptake kinetics as doxorubicin. Multidrug resistance (MDR) is a mechanism that impedes chemotherapy of non-small cell lung cancer (NSCLC). We examined the effect of radiation exposure on MDR in NSCLC and the synergy between an MDR modulator, GG918, and radiation, using 99mTc MIBI in vitro and doxorubicin in vivo. Methods In vitro NSCLC cells (H1299) were exposed to radiation (3-, 6-, and 9-Gy-irradiated groups) alongside a not-irradiated (0 Gy) group. Technetium-99 metastable methoxyisobutylisonitrile (99mTc MIBI) was administered to cell suspensions at 48 h after irradiation. Cell radioactivity was measured, and Cin/Cout ratios were calculated and compared. NSCLC cells were also subcutaneously transplanted into the left thigh of nude mice, which were subsequently raised for 2 weeks. Two groups of mice were used: mice exposed to irradiation (9-Gy-irradiated) and those that were not (not-irradiated). Doxorubicin was administered through the caudal vein at 48 h after the irradiation. Using an in vivo imaging system, intratumoural photon counts were measured. To determine the synergy between the MDR modulator and 3- or 6-Gy irradiation, the final GG918 concentration was determined: 0.1 μM (N-H, 3-H, and 6-H groups), 0.001 μM (N-L, 3-L, and 6-L groups), and 0 μM (N-0, 3-0, and 6-0 groups). Cin/Cout ratios were calculated and compared among the groups. Results Cin/Cout after 6- or 9-Gy irradiation was significantly higher than that of the not-irradiated group (0 Gy). In vivo, fluorescence photon counts were significantly higher in the tumours of 9-Gy-irradiated mice, up to 270 min after administration of doxorubicin, as compared to the not-irradiated mice. The Cin/Cout ratio in the N-H, 3-H, and 6-H groups was significantly higher than that in the N-0, 3-0, and 6-0 groups. There was no significant difference between Cin/Cout in the N-L group and that of the N-0 group. However, the Cin/Cout ratio in the 3-L and 6-L groups was significantly higher than that in the 3-0 and 6-0 groups. Conclusions Irradiation decreased MDR in NSCLC cells. In combination with a low-dose MDR modulator, GG918, MDR transport function was synergistically reduced 48 h post-irradiation.
Collapse
Affiliation(s)
- Shohei Kanno
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010 Osaka Japan
| | - Keita Utsunomiya
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010 Osaka Japan
| | - Yumiko Kono
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010 Osaka Japan
| | - Noboru Tanigawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010 Osaka Japan
| | - Satoshi Sawada
- Department of Radiology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010 Osaka Japan
| |
Collapse
|
30
|
Kathawala RJ, Gupta P, Ashby CR, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2014; 18:1-17. [PMID: 25554624 DOI: 10.1016/j.drup.2014.11.002] [Citation(s) in RCA: 554] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters represent one of the largest and oldest families of membrane proteins in all extant phyla from prokaryotes to humans, which couple the energy derived from ATP hydrolysis essentially to translocate, among various substrates, toxic compounds across the membrane. The fundamental functions of these multiple transporter proteins include: (1) conserved mechanisms related to nutrition and pathogenesis in bacteria, (2) spore formation in fungi, and (3) signal transduction, protein secretion and antigen presentation in eukaryotes. Moreover, one of the major causes of multidrug resistance (MDR) and chemotherapeutic failure in cancer therapy is believed to be the ABC transporter-mediated active efflux of a multitude of structurally and mechanistically distinct cytotoxic compounds across membranes. It has been postulated that ABC transporter inhibitors known as chemosensitizers may be used in combination with standard chemotherapeutic agents to enhance their therapeutic efficacy. The current paper reviews the advance in the past decade in this important domain of cancer chemoresistance and summarizes the development of new compounds and the re-evaluation of compounds originally designed for other targets as transport inhibitors of ATP-dependent drug efflux pumps.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
31
|
Yang Y, Luo X, Yang N, Feng R, Xian L. The prognostic value of excision repair cross-complementation group 1 (ERCC1) in patients with small cell lung cancer (SCLC) receiving platinum-based chemotherapy: evidence from meta-analysis. PLoS One 2014; 9:e111651. [PMID: 25375151 PMCID: PMC4222940 DOI: 10.1371/journal.pone.0111651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 10/06/2014] [Indexed: 12/16/2022] Open
Abstract
Recently, the correlation between the efficacy of platinum-based chemotherapy and ERCC1 expression in patients with SCLC has attracted wide-spread attention, and a lot of investigations have been conducted, whereas conflicting results were presented. Therefore, we performed the present meta-analysis of eligible studies to derive a more precise evaluation of the association between ERCC1 expression and the clinical outcome in SCLC patients receiving platinum-based chemotherapy. A literature search for relevant studies was conducted in the electronic databases of PubMed, EMBASE and Web of Science. The inclusive criteria were SCLC patients treated by platinum-based chemotherapy, and evaluated the relationship between ERCC1 expression and the clinical outcomes [including overall response rate (ORR), overall survival (OS) or progression-free survival (PFS)]. Odds ratio (OR) or hazard ratio (HR) with 95% confidence interval (CI) was calculated to assess the risk. A total of nine studies including 1129 patients were included in final analysis. Our analysis indicated that positive/high ERCC1 expression was associated with unfavorable OS (HR = 1.18, 95%CI = 1.02–1.37) and PFS (HR = 1.46, 95%CI = 1.14–1.88). Subgroup analysis according to disease stage suggested the significant relationship was found in limited stage (LS-SCLC), but not in extensive stage (ES-SCLC). However, no significant association was found between ERCC1 expression and ORR. Our analysis suggested ERCC1 expression may be a prognostic factor in SCLC patients receiving platinum-based chemotherapy, especially for LS-SCLC.
Collapse
Affiliation(s)
- Yanlong Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiuping Luo
- Department of Chemotherapy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Nuo Yang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ronghao Feng
- Department of Chemotherapy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Lei Xian
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- * E-mail:
| |
Collapse
|
32
|
Wang YJ, Zhang YK, Kathawala RJ, Chen ZS. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance. Cancers (Basel) 2014; 6:1925-52. [PMID: 25268163 PMCID: PMC4276951 DOI: 10.3390/cancers6041925] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/18/2022] Open
Abstract
The phenomenon of multidrug resistance (MDR) has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC) transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs), such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance.
Collapse
Affiliation(s)
- Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
33
|
Zhao H, Zhang H, Du Y, Gu X. Prognostic significance of BRCA1, ERCC1, RRM1, and RRM2 in patients with advanced non-small cell lung cancer receiving chemotherapy. Tumour Biol 2014; 35:12679-88. [PMID: 25227663 DOI: 10.1007/s13277-014-2592-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/03/2014] [Indexed: 12/30/2022] Open
Abstract
The aim of this study was to examine the prognostic value of breast cancer susceptibility gene 1 (BRCA1), excision repair cross-complementation 1 (ERCC1), ribonucleotide reductase subunit M1 (RRM1), and ribonucleotide reductase subunit M2 (RRM2) in patients with advanced non-small cell lung cancer (NSCLC) who received platinum-based chemotherapy. A total of 214 patients with histologically or cytologically confirmed advanced NSCLC were enrolled in this study. The relative complementary DNA (cDNA) quantification for BRCA1, ERCC1, RRM1, and RRM2 was conducted using a fluorescence-based, real-time detection method, and β-actin was used as a reference gene. A strong correlation was observed between ERCC1 and RRM1 messenger RNA (mRNA) levels (P = 0.0385). There were inverse significant correlations between BRCA1 and ERCC1 (P < 0.0001) or RRM1 (P < 0.0001) mRNA levels. As BRCA1 levels increased, the probability of response increased (odds ratio [OR] = 0.49; P < 0.001) and the risk of progression (hazard ratio [HR] = 1.52; P = 0.034) and death (HR = 1.45; P = 0.024) decreased. As ERCC1, RRM1, and RRM2 levels increased, the probability of response decreased (ERCC1, OR = 0.42, P < 0.001; RRM1, OR = 0.85, P = 0.083; RRM2, OR = 0.42, P = 0.005) and the risk of progression (ERCC1, HR = 1.59, P = 0.002; RRM1, HR = 1.48, P = 0.039; RRM2, HR = 1.49, P = 0.041) and death (ERCC1, HR = 1.62, P = 0.008; RRM1, HR = 1.52, P = 0.023; RRM2, HR = 1.48, P = 0.017) increased. At multivariate analysis, low expression of ERCC1 was shown to be an independent predictive factor for response to chemotherapy (P = 0.018), time to progression (P = 0.025), and overall survival (P = 0.038). Furthermore, concomitant low expression levels of ERCC1, RRM1, and RRM2 and the high expression level of BRCA1 were predictive of a better outcome (P = 0.014). This study suggests that the efficacy of platinum-based chemotherapy can be improved when customized according to the mRNA expression of BRCA1, ERCC1, RRM1, and RRM2.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | | | | | | |
Collapse
|
34
|
Abstract
Multidrug resistance presents one of the most important causes of cancer treatment failure. Numerous in vitro and in vivo data have made it clear that multidrug resistance is frequently caused by enhanced expression of ATP-binding cassette (ABC) transporters. ABC transporters are membrane-bound proteins involved in cellular defense mechanisms, namely, in outward transport of xenobiotics and physiological substrates. Their function thus prevents toxicity as carcinogenesis on one hand but may contribute to the resistance of tumor cells to a number of drugs including chemotherapeutics on the other. Within 48 members of the human ABC superfamily there are several multidrug resistance-associated transporters. Due to the well documented susceptibility of numerous drugs to efflux via ABC transporters it is highly desirable to assess the status of ABC transporters for individualization of treatment by their substrates. The multidrug resistance associated protein 1 (MRP1) encoded by ABCC1 gene is one of the most studied ABC transporters. Despite the fact that its structure and functions have already been explored in detail, there are significant gaps in knowledge which preclude clinical applications. Tissue-specific patterns of expression and broad genetic variability make ABCC1/MRP1 an optimal candidate for use as a marker or member of multi-marker panel for prediction of chemotherapy resistance. The purpose of this review was to summarize investigations about associations of gene and protein expression and genetic variability with prognosis and therapy outcome of major cancers. Major advances in the knowledge have been identified and future research directions are highlighted.
Collapse
Affiliation(s)
- Tereza Kunická
- Department of Toxicogenomics, National Institute of Public Health , Prague , Czech Republic
| | | |
Collapse
|
35
|
Stacy AE, Jansson PJ, Richardson DR. Molecular pharmacology of ABCG2 and its role in chemoresistance. Mol Pharmacol 2013; 84:655-69. [PMID: 24021215 DOI: 10.1124/mol.113.088609] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
The ATP-binding cassette, subfamily G, isoform 2 protein (ABCG2) is an important member of the ABC transporter superfamily, which has been suggested to be involved in multidrug resistance (MDR) in cancer. Its diverse range of substrates includes many common chemotherapeutics such as imatinib, doxorubicin, and mitoxantrone. Physiologically, ABCG2 is highly expressed in areas such as the blood-brain barrier and gastrointestinal tract, where it is thought to play a role in protection against xenobiotic exposure. High ABCG2 expression has also been found in a variety of solid tumors and in hematologic malignancies and has been correlated with poorer clinical outcomes. Furthermore, ABCG2 expression is a characteristic feature of cancer stem cells, which are able to self-renew and differentiate. These cancer stem cells have been postulated to play an important role in MDR, where their inherent ABCG2 expression may allow them to survive chemotherapy and repopulate the tumor after exposure to chemotherapeutics. This observation raises the exciting possibility that by inhibiting ABCG2, cancer stem cells and other cancers may be targeted and eradicated, at which point conventional chemotherapeutics would be sufficient to eliminate the remaining tumor cells. Inhibitors of ABCG2, such as tyrosine kinase inhibitors, phosphodiesterase-5 inhibitors, and the fumitremorgin-type indolyl diketopiperazine, Ko143 [(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester], could potentially be used for this purpose. However, these agents are still awaiting comprehensive clinical assessment.
Collapse
Affiliation(s)
- Alexandra E Stacy
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
36
|
GUO ZHANJUN, WANG HONGJING, LI YANTAO, LI BIN, LI CUIQIAO, DING CUIMIN. A microRNA-related single nucleotide polymorphism of the XPO5 gene is associated with survival of small cell lung cancer patients. Biomed Rep 2013; 1:545-548. [PMID: 24648983 PMCID: PMC3917003 DOI: 10.3892/br.2013.92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/20/2013] [Indexed: 01/19/2023] Open
Abstract
MicroRNA (miRNA)-related single nucleotide polymorphisms (miR-SNPs) in miRNA processing machinery genes affect cancer risk, treatment efficacy and patient prognosis. A miR-SNP of rs11077 located in the 3'UTR of miRNA processing machinery gene XPO5 was examined in small cell lung cancer (SCLC) patients to evaluate its association with cancer survival. A total of 42 patients were enrolled in the present study and genotyped for rs11077 and survival was assessed using the Kaplan-Meier method, as well as univariate and multivariate analyses. The AA genotype of rs11077 was identified for its significant association with better survival time (P=0.023). In addition, rs11077 was found to associate independently with overall survival in SCLC patients by multivariate analysis (relative risk 2.469; 95% CI, 1.088-5.603; P=0.031). The findings of this study suggest that although miR-SNP studies for miRNA processing machinery genes are still at an early age, miR-SNPs have an impact on cancer survival. In conclusion, a miR-SNP in the 3'UTR region of the XPO5 gene was identified as an independent prognostic marker for survival of advanced SCLC patients.
Collapse
Affiliation(s)
- ZHANJUN GUO
- Departments of Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - HONGJING WANG
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - YANTAO LI
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - BIN LI
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - CUIQIAO LI
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| | - CUIMIN DING
- Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011,
P.R. China
| |
Collapse
|
37
|
Expression of multidrug resistance-associated protein 2 in human gallbladder carcinoma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:527534. [PMID: 23841074 PMCID: PMC3697274 DOI: 10.1155/2013/527534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/03/2013] [Indexed: 12/16/2022]
Abstract
Gallbladder carcinoma (GBCA) is one of the most aggressive malignancies. It is usually diagnosed at an advanced stage, and prognosis remains poor despite advances in imaging techniques and aggressive surgical treatment. Overexpression of multidrug resistance-associated proteins (MRPs) in tumor cells is a major cause of the intrinsic multidrug resistance phenotype. Despite the documented importance of MRP expression in many carcinomas, the prognostic significance of MRP2 expression in primary GBCA is not known. Immunostaining for MRP2 was performed on tissue samples obtained from 143 patients with GBCA. We examined the association between MRP expression and clinicopathological characteristics and outcome of patients with GBCA. GBCA demonstrated MRP2 immunoreactivity in the apicolateral membranes of epithelial cells. MRP2 expression was positive in 53.1% (76/143) of GBCA samples. Positive MRP2 expression was significantly associated with the presence of local recurrence (P = 0.038), lymphatic invasion (P = 0.038), vascular invasion (P = 0.023), and perineural invasion (P = 0.006). In addition, the median survival time of patients with MRP2-positive GBCA (15 months) was significantly shorter than that of patients with MRP2-negative GBCA (85 months, P = 0.011). We found that the expression of MRP2 in GBCA contributed to aggressive tumor behavior and poor prognosis, suggesting that MRP2 expression can be used as a potential prognostic biomarker of GBCA.
Collapse
|
38
|
Barr MP, MacDonagh L, O’Byrne KJ. Markers of response to platinum-based chemotherapy in lung cancer. Lung Cancer Manag 2013. [DOI: 10.2217/lmt.13.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SUMMARY Non-small-cell lung cancer (NSCLC) is the most common cause of cancer-related deaths among men and women worldwide. Despite the development of molecular targeted therapies, platinum-based combination chemotherapy remains the most effective systemic chemotherapy for NSCLC patients. Unfortunately, the outcomes of platinum-based therapies, in particular those containing cisplatin, have reached a plateau due to the development of both intrinsic and acquired resistance. While significant variations in response to platinum-based chemotherapeutic regimens exist, defining molecular features that may determine resistance or response to chemotherapy is critical. This review will focus on some of the emerging biomarkers that are predictive of response to such treatments that may offer potential in the future management of NSCLC patients.
Collapse
Affiliation(s)
- Martin P Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James’s Hospital, Dublin 8, Ireland
| | - Lauren MacDonagh
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James’s Hospital, Dublin 8, Ireland
| | - Kenneth J O’Byrne
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James’s Hospital, Dublin 8, Ireland
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
39
|
Individualized Chemotherapy in Advanced NSCLC Patients Based on mRNA Levels of BRCA1 and RRM1. Chin J Cancer Res 2013; 24:226-31. [PMID: 23359225 DOI: 10.1007/s11670-012-0226-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 08/09/2011] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE Experimental evidence suggests that the overexpression of breast cancer-specific tumor suppressor protein 1 (BRCA1) gene enhances sensitivity to docetaxel and resistance to cisplatin and ribonucleotide reductase M1 (RRM1) gene overexpression enhances resistance to gemcitabine. To further examine the effect of BRCA1 and RRM1 mRNA levels on outcome in advanced non-small cell lung cancer (NSCLC), we performed this non-randomized phase II clinical trial which tested the hypothesis that customized therapy would confer improved outcome over non-customized therapy. METHODS RNA was isolated from fresh tumor tissue. Patients received chemotherapy regimen based on their BRCA1 and RRM1 mRNA levels: both low-cisplatin plus gemcitabine (GP); both high-vinorelbine plus cisplatin (NP); BRCA1 low and RRM1 high-cisplatin plus docetaxel (TP); BRCA1 high and RRM1 low-vinorelbine plus gemcitabine (GN). RESULTS From Dec 2005 to Nov 2008, 94 metastatic and locally advanced NSCLC patients from our institute were enrolled in this study. The median age was 58 years old. Among them, 21 patients received GP, 30 patients received TP and 43 patients received NP chemotherapy. GP group had a higher response rate, and longer median time to progression (TTP) and median overall survival (OS) time than the other 2 groups. The response rates in the GP, TP and NP groups were 42.9%, 36.7% and 27.9%, respectively (P=0.568). The median TTP was 5.6, 5.0, 4.8 months (P=0.975), respectively, and the median OS time was 12.5, 11.0, 9.7 months (P=0.808), respectively. CONCLUSION Chemotherapy customized according to BRCA1 and RRM1 expression levels is associated with higher response rate and longer TTP and OS time in the GP group. This suggests that BRCA1 and RRM1 mRNA levels could be used as biomarkers in individual therapy in NSCLC.
Collapse
|
40
|
Abstract
Lung cancer is the most commonly diagnosed cancer in the world. “Driver” and “passenger” mutations identified in lung cancer indicate that genetics play a major role in the development of the disease, progression, metastasis and response to therapy. Survival rates for lung cancer treatment have remained stagnant at ~15% over the past 40 years in patients with disseminated disease despite advances in surgical techniques, radiotherapy and chemotherapy. Resistance to therapy; either intrinsic or acquired has been a major hindrance to treatment leading to great interest in studies seeking to understand and overcome resistance. Genetic information gained from molecular analyses has been critical in identifying druggable targets and tumor profiles that may be predictors of therapeutic response and mediators of resistance. Mutated or overexpressed epidermal growth factor receptor (EGFR) and translocations in the echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) genes (EML4-ALK) are examples of genetic aberrations resulting in targeted therapies for both localized and metastatic disease. Positive clinical responses have been noted in patients harboring these genetic mutations when treated with targeted therapies compared to patients lacking these mutations. Resistance is nonetheless a major factor contributing to the failure of targeted agents and standard cytotoxic agents. In this review, we examine molecular mechanisms that are potential drivers of resistance in non-small cell lung carcinoma, the most frequently diagnosed form of lung cancer. The mechanisms addressed include resistance to molecular targeted therapies as well as conventional chemotherapeutics through the activity of multidrug resistance proteins.
Collapse
Affiliation(s)
- Janet Wangari-Talbot
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| | - Elizabeth Hopper-Borge
- Fox Chase Cancer Center, Developmental Therapeutics Program, 333 Cottman Ave, Philadelphia, PA, USA
| |
Collapse
|
41
|
MRP2 (ABCC2, cMOAT) expression in nuclear envelope of primary fallopian tube cancer cells is a new unfavorable prognostic factor. Arch Gynecol Obstet 2012; 287:563-70. [PMID: 23135210 PMCID: PMC3569580 DOI: 10.1007/s00404-012-2589-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/01/2012] [Indexed: 11/16/2022]
Abstract
Objective To determine the prognostic value of the immunohistochemical evaluation of the multidrug resistance-associated protein 2 (MRP2) expression, together with its subcellular localization in primary fallopian tube carcinomas (PFTCs). Methods The immunohistochemical analysis was performed using samples originating from 70 patients with PFTCs. Results (1) We documented that MRP2 can be localized in the plasma membrane (MRP2c), as well as in the nuclear envelope (MRP2n) of the PFTC cells. (2) Patients with more advanced stage, with progression of the disease and patients who died, showed significantly higher expression of the MRP2n. (3) Univariate and multivariate analyses showed that MRP2n is an unfavorable prognostic factor in PFTCs. (4) The analysis of the classic clinicopathological data revealed that only the FIGO stage had prognostic value, both in the univariate, as well as in multivariate analysis. Conclusions (1) This study suggests that MRP2n is a new disadvantageous prognostic factor in PFTCs and (2) that expression in nuclear envelope can be associated with lower differentiation of cancer cells and their resistance to the cisplatin. (3) We have also confirmed independent prognostic value of FIGO stage in PFTCs.
Collapse
|
42
|
Xiao X, Meng Q, Xu J, Jiao Y, Rosen EM, Fan S. [EGFR-dependent impact of indol-3-carbinol on radiosensitivity of lung cancer cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2012; 15:391-8. [PMID: 22814257 PMCID: PMC6000072 DOI: 10.3779/j.issn.1009-3419.2012.07.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
背景与目的 吲哚-3-甲醇(indole-3-carbinol, I3C)是十字花科蔬菜中一种主要的有效植物化学物质,且具有防癌和抗癌作用。本研究旨在观察I3C是否影响表皮生长因子受体(epidermal growth factor receptor, EGFR)表达水平不同的肺癌细胞放射敏感性。 方法 采用MTT和克隆形成实验方法分别检测肺癌细胞的生长和存活率;siRNA转染方法降低细胞中EGFR蛋白表达水平;Western blot和RT-PCR法分别测定EGFR蛋白和mRNA的表达。 结果 采用无明显毒副作用的5 μmol/L剂量的I3C预处理明显降低了EGFR表达阳性的人肺腺癌H1975和人肺鳞癌H226细胞对γ-射线照射的放射敏感性,而I3C对EGFR表达阴性的人肺鳞癌NIH-H520细胞的放射敏感性则影响非常小。Western blot结果显示I3C可以增加H1975和H226细胞中EGFR蛋白的表达水平和Y845位点磷酸化水平。EGFR siRNA降低了NIH-H1975细胞中EGFR蛋白的表达,增加了细胞的放射敏感性,并有效地降低和抑制了I3C导致的细胞耐辐射效应。 结论 我们的研究结果首次证实I3C可以通过调节EGFR表达和磷酸化水平从而影响肺癌细胞的放射治疗敏感性,提示EGFR可能是I3C影响肺癌放射治疗敏感性的重要靶蛋白。
Collapse
Affiliation(s)
- Xiao Xiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|
43
|
Sodja E, Knez L, Kern I, Ovčariček T, Sadikov A, Cufer T. Impact of ERCC1 expression on treatment outcome in small-cell lung cancer patients treated with platinum-based chemotherapy. Eur J Cancer 2012; 48:3378-85. [PMID: 22795264 DOI: 10.1016/j.ejca.2012.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 05/22/2012] [Accepted: 06/10/2012] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The excision repair cross-complementing 1 (ERCC1) protein is an extensively investigated molecular marker because it may decrease sensitivity to platinum-based chemotherapy. Low ERCC1 expression has already been correlated with better treatment efficacy in non-small-cell lung cancer patients treated with platinum-based chemotherapy. However, the data on a prognostic and/or predictive value of ERCC1 in small-cell lung cancer (SCLC) are still very limited. METHODS This retrospective pilot study evaluated the impact of ERCC1 expression levels on response to first-line platinum-based chemotherapy with or without radiotherapy and survival outcomes of 77 SCLC patients. ERCC1 protein expression was determined immunohistochemically in primary tumour tissue. RESULTS ERCC1 protein expression was positive in 40/77 (51.9%) of our patients. No significant association was found between ERCC1 protein expression and response rate to first-line platinum-based chemotherapy, progression-free survival (PFS), or overall survival (OS), either in the overall population or in patients stratified by disease stage. CONCLUSIONS In our limited group of 77 SCLC patients, ERCC1 protein expression was not found to correlate with either response rate to platinum-based chemotherapy or survival outcomes. Multi-centric prospective trials using a validated method of ERCC1 determination are mandatory in order to obtain a definitive answer on the predictive value of ERCC1 in SCLC.
Collapse
|
44
|
Malekshah OM, Lage H, Bahrami AR, Afshari JT, Behravan J. PXR and NF-κB correlate with the inducing effects of IL-1β and TNF-α on ABCG2 expression in breast cancer cell lines. Eur J Pharm Sci 2012; 47:474-80. [PMID: 22750628 DOI: 10.1016/j.ejps.2012.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/17/2012] [Accepted: 06/20/2012] [Indexed: 12/24/2022]
Abstract
In this study we aimed to evaluate PXR and ABCG2 gene expression patterns and NF-κB activity induced by proinflammatory cytokines in different breast normal and carcinoma cells. The effects of proinflammatory cytokines on ABCG2 and PXR mRNA expression were studied using real-time PCR. Western blot analysis used for evaluating the protein levels of ABCG2, PXR and the active form of NF-κB (p65 in nuclear protein extract). Significant inductions in the ABCG2 and PXR mRNA and protein levels and NF-κB activity, were observed in MCF7, BT-474, CAL51, 184A1 and HBL100 cells, upon treatment with 50 ng/ml of IL-1β and TNF-α. On the contrary significant reduction of the ABCG2 and PXR mRNA and protein levels and NF-κB activity, were observed in MDA-MB-435 cell line. In conclusion, IL-1β and TNF-α induced ABCG2 and PXR expression and NF-κB activity in some breast cancer and normal cell lines. Similar patterns of induction and reduction in PXR and ABCG2 genes and NF-κB activity suggest a probable relationship between ABCG2, PXR and NF-κB.
Collapse
Affiliation(s)
- Obeid M Malekshah
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
45
|
Lin XY, Fan CF, Dong XJ, Yu JH, Dai SD, Wang EH. Expression and significance of stem cell markers in pulmonary sclerosing haemangioma. Histopathology 2012; 61:178-85. [PMID: 22691172 DOI: 10.1111/j.1365-2559.2011.04088.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The two major types of cells of pulmonary sclerosing haemangioma (PSH) with the same origin show significant differences in morphological phenotype. Whether these differences are caused by their different differentiation status is still uncertain. The aim of this study was to analyse their differentiation status by detecting the expression of several stem cell markers in PSH. METHODS AND RESULTS The expression of stem cell markers was examined by using streptavidin peroxidase (SP) immunohistochemisty in 45 PSH specimens. Also, the two types of cells were, respectively, captured by laser capture microdissection (LCM) from 28 PSH specimens, and total RNA was then extracted followed by reverse transcription-polymerase chain reaction (RT-PCR). The results demonstrated that the expression rates of ABCG2, Notch1 and Notch3 in polygonal cells were significantly higher than those in cuboidal cells (P < 0.05), and the expression levels of ABCG2, Notch3 and Jagged1 in polygonal cells were clearly higher than those in cuboidal cells (P < 0.05). CONCLUSION The data obtained provided evidence that the two types of cells in PSH may be different in differentiation status. The differentiation difference between the two types of cells might lead to variation in their morphological phenotype.
Collapse
Affiliation(s)
- Xu-Yong Lin
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
46
|
Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 2012; 83:1084-103. [PMID: 22248732 PMCID: PMC3307098 DOI: 10.1016/j.bcp.2012.01.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 01/16/2023]
Abstract
Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed "side population cells," which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the "side population" phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured.
Collapse
Affiliation(s)
| | - Yi Xie
- University of Maryland Greenebaum Cancer Center
| | - Maria R. Baer
- University of Maryland Greenebaum Cancer Center
- Department of Medicine, University of Maryland School of Medicine
| | - Douglas D. Ross
- University of Maryland Greenebaum Cancer Center
- Department of Medicine, University of Maryland School of Medicine
- Departments of Pathology, and Pharmacology & Experimental Therapeutics, University of Maryland, School of Medicine
- Staff Physician, Baltimore VA Medical Center
| |
Collapse
|
47
|
DING CUIMIN, LI RUIJUAN, PENG JINGCUI, LI SHENGMIAN, GUO ZHANJUN. A polymorphism at the miR-502 binding site in the 3' untranslated region of the SET8 gene is associated with the outcome of small-cell lung cancer. Exp Ther Med 2012; 3:689-692. [PMID: 22969952 PMCID: PMC3438626 DOI: 10.3892/etm.2012.469] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/19/2011] [Indexed: 12/11/2022] Open
Abstract
microRNAs (miRNAs) bind to the 3' untranslated regions (UTRs) of messenger RNAs, where they interfere with translation of genes that regulate cell differentiation, apoptosis and tumourigenesis. The histone methyltransferase SET8 has been reported to methylate TP53 and regulate genomic stability. We analysed a single nucleotide polymorphism (rs16917496) within the miR-502 miRNA seed region at the 3' UTR of SET8 in small-cell lung cancer (SCLC) patients. The SET8 CC+CT genotype was identified to be independently associated with longer survival in SCLC patients by multivariate analysis (relative risk, 0.453; 95% CI 0.217-0.944; p=0.035). The analysis of genetic polymorphisms in miRNA binding sites may help to identify patient subgroups at high risk of poor outcome.
Collapse
Affiliation(s)
| | - RUIJUAN LI
- Departments of Respiratory Medicine, and
| | | | | | - ZHANJUN GUO
- Gastroenterology and Hepatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang,
P.R. China
| |
Collapse
|
48
|
Wang F, Liang YJ, Wu XP, Su XD, Fu LW. ABCG2-overexpressing S1-M1-80 cell xenografts in nude mice keep original biochemistry and cell biological properties. CHINESE JOURNAL OF CANCER 2012; 31:150-8. [PMID: 22360854 PMCID: PMC3777481 DOI: 10.5732/cjc.011.10310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
S1-M1-80 cells, derived from human colon carcinoma S1 cells, are mitoxantrone-selected ABCG2-overexpressing cells and are widely used in in vitro studies of multidrug resistance (MDR). In this study, S1-M1-80 cell xenografts were established to investigate whether the MDR phenotype and cell biological properties were maintained in vivo. Our results showed that the proliferation, cell cycle, and ABCG2 expression level in S1-M1-80 cells were similar to those in cells isolated from S1-M1-80 cell xenografts (named xS1-M1-80 cells). Consistently, xS1-M1-80 cells exhibited high levels of resistance to ABCG2 substrates such as mitoxantrone and topotecan, but remained sensitive to the non-ABCG2 substrate cisplatin. Furthermore, the specific ABCG2 inhibitor Ko143 potently sensitized xS1-M1-80 cells to mitoxantrone and topotecan. These results suggest that S1-M1-80 cell xenografts in nude mice retain their original cytological characteristics at 9 weeks. Thus, this model could serve as a good system for further investigation of ABCG2-mediated MDR.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | | | | | | | | |
Collapse
|
49
|
Amiri-Kordestani L, Basseville A, Kurdziel K, Fojo AT, Bates SE. Targeting MDR in breast and lung cancer: discriminating its potential importance from the failure of drug resistance reversal studies. Drug Resist Updat 2012; 15:50-61. [PMID: 22464282 PMCID: PMC3680361 DOI: 10.1016/j.drup.2012.02.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This special issue of Drug Resistance Updates is dedicated to multidrug resistance protein 1 (MDR-1), 35 years after its discovery. While enormous progress has been made and our understanding of drug resistance has become more sophisticated and nuanced, after 35 years the role of MDR-1 in clinical oncology remains a work in progress. Despite clear in vitro evidence that P-glycoprotein (Pgp), encoded by MDR-1, is able to dramatically reduce drug concentrations in cultured cells, and that drug accumulation can be increased by small molecule inhibitors, clinical trials testing this paradigm have mostly failed. Some have argued that it is no longer worthy of study. However, repeated analyses have demonstrated MDR-1 expression in a tumor is a poor prognostic indicator leading some to conclude MDR-1 is a marker of a more aggressive phenotype, rather than a mechanism of drug resistance. In this review we will re-evaluate the MDR-1 story in light of our new understanding of molecular targeted therapy, using breast and lung cancer as examples. In the end we will reconcile the data available and the knowledge gained in support of a thesis that we understand far more than we realize, and that we can use this knowledge to improve future therapies.
Collapse
Affiliation(s)
- Laleh Amiri-Kordestani
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | | | | | | | | |
Collapse
|
50
|
Abstract
The phenomenon of multidrug resistance in cancer is often associated with the overexpression of the ABC (ATP-binding cassette) transporters Pgp (P-glycoprotein) (ABCB1), MRP1 (multidrug resistance-associated protein 1) (ABCC1) and ABCG2 [BCRP (breast cancer resistance protein)]. Since the discovery of Pgp over 35 years ago, studies have convincingly linked ABC transporter expression to poor outcome in several cancer types, leading to the development of transporter inhibitors. Three generations of inhibitors later, we are still no closer to validating the 'Pgp hypothesis', the idea that increased chemotherapy efficacy can be achieved by inhibition of transporter-mediated efflux. In this chapter, we highlight the difficulties and past failures encountered in the development of clinical inhibitors of ABC transporters. We discuss the challenges that remain in our effort to exploit decades of work on ABC transporters in oncology. In learning from past mistakes, it is hoped that ABC transporters can be developed as targets for clinical intervention.
Collapse
|