1
|
Liu X, Kong Y, Qian Y, Guo H, Zhao L, Wang H, Xu K, Ye L, Liu Y, Lu H, He Y. Spatial heterogeneity of infiltrating immune cells in the tumor microenvironment of non-small cell lung cancer. Transl Oncol 2024; 50:102143. [PMID: 39366301 PMCID: PMC11474367 DOI: 10.1016/j.tranon.2024.102143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are essential components of the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). Still, it is difficult to describe due to their heterogeneity. In this study, five cell markers from NSCLC patients were analyzed. We segmented tumor cells (TCs) and TILs using Efficientnet-B3 and explored their quantitative information and spatial distribution. After that, we simulated multiplex immunohistochemistry (mIHC) by overlapping continuous single chromogenic IHCs slices. As a result, the proportion and the density of programmed cell death-ligand 1 (PD-L1)-positive TCs were the highest in the core. CD8+ T cells were the closest to the tumor (median distance: 41.71 μm), while PD-1+T cells were the most distant (median distance: 62.2μm), and our study found that most lymphocytes clustered together within the peritumoral range of 10-30 μm where cross-talk with TCs could be achieved. We also found that the classification of TME could be achieved using CD8+ T-cell density, which is correlated with the prognosis of patients. In addition, we achieved single chromogenic IHC slices overlap based on CD4-stained IHC slices. We explored the number and spatial distribution of cells in heterogeneous TME of NSCLC patients and achieved TME classification. We also found a way to show the co-expression of multiple molecules economically.
Collapse
Affiliation(s)
- Xinyue Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yan Kong
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Youwen Qian
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Affiliated to Naval Medical University, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Kandi Xu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Yujin Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
2
|
Zhang Y, Liu J, Lo TW, Kim Y, Lucien F, Dong H, Liu Y. A digital microfluidic device integrated with electrochemical sensor and 3D matrix for detecting soluble PD-L1. BIOSENSORS & BIOELECTRONICS: X 2024; 19:100490. [PMID: 39091597 PMCID: PMC11290324 DOI: 10.1016/j.biosx.2024.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
PD1/PD-L1 checkpoint inhibitors are at the forefront of cancer immunotherapies. However, the overall response rate remains only 10-30%. Even among initial responders, drug resistance often occurs, which can lead to prolonged use of a futile therapy in the race with the fatal disease. It would be ideal to closely monitor key indicators of patients' immune responsiveness, such as circulating PD-L1 levels. Traditional PD-L1 detection methods, such as ELISA, are limited in sensitivity and rely on core lab facilities, preventing their use for the regular monitoring. Electrochemical sensors exist as an attractive candidate for point-of-care tool, yet, streamlining multiple processes in a single platform remains a challenge. To overcome this challenge, this work integrated electrochemical sensor arrays into a digital microfluidic device to combine their distinct merits, so that soluble PD-L1 (sPD-L1) molecules can be rapidly detected in a programmed and automated manner. This new platform featured microscale electrochemical sensor arrays modified with electrically conductive 3D matrix, and can detect as low as 1 pg/mL sPD-L1 with high specificity. The sensors also have desired repeatability and can obtain reproducible results on different days. To demonstrate the functionality of the device to process more complex biofluids, we used the device to detect sPD-L1 molecules secreted by human breast cancer cell line in culture media directly and observed 2X increase in signal compared with control experiment. This novel platform holds promise for the close monitoring of sPD-L1 level in human physiological fluids to evaluate the efficacy of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Yuqian Zhang
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jing Liu
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ting-Wen Lo
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yohan Kim
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Haidong Dong
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yuguang Liu
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
3
|
Skurikhin E, Ermakova N, Zhukova M, Pan E, Widera D, Sandrikina L, Kogai L, Pershina O, Pakhomova A, Pan VY, Kushlinskii N, Kubatiev A, Morozov S, Dygai A. Effects of reprogrammed splenic CD8 + T-cells in vitro and in mice with spontaneous metastatic Lewis lung carcinoma. BMC Cancer 2024; 24:522. [PMID: 38664641 PMCID: PMC11046928 DOI: 10.1186/s12885-024-12203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Metastatic disease is a major and difficult-to-treat complication of lung cancer. Considering insufficient effectiveness of existing therapies and taking into account the current problem of lung cancer chemoresistance, it is necessary to continue the development of new treatments. METHODS Previously, we have demonstrated the antitumor effects of reprogrammed CD8+ T-cells (rCD8+ T-cells) from the spleen in mice with orthotopic lung carcinoma. Reprogramming was conducted by inhibiting the MAPK/ERK signalling pathway through MEKi and the immune checkpoint PD-1/PD-L1. Concurrently, CD8+ T-cells were trained in Lewis lung carcinoma (LLC) cells. We suggested that rCD8+ T-cells isolated from the spleen might impede the development of metastatic disease. RESULTS The present study has indicated that the reprogramming procedure enhances the survival and cytotoxicity of splenic CD8+ T-cells in LLC culture. In an LLC model of spontaneous metastasis, splenic rCD8 + T-cell therapy augmented the numbers of CD8+ T-cells and CD4+ T-cells in the lungs of mice. These changes can account for the partial reduction of tumors in the lungs and the mitigation of metastatic activity. CONCLUSIONS Our proposed reprogramming method enhances the antitumor activity of CD8+ T-cells isolated from the spleen and could be valuable in formulating an approach to treating metastatic disease in patients with lung cancer.
Collapse
Affiliation(s)
- E Skurikhin
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia.
| | - N Ermakova
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - M Zhukova
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia.
| | - E Pan
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - D Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, Whiteknights Campus, RG6 6AP, Reading, UK
| | - L Sandrikina
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - L Kogai
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
- Ministry of Health of the Russian Federation, Siberian State Medical University, Moskovski, 2, 634050, Tomsk, Russia
| | - O Pershina
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - A Pakhomova
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| | - V Yu Pan
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - N Kushlinskii
- Blokhin National Medical Research Center of Oncology, 115522, Moscow, Russia
| | - A Kubatiev
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - S Morozov
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
| | - A Dygai
- Institute of General Pathology and Pathophysiology, 125315, Moscow, Russia
- Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028, Tomsk, Russia
| |
Collapse
|
4
|
Ruiz G, Enrico D, Mahmoud YD, Ruiz A, Cantarella MF, Leguina L, Barberis M, Beña A, Brest E, Starapoli S, Mendoza Bertelli A, Tsou F, Pupareli C, Coppola MP, Scocimarro A, Sena S, Levit P, Perfetti A, Aman E, Girotti MR, Arrieta O, Martín C, Salanova R. Association of PD-L1 expression with driver gene mutations and clinicopathological characteristics in non-small cell lung cancer: A real-world study of 10 441 patients. Thorac Cancer 2024; 15:895-905. [PMID: 38456253 PMCID: PMC11016406 DOI: 10.1111/1759-7714.15244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Programmed death ligand-1 (PD-L1) expression is a well-known predictive biomarker of response to immune checkpoint blockade in non-small cell lung cancer (NSCLC). However, there is limited evidence of the relationship between PD-L1 expression, clinicopathological features, and their association with major driver mutations in NSCLC patients in Latin America. METHODS This retrospective study included patients from Argentina with advanced NSCLC, and centralized evaluation of PD-L1 expression concurrently with genomic alterations in the driver genes EGFR, ALK, ROS1, BRAF, and/or KRAS G12C in FFPE tissue samples. RESULTS A total of 10 441 patients with advanced NSCLC were analyzed. Adenocarcinoma was the most frequent histological subtype (71.1%). PD-L1 expression was categorized as PD-L1 negative (45.1%), PD-L1 positive low-expression 1%-49% (32.3%), and PD-L1 positive high-expression ≥50% (22.6%). Notably, current smokers and males were more likely to have tumors with PD-L1 tumor proportion score (TPS) ≥50% and ≥ 80% expression, respectively (p < 0.001 and p = 0.013). Tumors with non-adenocarcinoma histology had a significantly higher median PD-L1 expression (p < 0.001). Additionally, PD-L1 in distant nodes was more likely ≥50% (OR 1.60 [95% CI: 1.14-2.25, p < 0.01]). In the multivariate analysis, EGFR-positive tumors were more commonly associated with PD-L1 low expression (OR 0.62 [95% CI: 0.51-0.75], p < 0.01), while ALK-positive tumors had a significant risk of being PD-L1 positive (OR 1.81 [95% CI: 1.30-2.52], p < 0.01). CONCLUSIONS PD-L1 expression was associated with well-defined clinicopathological and genomic features. These findings provide a comprehensive view of the expression of PD-L1 in patients with advanced NSCLC in a large Latin American cohort.
Collapse
Affiliation(s)
- Gonzalo Ruiz
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Diego Enrico
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - Yamil D. Mahmoud
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC)Buenos AiresArgentina
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Alan Ruiz
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | | | - Laura Leguina
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Mariana Barberis
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Asunción Beña
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Esteban Brest
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | - Solange Starapoli
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| | | | - Florencia Tsou
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - Carmen Pupareli
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - María Pía Coppola
- Medical Oncology UnitHospital Zonal Especializado en Agudos y Crónicos Dr. Antonio CetrangoloBuenos AiresArgentina
| | - Alejandra Scocimarro
- Medical Oncology UnitHospital Zonal Especializado en Agudos y Crónicos Dr. Antonio CetrangoloBuenos AiresArgentina
| | - Susana Sena
- Medical Oncology DepartmentHospital AlemánBuenos AiresArgentina
| | - Patricio Levit
- Medical Oncology UnitUnión Personal‐Accord SaludBuenos AiresArgentina
| | - Aldo Perfetti
- Medical Oncology UnitUnión Personal‐Accord SaludBuenos AiresArgentina
- Medical Oncology DepartmentCentro de Educación Médica e Investigaciones Clínicas (CEMIC)Buenos AiresArgentina
| | - Enrique Aman
- Medical Oncology Unit, Swiss Medical GroupBuenos AiresArgentina
| | - María Romina Girotti
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
- Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC)Buenos AiresArgentina
| | - Oscar Arrieta
- Head of Thoracic Oncology UnitUnidad Funcional de Oncología Torácica, Instituto Nacional de Cancerología (INCan)Mexico CityMexico
| | - Claudio Martín
- Thoracic Oncology Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
- Clinical Research Unit, Department of Medical OncologyAlexander Fleming Cancer InstituteBuenos AiresArgentina
| | - Rubén Salanova
- Pathology & Molecular Biology LaboratoriesBiomakersBuenos AiresArgentina
| |
Collapse
|
5
|
Elfving H, Thurfjell V, Mattsson JSM, Backman M, Strell C, Micke P. Tumor Heterogeneity Confounds Lymphocyte Metrics in Diagnostic Lung Cancer Biopsies. Arch Pathol Lab Med 2024; 148:e18-e24. [PMID: 37382890 DOI: 10.5858/arpa.2022-0327-oa] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 06/30/2023]
Abstract
CONTEXT.— The immune microenvironment is involved in fundamental aspects of tumorigenesis, and immune scores are now being developed for clinical diagnostics. OBJECTIVE.— To evaluate how well small diagnostic biopsies and tissue microarrays (TMAs) reflect immune cell infiltration compared to the whole tumor slide, in tissue from patients with non-small cell lung cancer. DESIGN.— A TMA was constructed comprising tissue from surgical resection specimens of 58 patients with non-small cell lung cancer, with available preoperative biopsy material. Whole sections, biopsies, and TMA were stained for the pan-T lymphocyte marker CD3 to determine densities of tumor-infiltrating lymphocytes. Immune cell infiltration was assessed semiquantitatively as well as objectively with a microscopic grid count. For 19 of the cases, RNA sequencing data were available. RESULTS.— The semiquantitative comparison of immune cell infiltration between the whole section and the biopsy displayed fair agreement (intraclass correlation coefficient [ICC], 0.29; P = .01; CI, 0.03-0.51). In contrast, the TMA showed substantial agreement compared with the whole slide (ICC, 0.64; P < .001; CI, 0.39-0.79). The grid-based method did not enhance the agreement between the different tissue materials. The comparison of CD3 RNA sequencing data with CD3 cell annotations confirmed the poor representativity of biopsies as well as the stronger correlation for the TMA cores. CONCLUSIONS.— Although overall lymphocyte infiltration is relatively well represented on TMAs, the representativity in diagnostic lung cancer biopsies is poor. This finding challenges the concept of using biopsies to establish immune scores as prognostic or predictive biomarkers for diagnostic applications.
Collapse
Affiliation(s)
- Hedvig Elfving
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Viktoria Thurfjell
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Max Backman
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Carina Strell
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrick Micke
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Cheng M, Yang F, Yang Y, Gao X, Yu Y, Wang N, Luo X, Zhang S, Jiang S, Dong M. Correlation analysis between camrelizumab trough concentration levels and efficacy or safety in East Asian patients with advanced lung cancer. Cancer Chemother Pharmacol 2024; 93:31-39. [PMID: 37740797 DOI: 10.1007/s00280-023-04590-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Camrelizumab combined with chemotherapy is approved across tumor types. However, only a fraction of patients benefits from immunotherapy, and biomarkers such as the expression of PD-L1, tumor mutational burden, and CXCL11 are expensive and suboptimal specificity for cancer patients. An exposure-response (E-R) relationship has been reported in many immune checkpoint inhibitors (ICIs), and the trough concentrations and other drug exposure metrics are broadly used to guide dosing decisions, assess exposure-outcomes relationships, and ultimately predict outcomes based on those relationships. However, the potential use of trough concentration levels for camrelizumab is still not clear. METHODS Blood samples were obtained at trough levels after doses 3 and 4 from 77 patients with advanced lung cancer who received camrelizumab (200 mg Q3 W) monotherapy or combined with chemotherapy. We optimized a competitive ELISA method to measure the trough concentration. RESULTS We found that the trough concentration was steady after 3 dose cycles, and the trough concentration level of camrelizumab was higher in patients who developed immune-related adverse effects (irAEs) than in those who did not (P < 0.05) but was not observed in disease progression and PFS (P > 0.05). Age (< 65 years old), no smoking history, and efficacy evaluation after 4-dose treatment were associated with PFS (P < 0.05), but no significance was observed in other clinical characteristics. Total bilirubin and albumin had an influence on trough concentration, and monocytes and albumin were independent risk factors for PFS (P < 0.05). CONCLUSIONS Our results suggest that the trough concentration level of camrelizumab might be a risk factor for the occurrence of irAEs in advanced lung cancer, and using the immunotherapy as early as possible may bring better clinical outcomes.
Collapse
Affiliation(s)
- Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Fang Yang
- The First Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanchao Yang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xinyue Gao
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Nan Wang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xinyu Luo
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
7
|
Wang J, Sun N, Kunzke T, Shen J, Zens P, Prade VM, Feuchtinger A, Berezowska S, Walch A. Spatial metabolomics identifies distinct tumor-specific and stroma-specific subtypes in patients with lung squamous cell carcinoma. NPJ Precis Oncol 2023; 7:114. [PMID: 37919427 PMCID: PMC10622419 DOI: 10.1038/s41698-023-00434-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/08/2023] [Indexed: 11/04/2023] Open
Abstract
Molecular subtyping of lung squamous cell carcinoma (LUSC) has been performed at the genomic, transcriptomic, and proteomic level. However, LUSC stratification based on tissue metabolomics is still lacking. Combining high-mass-resolution imaging mass spectrometry with consensus clustering, four tumor- and four stroma-specific subtypes with distinct metabolite patterns were identified in 330 LUSC patients. The first tumor subtype T1 negatively correlated with DNA damage and immunological features including CD3, CD8, and PD-L1. The same features positively correlated with the tumor subtype T2. Tumor subtype T4 was associated with high PD-L1 expression. Compared with the status of subtypes T1 and T4, patients with subtype T3 had improved prognosis, and T3 was an independent prognostic factor with regard to UICC stage. Similarly, stroma subtypes were linked to distinct immunological features and metabolic pathways. Stroma subtype S4 had a better prognosis than S2. Subsequently, analyses based on an independent LUSC cohort treated by neoadjuvant therapy revealed that the S2 stroma subtype was associated with chemotherapy resistance. Clinically relevant patient subtypes as determined by tissue-based spatial metabolomics are a valuable addition to existing molecular classification systems. Metabolic differences among the subtypes and their associations with immunological features may contribute to the improvement of personalized therapy.
Collapse
Affiliation(s)
- Jun Wang
- Research Unit Analytical Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Jian Shen
- Research Unit Analytical Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Philipp Zens
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Mittelstrasse 43, Bern, 3012, Switzerland
| | - Verena M Prade
- Research Unit Analytical Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Sabina Berezowska
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland.
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland.
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, 85764, Germany.
| |
Collapse
|
8
|
Kulshrestha R, Saxena H, Kumar R, Spalgais S, Mrigpuri P, Goel N, Menon B, Rani M, Mahor P, Bhutani I. Subtyping of advanced lung cancer based on PD-L1 expression, tumor histopathology and mutation burden (EGFR and KRAS): a study from North India. Monaldi Arch Chest Dis 2023; 93. [PMID: 36723380 DOI: 10.4081/monaldi.2023.2449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 02/02/2023] Open
Abstract
Immune checkpoint inhibitor (PD-L1) therapy of advanced non-small-cell lung cancer (NSCLC) has variable outcomes. Tumor subtypes based on PD-L1 expression, histopathology, mutation burden is required for patient stratification and formulation of treatment guidelines. Lung cancers (n=57) diagnosed at Pathology department, VPCI (2018-2021) were retrospectively analyzed. PD-L1(SP263) expressed by tumor cells [low (<1%), medium (1-49%), high (≥50%)] was correlated with histopathology, microenvironment, EGFR, KRAS expression. Patients were categorized into high and low risk based on their: i) gender: males (n=47, 30-89 years), females (n=10, 45-80 years); ii) smoking history: males 26/47 (45.61%), females 1/10 (10%); iii) tumor subtyping: squamous cell carcinoma 15/57 (26.32%), adenocarcinoma 6/57 (17.54%), NSCLC-undifferentiated 24/57 (42.10%), adenosquamous carcinoma 5/57 (8.77 %), carcinosarcoma 4/57 (7.02%), small cell carcinoma 1/57 (1.75%); iv) inflammatory tumor microenvironment/TILs 44/57 (77.1%); iv) PD-L1 positivity-31/57 (54.3%); v) concomitant EGFR/KRAS positivity. PD-L1positive cases showed squamous/undifferentiated histopathology, concomitant EGFR+ (9/20, 45%) and KRAS+ (8/15, 53.3%), smoking+ (21/31,67.74%).PD-L1 negative cases (26/57, 45.6%), were EGFR+ (2/14, 14.28%) and KRAS+ (6/19, 31.5%). The high-risk lung cancer subtypes show squamous/undifferentiated histopathology, inflammatory microenvironment, male preponderance, smoking history, higher concomitant PD-L1, KRAS and EGFR positivity. Lung cancer subtyping can predict clinical response/resistance of patients prior to initiation of PD-L1 inhibitor therapies and can be used to guide therapy.
Collapse
Affiliation(s)
- Ritu Kulshrestha
- Department of Pathology, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Himanshi Saxena
- Department of Pathology, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Raj Kumar
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Nitin Goel
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Balakrishnan Menon
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Meenu Rani
- Department of Pathology, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Pawan Mahor
- Department of Pathology, Vallabhbhai Patel Chest Institute, University of Delhi.
| | - Ishita Bhutani
- Department of Pathology, Vallabhbhai Patel Chest Institute, University of Delhi.
| |
Collapse
|
9
|
Chen Z, Wang W, Xu J, Song Y, Zhu H, Ma T, Ge M, Guan H. Tumor mutation burden-assisted risk stratification for papillary thyroid cancer. Endocrine 2022; 78:296-305. [PMID: 35962256 DOI: 10.1007/s12020-022-03154-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Although papillary thyroid cancer (PTC) has a low mortality rate, the rate of recurrence remains relatively high. This study aims to develop a molecular signature to predict the recurrence of PTC. METHODS A total of 333 PTC patients' data from The Cancer Genome Atlas (TCGA) were included. We calculated tumor mutation burden (TMB) and analyzed the mutation status of BRAF and TERT promoter. RESULTS Tumor recurrence occurred in 17 of 263 cases in TMB-L patients versus 14 of 70 cases in TMB-H patients (hazard ratio [HR], 3.55; 95% confidence interval [CI], 1.75-7.21; P < 0.001). The HR for recurrence in TMB-H patients remained significant after adjustment for classical clinicopathologic factors (patient age, gender, extrathyroidal extension and lymph node metastasis). These clinical factors had no effect on recurrence rate in TMB-L patients, but had a strong adverse effect on the prognosis of TMB-H patients. Compared with TMB-L patients lacking mutation, the HR (95% CI) of recurrence for TMB-H patients with coexisting BRAF V600E and/or TERT C228/250 T mutations was 6.68 (2.41-18.57), which remained significant after adjustment for clinicopathological factors. The mutation status of BRAF V600E and TERT C228/250 T had little effect on PTC recurrence in TMB-L patients. Either of the mutation was associated with high recurrence rate in TMB-H patients. CONCLUSIONS The presence of BRAF V600E and/or TERT promoter mutations denotes a high risk of recurrence in TMB-H patients. This represents a powerful molecular prognostic genotype that can help predict patients with the highest risk of recurrence.
Collapse
Affiliation(s)
- Zhijiang Chen
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Weiran Wang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Jiajie Xu
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Afliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang Province, China
| | - Yuntao Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Honglin Zhu
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Tonghui Ma
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Afliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang Province, China.
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
High Tumor Mutation Burden Is Associated with Poor Clinical Outcome in EGFR-Mutated Lung Adenocarcinomas Treated with Targeted Therapy. Biomedicines 2022; 10:biomedicines10092109. [PMID: 36140210 PMCID: PMC9495802 DOI: 10.3390/biomedicines10092109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to determine the association between TMB and treatment outcomes in patients with epidermal growth factor receptor (EGFR)-mutated lung cancer that were treated with tyrosine kinase inhibitors (TKIs). The TMB was assessed using a 409-gene targeted next-generation sequencing panel. We compared the response rate (RR), progression-free survival (PFS), overall survival (OS), and frequency of secondary T790M mutations among the different TMB groups. The median TMB of the study population (n = 88) was 3.36/megabases. We divided 52 (59%) and 36 (41%) patients into the low and high TMB groups, respectively. A high TMB level was significantly associated with liver metastasis and more advanced stage (all p < 0.05). RR was significantly lower in the high TMB group than that of the low TMB group (50.0% vs. 80.7%, all p = 0.0384). In multivariate analysis, high TMB was independently associated with a shorter PFS (hazard ratio [HR] = 1.80, p = 0.0427) and shorter OS (HR = 2.05, p = 0.0397) than that of the low TMB group. Further, high TMB was independently associated with decreased T790M mutation development. These results suggest that high TMB may be a predictive biomarker for adverse treatment outcomes and represent a patients’ subgroup warranting tailored therapeutic approaches.
Collapse
|
11
|
Shields MD, Chen K, Dutcher G, Patel I, Pellini B. Making the Rounds: Exploring the Role of Circulating Tumor DNA (ctDNA) in Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms23169006. [PMID: 36012272 PMCID: PMC9408840 DOI: 10.3390/ijms23169006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Advancements in the clinical practice of non-small cell lung cancer (NSCLC) are shifting treatment paradigms towards increasingly personalized approaches. Liquid biopsies using various circulating analytes provide minimally invasive methods of sampling the molecular content within tumor cells. Plasma-derived circulating tumor DNA (ctDNA), the tumor-derived component of cell-free DNA (cfDNA), is the most extensively studied analyte and has a growing list of applications in the clinical management of NSCLC. As an alternative to tumor genotyping, the assessment of oncogenic driver alterations by ctDNA has become an accepted companion diagnostic via both single-gene polymerase chain reactions (PCR) and next-generation sequencing (NGS) for advanced NSCLC. ctDNA technologies have also shown the ability to detect the emerging mechanisms of acquired resistance that evolve after targeted therapy. Furthermore, the detection of minimal residual disease (MRD) by ctDNA for patients with NSCLC after curative-intent treatment may serve as a prognostic and potentially predictive biomarker for recurrence and response to therapy, respectively. Finally, ctDNA analysis via mutational, methylation, and/or fragmentation multi-omic profiling offers the potential for improving early lung cancer detection. In this review, we discuss the role of ctDNA in each of these capacities, namely, for molecular profiling, treatment response monitoring, MRD detection, and early cancer detection of NSCLC.
Collapse
Affiliation(s)
- Misty Dawn Shields
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Kevin Chen
- Department of Radiation Oncology, Division of Cancer Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giselle Dutcher
- Department of Medicine, Division of Solid Tumor Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ishika Patel
- Department of Public Health, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
12
|
Massafra R, Catino A, Perrotti PMS, Pizzutilo P, Fanizzi A, Montrone M, Galetta D. Informative Power Evaluation of Clinical Parameters to Predict Initial Therapeutic Response in Patients with Advanced Pleural Mesothelioma: A Machine Learning Approach. J Clin Med 2022; 11:jcm11061659. [PMID: 35329985 PMCID: PMC8950691 DOI: 10.3390/jcm11061659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare neoplasm whose early diagnosis is challenging and systemic treatments are generally administered as first line in the advanced disease stage. The initial clinical response may represent a useful parameter in terms of identifying patients with a better long-term outcome. In this report, the initial therapeutical response in 46 patients affected with advanced/unresectable pleural mesothelioma was investigated. The initial therapeutic response was assessed by CT scan and clinical examination after 2–3 treatment cycles. Our preliminary evaluation shows that the group of patients treated with regimens including antiangiogenetics and/or immunotherapy had a significantly better initial response as compared to patients only treated with standard chemotherapy, exhibiting a disease control rate (DCR) of 100% (95% IC, 79.40–100%) and 80.0% (95% IC, 61.40–92.30%), respectively. Furthermore, the therapeutic response was correlated with the disease stage, blood leukocytes and neutrophils, high albumin serum levels, and basal body mass index (BMI). Specifically, the patients with disease stage III showed a DCR of 95.7% (95% IC, 78.1–99.9%), whereas for disease stage IV the DCR decreased to 66.7% (95% IC, 34.9–9.1%). Moreover, a better initial response was observed in patients with a higher BMI, who reached a DCR of 96.10% (95% IC, 80.36–99.90%). Furthermore, in order to evaluate in the predictive power of the collected features a multivariate way, we report the preliminary results of a machine learning model for predicting the initial therapeutic response. We trained a state-of-the-art algorithm combined to a sequential forward feature selection procedure. The model reached a median AUC value, accuracy, sensitivity, and specificity of 77.0%, 75%, 74.8%, and 83.3%, respectively. The features with greater informational power were gender, histotype, BMI, smoking habits, packs/year, and disease stage. Our preliminary data support the possible favorable correlation between innovative treatments and therapeutic response in patients with unresectable/advanced pleural mesothelioma. The small sample size does not allow concrete conclusions to be drawn; nevertheless, this work is the basis of an ongoing study that will also involve radiomics in a larger dataset.
Collapse
Affiliation(s)
- Raffaella Massafra
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Annamaria Catino
- Struttura Semplice Dipartimentale di Oncologia Medica per la Patologia Toracica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (P.P.); (M.M.); (D.G.)
| | - Pia Maria Soccorsa Perrotti
- Struttura Semplice Dipartimentale di Radiologia, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Pamela Pizzutilo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Patologia Toracica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (P.P.); (M.M.); (D.G.)
| | - Annarita Fanizzi
- Struttura Semplice Dipartimentale di Fisica Sanitaria, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Correspondence: ; Tel.: +39-080-555-5111
| | - Michele Montrone
- Struttura Semplice Dipartimentale di Oncologia Medica per la Patologia Toracica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (P.P.); (M.M.); (D.G.)
| | - Domenico Galetta
- Struttura Semplice Dipartimentale di Oncologia Medica per la Patologia Toracica, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (A.C.); (P.P.); (M.M.); (D.G.)
| |
Collapse
|
13
|
Saleh RR, Scott JL, Meti N, Perlon D, Fazelzad R, Ocana A, Amir E. Prognostic Value of Programmed Death Ligand-1 Expression in Solid Tumors Irrespective of Immunotherapy Exposure: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2022; 26:153-168. [PMID: 35106739 DOI: 10.1007/s40291-022-00576-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND The programmed cell death-1/programmed cell death ligand-1 (PD-L1) pathway, which plays a crucial role in cancer immune surveillance, is the target of several approved immunotherapeutic agents and is used as a predictive biomarker in some solid tumors. However, its use as a prognostic marker (i.e., regardless of therapy used) is not established clearly with available data demonstrating inconsistent prognostic impact of PD-L1 expression in solid tumors. METHODS We conducted a systematic literature search of electronic databases and identified publications exploring the effect of PD-L1 expression on overall survival and/or disease-free survival. Hazard ratios were pooled in a meta-analysis using generic inverse-variance and random-effects modeling. We used the Deeks method to explore subgroup differences based on disease site, stage of disease, and method of PD-L1 quantification. RESULTS One hundred and eighty-six studies met the inclusion criteria. Programmed cell death ligand-1 expression was associated with worse overall survival (hazard ratio 1.33, 95% confidence interval 1.26-1.39; p < 0.001). There was significant heterogeneity between disease sites (subgroup p = 0.002) with pancreatic, hepatocellular, and genitourinary cancers associated with the highest magnitude of adverse outcomes. Programmed cell death ligand-1 was also associated with worse overall disease-free survival (hazard ratio 1.19, 95% confidence interval 1.09-1.30; p < 0.001). Stage of disease did not significantly affect the results (subgroup p = 0.52), nor did the method of quantification via immunohistochemistry or messenger RNA (subgroup p = 0.70). CONCLUSIONS High expression of PD-L1 is associated with worse survival in solid tumors albeit with significant heterogeneity among tumor types. The effect is consistent in early-stage and metastatic disease and is not sensitive to method of PD-L1 quantification. These data can provide additional information for the counseling of patients with cancer about prognosis.
Collapse
Affiliation(s)
- Ramy R Saleh
- Department of Medical Oncology, McGill University, Montreal, QC, Canada
| | - Jordan L Scott
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
| | - Nicholas Meti
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
| | - Danielle Perlon
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada
| | - Rouhi Fazelzad
- Information Specialist, Library and Information Services, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Alberto Ocana
- Hospital Clinico San Carlos and Instituto de Investigación Sanitaria San Carlos (IdISSC), and Centro Regional de Investigaciones Biomedicas (CRIB), Centro de Investigación Biomédica en Red Cáncerci (CIBERONC), Universidad Castilla La Mancha (UCLM), Madrid, Spain
| | - Eitan Amir
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre and the University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Soluble Programmed Death-Ligand 1 (sPD-L1) is Elevated in Aggressive Prostate Cancer Disease Among African Men. Oncol Ther 2022; 10:185-193. [PMID: 35128628 PMCID: PMC9098749 DOI: 10.1007/s40487-022-00184-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction Programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1)-targeted immunotherapies have become a new mode of treatment for several tumours; however, there is limited evidence on the expression and prognostic value of PD-1/PD-L1 in prostate cancer, especially in African men. Methods Plasma concentrations of PD-L1/PD-1 were assessed using enzyme-linked immunosorbent assay in patients with prostate cancer and normal healthy controls at the Uganda Cancer Institute. The associations between plasma PD-L1/PD-1 concentration levels and serum prostate-specific antigen (PSA) levels, Gleason scores, age, and body mass index (BMI) were determined. Results We found significant differences in the median plasma concentrations of PD-L1 and PD-1 immune checkpoint molecules between prostate cancer cases and normal healthy controls of 0.285 vs 0.035 (p = 0.001) and 0.596 vs 0.355 (p = 0.017), respectively. We found no significant association between age, serum PSA levels, BMI and Gleason scores, and PD-1 among patients with prostate cancer and controls. However, elevated levels of PD-L1 were significantly associated with higher Gleason scores among patients with prostate cancer (p = 0.014). Conclusions Elevated PD-L1 levels were statistically significantly linked to high Gleason scores. These results may guide clinicians in assessing the prognosis of patients individually and selecting patients who will be suitable candidates for anti-PD-L1 immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1007/s40487-022-00184-6.
Collapse
|
15
|
Ren K, Peng Q, Ding G, Yu Y, Huang T, Gong L, Yu T, Yang L. Potential biomarkers and resistance mechanisms of atezolizumab in a patient with lung squamous cell carcinoma. Immunotherapy 2021; 14:15-21. [PMID: 34763535 DOI: 10.2217/imt-2020-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: At present, only a small fraction of patients with cancer benefit from treatment with immune checkpoint inhibitors, the reasons for which are not fully understood. Monitoring molecular and immunologic changes during treatment with immune checkpoint inhibitors would help to identify potential biomarkers and mechanisms associated with resistance and guide subsequent treatment. Methods: The authors report on a patient previously treated for lung squamous cell carcinoma who received atezolizumab-based therapy for 24 months. Results & Conclusion: Analysis of samples before and after atezolizumab treatment suggested that genetic mutations in EGFR exon 20 insertion, phosphatase and PTEN and NOTCH1 as well as changes in tumor immune microenvironment may be associated with acquired resistance to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Kangqi Ren
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Quanzhou Peng
- Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Guanggui Ding
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Yefeng Yu
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Tonghai Huang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| | - Longlong Gong
- Genecast Biotechnology Co., Ltd., 88 Danshan Road, Xidong Chuangrong Building, Suite D-401, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Tao Yu
- Genecast Biotechnology Co., Ltd., 88 Danshan Road, Xidong Chuangrong Building, Suite D-401, Xishan District, Wuxi City, Jiangsu, 214104, PR China
| | - Lin Yang
- Department of Thoracic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, 1017 Dongmen North Road, Luohu District, Shenzhen, Guangdong, 518020, PR China
| |
Collapse
|
16
|
Mehan A, Anthony ML, Paul P, Syed A, Chowdhury N, Rao S, Hussain N, Ravi B. Expression of Programmed Cell Death-1 (PD-1) and Its Ligand (PD-L1) in Breast Cancers and Its Association with Clinicopathological Parameters: A Study from North India. J Lab Physicians 2021; 14:27-31. [PMID: 36186259 PMCID: PMC9519265 DOI: 10.1055/s-0041-1736522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Introduction
Cancer immunotherapy targeting the programmed cell death ligand 1 (PD-L1) and programmed cell death-1 (PD-1) axis has revolutionized cancer therapy. PD-L1 also serves as a predictive marker for such therapy. To assess the potential of such therapy in any cancer, the positivity of PD-1 and PD-L1 in such cancers needs to be assessed. However, such studies for breast cancer are lacking in South Asia. We aimed to estimate the positivity of PD-L1 and PD-1 receptors in breast cancer and its various clinicopathological groups in our patient population.
Materials and Methods
We studied the immunoexpression of PD-1 and PD-L1 in 103 histologically proven invasive carcinoma breast cases from October 2018 to April 2019. The percent positivity of PD-1 and PD-L1 with 95% confidence intervals (CI) was estimated for all the cases as well as groups defined by stage, grade, molecular subtype, hormone receptor status, K
i
-67, and age.
Results
PD-1 positivity was seen in 72 (69.9%) cases (95% CI: 60.1–78.6). PD-L1 immunoexpression was seen in 61 (59.2%) cases (95% CI: 49.1–68.8) in immune cells and in 39 (37.9%) cases (95% CI: 28.5–50.0) in tumor cells. No significant association was found between PD-1, PD-L1 and age, overall clinical stage, grade, size, estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and K
i
-67. Moderate-to-high PD-1 and PD-L1 immunopositivity was seen in all subtypes of breast cancer.
Conclusion
PD-1 and PD-L1 is expressed in all subgroups of breast carcinoma. Patients in all such groups are amenable to immunotherapy, provided they are found suitable otherwise.
Collapse
Affiliation(s)
- Anoushika Mehan
- Department of Pathology and Laboratory Medicine, AIIMS, Rishikesh, Uttarakhand, India
| | | | - Pranoy Paul
- Department of Pathology and Laboratory Medicine, AIIMS, Rishikesh, Uttarakhand, India
| | - Anjum Syed
- Department of Radiodiagnosis and Integrated Breast Care Centre (IBCC), AIIMS, Rishikesh, Uttarakhand, India
| | - Nilotpal Chowdhury
- Department of Pathology and Laboratory Medicine and Integrated Breast Care Centre (IBCC), AIIMS, Rishikesh, Uttarakhand, India
| | - Shalinee Rao
- Department of Pathology and Laboratory Medicine and Integrated Breast Care Centre (IBCC), AIIMS, Rishikesh, Uttarakhand, India
| | - Nuzhat Hussain
- Department of Pathology, Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Bina Ravi
- Department of Surgery and Integrated Breast Care Centre (IBCC), AIIMS, Rishikesh, Uttarakhand, India
| |
Collapse
|
17
|
Peng T, Lin H, Tsai F, Wu T. Immune checkpoint inhibitors for first-line treatment of advanced non-small-cell lung cancer: A systematic review and network meta-analysis. Thorac Cancer 2021; 12:2873-2885. [PMID: 34545685 PMCID: PMC8563153 DOI: 10.1111/1759-7714.14148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Currently, several immune checkpoint inhibitors (ICIs) treatment for advanced non-small-cell lung cancer (NSCLC) have been investigated; their overall efficacy and safety remain unclear. METHODS We searched electronic databases such as PubMed, EMBASE, and the Cochrane library. The randomized controlled trials (RCTs) that compared ICIs with or without chemotherapy to chemotherapy in advanced NSCLC. We collected and compaired thier parameters, including overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and treatment-related adverse events (TRAEs) of grade ≥3. RESULTS A total of 15 RCTs involving 8869 patients with NSCLC were included. Pembrolizumab plus platinum-based chemotherapy had higher OS and PFS than platinum-based chemotherapy (hazard ratio [HR] 0.55, 95% CI 0.46-0.67; HR 0.54, 95% CI 0.41-0.70, respectively). Pembrolizumab plus platinum-based chemotherapy had higher ranked ORR than platinum-based chemotherapy (odds ratio [OR] 2.92, 95% CI 1.99-4.22). In terms of OS, atezolizumab, pembrolizumab plus platinum-based chemotherapy, and nivolumab plus ipilimumab ranked as the best treatments for patients with programmed death-ligand 1 (PD-L1) expression levels of ≥50%, 1-49%, and <1%, respectively. In terms of PFS, pembrolizumab plus platinum-based chemotherapy ranked as the best treatment for patients with any PD-L1 expression levels. However, ipilimumab plus platinum-based chemotherapy, nivolumab plus platinum-based chemotherapy, and atezolizumab plus platinum-based chemotherapy have higher TRAEs of grade ≥3 than platinum-based chemotherapy. CONCLUSIONS Pembrolizumab plus platinum-based chemotherapy prevailed in rank in OS, PFS, and ORR benefit. The TRAEs of pembrolizumab plus platinum-based chemotherapy were more than ICI monotherapy and chemotherapy.
Collapse
Affiliation(s)
- Tzu‐Rong Peng
- Department of PharmacyTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Hung‐Hong Lin
- Department of PharmacyChia‐Nan University of Pharmacy and ScienceTainanTaiwan
| | - Fang‐Pei Tsai
- Department of PharmacyTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Ta‐Wei Wu
- Department of PharmacyTaipei Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
- School of Pharmacy, College of PharmacyTaipei Medical UniversityTaipei CityTaiwan
| |
Collapse
|
18
|
Tian Y, Komolafe TE, Zheng J, Zhou G, Chen T, Zhou B, Yang X. Assessing PD-L1 Expression Level via Preoperative MRI in HCC Based on Integrating Deep Learning and Radiomics Features. Diagnostics (Basel) 2021; 11:1875. [PMID: 34679573 PMCID: PMC8534850 DOI: 10.3390/diagnostics11101875] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
To assess if quantitative integrated deep learning and radiomics features can predict the PD-L1 expression level in preoperative MRI of hepatocellular carcinoma (HCC) patients. The data in this study consist of 103 hepatocellular carcinoma patients who received immunotherapy in a single center. These patients were divided into a high PD-L1 expression group (30 patients) and a low PD-L1 expression group (73 patients). Both radiomics and deep learning features were extracted from their MRI sequence of T2-WI, which were merged into an integrative feature space for machine learning for the prediction of PD-L1 expression. The five-fold cross-validation was adopted to validate the performance of the model, while the AUC was used to assess the predictive ability of the model. Based on the five-fold cross-validation, the integrated model achieved the best prediction performance, with an AUC score of 0.897 ± 0.084, followed by the deep learning-based model with an AUC of 0.852 ± 0.043 then the radiomics-based model with AUC of 0.794 ± 0.035. The feature set integrating radiomics and deep learning features is more effective in predicting PD-L1 expression level than only one feature type. The integrated model can achieve fast and accurate prediction of PD-L1 expression status in preoperative MRI of HCC patients.
Collapse
Affiliation(s)
- Yuchi Tian
- Academy of Engineering and Technology, Fudan University, Shanghai 200433, China;
| | | | - Jian Zheng
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| | - Guofeng Zhou
- Department of Radiology, Zhongshan Hospital, Shanghai 200032, China;
| | - Tao Chen
- School of Information Science and Technology, Fudan University, Shanghai 200433, China;
| | - Bo Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaodong Yang
- Academy of Engineering and Technology, Fudan University, Shanghai 200433, China;
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China;
| |
Collapse
|
19
|
Luo M, Xia Y, Wang F, Zhang H, Su D, Su C, Yang C, Wu S, An S, Lin S, Fu L. PD0325901, an ERK inhibitor, enhances the efficacy of PD-1 inhibitor in non-small cell lung carcinoma. Acta Pharm Sin B 2021; 11:3120-3133. [PMID: 34729305 PMCID: PMC8546891 DOI: 10.1016/j.apsb.2021.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
ERK pathway regulated the programmed death ligand-1 (PD-L1) expression which was linked to the response of programmed death-1 (PD-1)/PD-L1 blockade therapy. So it is deducible that ERK inhibitor could enhance the efficacy of PD-1 inhibitor in cancer immunotherapy. In this study, PD0325901, an oral potent ERK inhibitor, strongly enhanced the efficacy of PD-1 antibody in vitro and in vivo models in non-small cell lung carcinoma (NSCLC) cells. Mechanistically, PD0325901 or shRNA-ERK1/2 significantly downregulated the PD-L1 expression in NSCLC cells and increased the CD3+ T cells infiltration and functions in tumor tissue. There was a positive correlation between the p-ERK1/2 expression and PD-L1 expression in patients with NSCLC. And the patients with low p-ERK1/2 expression were observed a high response rate of PD-1/PD-L1 blockage therapy. Our results demonstrate that PD0325901, an ERK inhibitor, can enhance the efficacy of PD-1 blockage against NSCLC in vitro and in vivo models. And the combination of ERK inhibitor such as PD0325901 and PD-1/PD-L1 blockage is a promising regimen and encouraged to be further confirmed in the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Min Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yuhui Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Danting Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chaoyue Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Pharmacy College, Guangzhou Medical University, Guangzhou 510182, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shaocong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sainan An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Suxia Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Corresponding authors. Tel.: +86 20 873431-63, fax: +86 20 87343170.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Corresponding authors. Tel.: +86 20 873431-63, fax: +86 20 87343170.
| |
Collapse
|
20
|
Liu J, Zheng Q, Mu X, Zuo Y, Xu B, Jin Y, Wang Y, Tian H, Yang Y, Xue Q, Huang Z, Chen L, Gu B, Hou X, Shen L, Guo Y, Li Y. Automated tumor proportion score analysis for PD-L1 (22C3) expression in lung squamous cell carcinoma. Sci Rep 2021; 11:15907. [PMID: 34354151 PMCID: PMC8342621 DOI: 10.1038/s41598-021-95372-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023] Open
Abstract
Programmed cell death ligend-1 (PD-L1) expression by immunohistochemistry (IHC) assays is a predictive marker of anti-PD-1/PD-L1 therapy response. With the popularity of anti-PD-1/PD-L1 inhibitor drugs, quantitative assessment of PD-L1 expression becomes a new labor for pathologists. Manually counting the PD-L1 positive stained tumor cells is an obviously subjective and time-consuming process. In this paper, we developed a new computer aided Automated Tumor Proportion Scoring System (ATPSS) to determine the comparability of image analysis with pathologist scores. A three-stage process was performed using both image processing and deep learning techniques to mimic the actual diagnostic flow of the pathologists. We conducted a multi-reader multi-case study to evaluate the agreement between pathologists and ATPSS. Fifty-one surgically resected lung squamous cell carcinoma were prepared and stained using the Dako PD-L1 (22C3) assay, and six pathologists with different experience levels were involved in this study. The TPS predicted by the proposed model had high and statistically significant correlation with sub-specialty pathologists' scores with Mean Absolute Error (MAE) of 8.65 (95% confidence interval (CI): 6.42-10.90) and Pearson Correlation Coefficient (PCC) of 0.9436 ([Formula: see text]), and the performance on PD-L1 positive cases achieved by our method surpassed that of non-subspecialty and trainee pathologists. Those experimental results indicate that the proposed automated system can be a powerful tool to improve the PD-L1 TPS assessment of pathologists.
Collapse
Affiliation(s)
- Jingxin Liu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Histo Pathology Diagnostic Center, Shanghai, China
| | - Qiang Zheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Mu
- Histo Pathology Diagnostic Center, Shanghai, China
| | - Yanfei Zuo
- Histo Pathology Diagnostic Center, Shanghai, China
| | - Bo Xu
- Histo Pathology Diagnostic Center, Shanghai, China
| | - Yan Jin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua Tian
- Department of Pathology, Yangzhou Jiangdu People's Hospital, Yangzhou, China
| | - Yongguo Yang
- Department of Pathology, Yangzhou Jiangdu People's Hospital, Yangzhou, China
| | - Qianqian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ziling Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lijun Chen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bin Gu
- Histo Pathology Diagnostic Center, Shanghai, China
| | - Xianxu Hou
- Computer Vision Institute, School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Linlin Shen
- Computer Vision Institute, School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
- AI Research Center for Medical Image Analysis and Diagnosis, Shenzhen University, Shenzhen, China
| | - Yan Guo
- Histo Pathology Diagnostic Center, Shanghai, China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Le DT, Huynh TR, Burt B, Van Buren G, Abeynaike SA, Zalfa C, Nikzad R, Kheradmand F, Tyner JJ, Paust S. Natural killer cells and cytotoxic T lymphocytes are required to clear solid tumor in a patient-derived xenograft. JCI Insight 2021; 6:e140116. [PMID: 34081628 PMCID: PMC8410059 DOI: 10.1172/jci.insight.140116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Existing patient-derived xenograft (PDX) mouse models of solid tumors lack a fully tumor donor-matched, syngeneic, and functional immune system. We developed a model that overcomes these limitations by engrafting lymphopenic recipient mice with a fresh, undisrupted piece of solid tumor, whereby tumor-infiltrating lymphocytes (TILs) persisted in the recipient mice for several weeks. Successful tumor engraftment was achieved in 83% to 89% of TIL-PDX mice, and these were seen to harbor exhausted immuno-effector as well as functional immunoregulatory cells persisting for at least 6 months postengraftment. Combined treatment with interleukin-15 stimulation and immune checkpoint inhibition resulted in complete or partial tumor response in this model. Further, depletion of cytotoxic T lymphocytes and/or natural killer cells before combined immunotherapy revealed that both cell types were required for maximal tumor regression. Our TIL-PDX model provides a valuable resource for powerful mechanistic and therapeutic studies in solid tumors.
Collapse
Affiliation(s)
- Duy Tri Le
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Tridu R Huynh
- Scripps Research Translational Institute, La Jolla, California, USA.,Division of Internal Medicine, Scripps Clinic/Scripps Green Hospital, La Jolla, California, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Bryan Burt
- Division of General Thoracic Surgery and
| | - George Van Buren
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shawn A Abeynaike
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Cristina Zalfa
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Rana Nikzad
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Farrah Kheradmand
- Margaret M. and Albert B. Alkek Department of Medicine, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, US Department of Veterans Affairs, Houston, Texas, USA
| | - John J Tyner
- Division of Cardiovascular/Thoracic Surgery, Scripps Clinic, La Jolla, California, USA
| | - Silke Paust
- Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
22
|
Xiao G, Liu Z, Gao X, Wang H, Peng H, Li J, Yang L, Duan H, Zhou R. Immune checkpoint inhibitors for brain metastases in non-small-cell lung cancer: from rationale to clinical application. Immunotherapy 2021; 13:1031-1051. [PMID: 34231370 DOI: 10.2217/imt-2020-0262] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Brain metastases (BM) is common in non-small-cell lung cancer (NSCLC) patients. Immune checkpoint inhibitors (ICIs) have gradually become a routine treatment for NSCLC BM patients. Currently, three PD-1 inhibitors (pembrolizumab, nivolumab and cemiplimab), one PD-L1 inhibitor (atezolizumab) and one CTLA-4 inhibitor (ipilimumab) have been approved for the first-line treatment of metastatic NSCLC. It is still controversial whether PD-L1, tumor infiltrating lymphocytes, and tumor mutation burden can be used as predictive biomarkers for immune checkpoint inhibitors in NSCLC patients with BM. In addition, clinical data on NSCLC BM were inadequate. Here, we review the theoretical basis and clinical data for the application of ICIs in the therapy of NSCLC BM.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhiyuan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xuan Gao
- Geneplus-Beijing, Beijing, 102205, China
| | - Han Wang
- Geneplus-Beijing, Beijing, 102205, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiahui Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lei Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hexin Duan
- Department of Oncology Xiangxi Autonomous Prefecture People's Hospital, Jishou, 416000, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
23
|
Leal AS, Reich LA, Moerland JA, Zhang D, Liby KT. Potential therapeutic uses of rexinoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:141-183. [PMID: 34099107 DOI: 10.1016/bs.apha.2021.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lyndsey A Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jessica A Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Karen T Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
24
|
Stempor PA, Avni D, Leibowitz R, Sidi Y, Stępień M, Dzieciątkowski T, Dobosz P. Comprehensive Analysis of Correlations in the Expression of miRNA Genes and Immune Checkpoint Genes in Bladder Cancer Cells. Int J Mol Sci 2021; 22:2553. [PMID: 33806327 PMCID: PMC7961343 DOI: 10.3390/ijms22052553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Personalised medicine is the future and hope for many patients, including those with cancers. Early detection, as well as rapid, well-selected treatment, are key factors leading to a good prognosis. MicroRNA mediated gene regulation is a promising area of development for new diagnostic and therapeutic methods, crucial for better prospects for patients. Bladder cancer is a frequent neoplasm, with high lethality and lacking modern, advanced therapeutic modalities, such as immunotherapy. MicroRNAs are involved in bladder cancer pathogenesis, proliferation, control and response to treatment, which we summarise in this perspective in response to lack of recent review publications in this field. We further performed a correlation-based analysis of microRNA and gene expression data in bladder cancer (BLCA) TCGA dataset. We identified 27 microRNAs hits with opposite expression profiles to genes involved in immune response in bladder cancer, and 24 microRNAs hits with similar expression profiles. We discuss previous studies linking the functions of these microRNAs to bladder cancer and assess if they are good candidates for personalised medicine therapeutics and diagnostics. The discussed functions include regulation of gene expression, interplay with transcription factors, response to treatment, apoptosis, cell proliferation and angiogenesis, initiation and development of cancer, genome instability and tumour-associated inflammatory reaction.
Collapse
Affiliation(s)
- Przemysław A. Stempor
- SmartImmune Ltd, Accelerate Cambridge, University of Cambridge Judge Business School, Cambridge CB4 1EE, UK;
| | - Dror Avni
- Laboratory of Molecular Cell Biology, Center for Cancer Research and Department of Medicine C, Sheba Medical Center, Tel Hashome 52621, Israel;
| | - Raya Leibowitz
- Oncology Institute, Shamir Medical Center, Be’er Yaakov, Tel Hashome 52621, Israel;
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Yechezkel Sidi
- Faculty of Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo 6997801, Israel;
| | - Maria Stępień
- Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | - Paula Dobosz
- Department of Hematology, Transplantationand Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
25
|
Fang C, Xu D, Su J, Dry JR, Linghu B. DeePaN: deep patient graph convolutional network integrating clinico-genomic evidence to stratify lung cancers for immunotherapy. NPJ Digit Med 2021; 4:14. [PMID: 33531613 PMCID: PMC7854753 DOI: 10.1038/s41746-021-00381-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Immuno-oncology (IO) therapies have transformed the therapeutic landscape of non-small cell lung cancer (NSCLC). However, patient responses to IO are variable and influenced by a heterogeneous combination of health, immune, and tumor factors. There is a pressing need to discover the distinct NSCLC subgroups that influence response. We have developed a deep patient graph convolutional network, we call "DeePaN", to discover NSCLC complexity across data modalities impacting IO benefit. DeePaN employs high-dimensional data derived from both real-world evidence (RWE)-based electronic health records (EHRs) and genomics across 1937 IO-treated NSCLC patients. DeePaN demonstrated effectiveness to stratify patients into subgroups with significantly different (P-value of 2.2 × 10-11) overall median survival of 20.35 months and 9.42 months post-IO therapy. Significant differences in IO outcome were not seen from multiple non-graph-based unsupervised methods. Furthermore, we demonstrate that patient stratification from DeePaN has the potential to augment the emerging IO biomarker of tumor mutation burden (TMB). Characterization of the subgroups discovered by DeePaN indicates potential to inform IO therapeutic insight, including the enrichment of mutated KRAS and high blood monocyte count in the IO beneficial and IO non-beneficial subgroups, respectively. Our work has proven the concept that graph-based AI is feasible and can effectively integrate high-dimensional genomic and EHR data to meaningfully stratify cancer patients on distinct clinical outcomes, with potential to inform precision oncology.
Collapse
Affiliation(s)
- Chao Fang
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- Christopher S Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jing Su
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
| | - Jonathan R Dry
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA, USA.
| | - Bolan Linghu
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Boston, MA, USA.
| |
Collapse
|
26
|
Onwe EE, Ghani FA, Abdullah M, Osman M, Zin RRM, Vivian AN, Mohtarrudin N. Predictive Potential of PD-L1, TYMS, and DCC Expressions in Treatment Outcome of Colorectal Carcinoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1292:97-112. [PMID: 32542457 DOI: 10.1007/5584_2020_521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Colorectal carcinoma (CRC) is a malignancy of epithelial origin in the large bowel. The elucidation of the biological functions of programmed cell death ligand-1 (PD-L1), thymidylate synthase (TYMS), and deleted in colorectal cancer (DCC) biomarkers including their roles in the pathophysiology of CRC - has led to their applications in diagnostic and chemo-pharmaceutics. We investigated whether PD-L1, TYMS, and DCC protein expression in CRC tumors are predictive biomarkers of treatment outcome for CRC patients. The expressions of PD-L1, TYMS, and DCC were evaluated by immunohistochemistry (IHC) in 91 paraffin-embedded samples from patients who underwent colectomy procedure in Hospital Serdang, Selangor, Malaysia. There was high expression of DCC in most cases: 84.6% (77/91). PD-L1 showed low expression in 93.4% (86/91) of cases and high expression in 6.6% (5/91) of cases. Low and high expressions of TYMS were detected in 53.8% (49/91) and 46.2% (42/91) of the CRC cases, respectively. There was a significant association between the TYMS expression and gender (P < 0.05); the expression of TYMS was observed at a high level in 76.2% of males and in 23.8% of females. The mean overall survival (OS) was 100 months for the CRC patients evaluated. The OS for patients with high expression of PD-L1 was 22 months. Patients with high expression of TYMS and DCC showed OS of 90 and 96 months, respectively. The results from this study suggest that PD-L1, TYMS, and DCC expression could be used as biomarkers to stratify CRC patients who could benefit from adjuvant therapy.
Collapse
Affiliation(s)
- Ebenyi Emeka Onwe
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Medical Laboratory Science Department, Ebonyi State University, Abakaliki, Nigeria
| | - Fauzah Abd Ghani
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Malina Osman
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Arimokwu Nimbi Vivian
- Department of Occupational Safety and Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
27
|
Tonse R, Rubens M, Appel H, Tom MC, Hall MD, Odia Y, McDermott MW, Ahluwalia MS, Mehta MP, Kotecha R. Systematic review and meta-analysis of PD-L1 expression discordance between primary tumor and lung cancer brain metastasis. Neurooncol Adv 2021; 3:vdab166. [PMID: 34988451 PMCID: PMC8704382 DOI: 10.1093/noajnl/vdab166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Novel immunotherapeutic strategies targeting the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis are often administered when metastatic tumors show PD-L1 positivity, even in the setting of lung cancer brain metastasis (LCBM). However, biological differences exist between primary tumors and metastatic sites. The objective of this study was to analyze rates of PD-L1 receptor discordance between primary tumors and LCBM. Methods A systematic review of studies of biopsied or resected LCBM evaluating PD-L1 discordance published in the Medline database was performed using PRISMA guidelines. Weighted random effects models were used to calculate pooled estimates. Results Six full-text articles (n = 230 patients) with a median of 32 patients in each study (range: 24–73) reported PD-L1 receptor expression analyses of both primary lung tumors and brain metastases and met inclusion criteria. The pooled estimate for tumor cell (TC) PD-L1 receptor discordance between primary tumors and LCBM was 19% (95% confidence interval [CI]: 10–27%). For PD-L1 receptor expression in tumor-infiltrating lymphocytes (TIL), the weighted pooled estimate for discordance was 21% (95% CI: 8–44%). For primary versus LCBM, the positive rates by expression levels of <1%, 1–50%, and >50% were 52% (95% CI: 30–73%) versus 56% (95% CI: 34–76%), 30% (95% CI: 22–40%) versus 20% (95% CI: 10–35%), and 15% (95% CI: 6–36%) versus 22% (95% CI: 15–31%) (P = .425), respectively. Conclusions PD-L1 discordance occurs in ~20% of LCBM, with the greatest discordance in the 1–50% expression category. Although controversial, confirming discordance might be important for selection of immune checkpoint inhibitor therapy and in the analysis of patterns of failure after treatment.
Collapse
Affiliation(s)
- Raees Tonse
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Muni Rubens
- Office of Clinical Research, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Haley Appel
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Martin C Tom
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Yazmin Odia
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Division of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
28
|
Intron retention-induced neoantigen load correlates with unfavorable prognosis in multiple myeloma. Oncogene 2021; 40:6130-6138. [PMID: 34504297 PMCID: PMC8426332 DOI: 10.1038/s41388-021-02005-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/17/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
Neoantigen peptides arising from genetic alterations may serve as targets for personalized cancer vaccines and as positive predictors of response to immune checkpoint therapy. Mutations in genes regulating RNA splicing are common in hematological malignancies leading to dysregulated splicing and intron retention (IR). In this study, we investigated IR as a potential source of tumor neoantigens in multiple myeloma (MM) patients and the relationship of IR-induced neoantigens (IR-neoAg) with clinical outcomes. MM-specific IR events were identified in RNA-sequencing data from the Multiple Myeloma Research Foundation CoMMpass study after removing IR events that also occurred in normal plasma cells. We quantified the IR-neoAg load by assessing IR-induced novel peptides that were predicted to bind to major histocompatibility complex (MHC) molecules. We found that high IR-neoAg load was associated with poor overall survival in both newly diagnosed and relapsed MM patients. Further analyses revealed that poor outcome in MM patients with high IR-neoAg load was associated with high expression levels of T-cell co-inhibitory molecules and elevated interferon signaling activity. We also found that MM cells exhibiting high IR levels had lower MHC-II protein abundance and treatment of MM cells with a spliceosome inhibitor resulted in increased MHC-I protein abundance. Our findings suggest that IR-neoAg may represent a novel biomarker of MM patient clinical outcome and further that targeting RNA splicing may serve as a potential therapeutic strategy to prevent MM immune escape and promote response to checkpoint blockade.
Collapse
|
29
|
Boyero L, Sánchez-Gastaldo A, Alonso M, Noguera-Uclés JF, Molina-Pinelo S, Bernabé-Caro R. Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy. Cancers (Basel) 2020; 12:E3729. [PMID: 33322522 PMCID: PMC7763130 DOI: 10.3390/cancers12123729] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
After several decades without maintained responses or long-term survival of patients with lung cancer, novel therapies have emerged as a hopeful milestone in this research field. The appearance of immunotherapy, especially immune checkpoint inhibitors, has improved both the overall survival and quality of life of patients, many of whom are diagnosed late when classical treatments are ineffective. Despite these unprecedented results, a high percentage of patients do not respond initially to treatment or relapse after a period of response. This is due to resistance mechanisms, which require understanding in order to prevent them and develop strategies to overcome them and increase the number of patients who can benefit from immunotherapy. This review highlights the current knowledge of the mechanisms and their involvement in resistance to immunotherapy in lung cancer, such as aberrations in tumor neoantigen burden, effector T-cell infiltration in the tumor microenvironment (TME), epigenetic modulation, the transcriptional signature, signaling pathways, T-cell exhaustion, and the microbiome. Further research dissecting intratumor and host heterogeneity is necessary to provide answers regarding the immunotherapy response and develop more effective treatments for lung cancer.
Collapse
Affiliation(s)
- Laura Boyero
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (L.B.); (J.F.N.-U.)
| | - Amparo Sánchez-Gastaldo
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; (A.S.-G.); (M.A.)
| | - Miriam Alonso
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; (A.S.-G.); (M.A.)
| | - José Francisco Noguera-Uclés
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (L.B.); (J.F.N.-U.)
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (L.B.); (J.F.N.-U.)
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; (A.S.-G.); (M.A.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Reyes Bernabé-Caro
- Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; (L.B.); (J.F.N.-U.)
- Medical Oncology Department, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; (A.S.-G.); (M.A.)
| |
Collapse
|
30
|
Brueckl WM, Ficker JH, Zeitler G. Clinically relevant prognostic and predictive markers for immune-checkpoint-inhibitor (ICI) therapy in non-small cell lung cancer (NSCLC). BMC Cancer 2020; 20:1185. [PMID: 33272262 PMCID: PMC7713034 DOI: 10.1186/s12885-020-07690-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) either alone or in combination with chemotherapy have expanded our choice of agents for the palliative treatment of non-small cell lung cancer (NSCLC) patients. Unfortunately, not all patients will experience favorable response to treatment with ICI and may even suffer from severe side effects. Therefore, prognostic and predictive markers, beyond programmed death ligand 1 (PD-L1) expression status, are of utmost importance for decision making in the palliative treatment. This review focuses on clinical, laboratory and genetic markers, most of them easily to obtain in the daily clinical practice. RESULTS Recently, a number of prognostic and predictive factors in association to palliative ICI therapy have been described in NSCLC. Besides biometric parameters and clinical characteristics of the tumor, there are useful markers from routine blood sampling as well as innovative soluble genetic markers which can be determined before and during ICI treatment. Additionally, the level of evidence is noted. CONCLUSIONS These factors can be helpful to predict patients' outcome and tumor response to ICI. They should be implemented prospectively in ICI based clinical trials to develop reliable algorithms for palliative NSCLC treatment.
Collapse
Affiliation(s)
- Wolfgang M Brueckl
- Department of Respiratory Medicine, Allergology and Sleep Medicine / Nuremberg Lung Cancer Center, Paracelsus Medical University, General Hospital Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany.
- Paracelsus Medical Private University Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany.
| | - Joachim H Ficker
- Department of Respiratory Medicine, Allergology and Sleep Medicine / Nuremberg Lung Cancer Center, Paracelsus Medical University, General Hospital Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
- Paracelsus Medical Private University Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
| | - Gloria Zeitler
- Paracelsus Medical Private University Nuremberg, Prof.-Ernst-Nathan-Str. 1, 90419, Nuremberg, Germany
| |
Collapse
|
31
|
Li JJN, Karim K, Sung M, Le LW, Lau SCM, Sacher A, Leighl NB. Tobacco exposure and immunotherapy response in PD-L1 positive lung cancer patients. Lung Cancer 2020; 150:159-163. [PMID: 33171404 DOI: 10.1016/j.lungcan.2020.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/17/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Tobacco exposure contributes to over 80 % of lung cancer cases. Smoking is associated with programmed death-ligand 1 (PD-L1) tumor expression and better outcomes from anti-programmed cell death protein 1 (anti-PD-1) therapy in patients with advanced non-small cell lung cancer (NSCLC). PD-L1 tumor expression is now routinely used to predict benefit from anti-PD-1 therapy in patients with advanced NSCLC. In this study, we explored the impact of smoking status on patient outcomes with anti-PD-1 therapy in addition to PD-L1 tumor expression. METHODS A prospective real-world cohort of 268 patients with advanced NSCLC treated with anti-PD-1 monotherapy at the Princess Margaret Cancer Centre (PMCC) was used for this analysis. Logistic regression was performed to test factors associated with treatment response (RECIST v1.1), including PD-L1 tumour proportion score (TPS) and smoking status. RESULTS Overall response rates (ORR) to immunotherapy were significantly higher in current and former smokers than never smokers (36 % vs 26 % vs 14 %; p = 0.02). In patients with PD-L1 tumour proportion score (TPS) ≥50 %, current smokers continued to experience better ORR to anti-PD-1 therapy than never smokers (58 % vs 19 %; p = 0.03). Current smoking was associated with higher response even after adjusting for level of PD-L1 TPS expression (adjusted odds ratio 5.9, 95 % CI 1.6-25.0, p = 0.03). Exploratory analysis demonstrated higher 1-year survival rates in smokers compared to never smokers (p = 0.003). CONCLUSIONS Smoking remains an important factor associated with response to anti-PD-1 monotherapy. Advanced NSCLC patients with positive PD-L1 expression are more likely to respond to anti-PD-1 monotherapy if they are current smokers compared to never smokers.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Khizar Karim
- Department of Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Mike Sung
- Department of Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Lisa W Le
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - Sally C M Lau
- Department of Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Adrian Sacher
- Department of Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Natasha B Leighl
- Department of Medical Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
32
|
Ma K, Qiao Y, Wang H, Wang S. Comparative expression analysis of PD-1, PD-L1, and CD8A in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1478. [PMID: 33313223 PMCID: PMC7729328 DOI: 10.21037/atm-20-6486] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND As a new strategy for advanced lung adenocarcinoma (LUAD), programmed cell death protein 1 (PD-1) pathway inhibitors have been used in clinic for several years. However, the roles of PD-1, programmed cell death-ligand 1 (PD-L1), and CD8A in LUAD are still unclear. In the study, we aimed to assess the correlation between the mRNA expression of these three factors and the clinical characteristics of LUAD, and to explore the influence of the PD-1/PD-L1/CD8A axis on the prognosis of LUAD. METHODS The mRNA expression data and clinical characteristics of LUAD patients were retrieved from The Cancer Genome Atlas (TCGA). The optimal cutoff value for PD-1, PD-L1, and CD8A was determined by Cutoff Finder. The chi-square test was used to compare categorical variables. The prognostic effects of variables were analyzed using the Kaplan---Meier method and the Cox proportional hazards model. RESULTS A total of 484 cases were enrolled in this study according to the selection process. The optimal cutoff values for identifying high/low mRNA expression were defined as 27.4 for PD-1, 29.41 for PD-L1, and 95.52 for CD8A. The high expression of PD-1 (P=0.015) and PD-L1 (P=0.027) was more frequent in women than in men. The high expression of PD-1 (P=0.003), PD-L1 (P=0.002), and CD8A (P=0.003) was associated with early T status, whereas CD8A showed a significantly higher expression in both the early stage (P=0.006) and early N stage groups (P=0.031). PD-1, PD-L1, and CD8A were significantly positively correlated among pairs (P<0.001). High expression of each of the three genes was associated with better prognosis (P=0.030 for PD-1, P=0.046 for PD-L1, P=0.019 for CD8A), although the relation did not reach statistical significance in the Cox regression hazards model. CONCLUSIONS The study defined a group of cutoff values for PD-1, PD-L1, and CD8A to identify high and low mRNA expression in LUAD. The high expression of PD-1, PD-L1, and CD8A was associated with early T status, and CD8A showed significantly higher expression in both early stage and early N stage groups. Although the high expression of each of these three genes was associated with favorable overall survival (OS), they were not independent prognostic factors.
Collapse
Affiliation(s)
- Ke Ma
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yulei Qiao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
33
|
TRIM28 is a distinct prognostic biomarker that worsens the tumor immune microenvironment in lung adenocarcinoma. Aging (Albany NY) 2020; 12:20308-20331. [PMID: 33091876 PMCID: PMC7655206 DOI: 10.18632/aging.103804] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022]
Abstract
The tumor immune microenvironment (TIME) is an important determinant of cancer prognosis and treatment efficacy. To identify immune-related prognostic biomarkers of lung adenocarcinoma, we used the ESTIMATE algorithm to calculate the immune and stromal scores of 517 lung adenocarcinoma patients from The Cancer Genome Atlas (TCGA). We detected 985 differentially expressed genes (DEGs) between patients with high and low immune and stromal scores, and we analyzed their functions and protein-protein interactions. TRIM28 was upregulated in lung adenocarcinoma patients with low immune and stromal scores, and was associated with a poor prognosis. The TISIDB and TIMER databases indicated that TRIM28 expression correlated negatively with immune infiltration. We then explored genes that were co-expressed with TRIM28 in TCGA, and investigated DEGs based on TRIM28 expression in GSE43580 and GSE7670. The 429 common DEGs from these analyses were functionally analyzed. We also performed a Gene Set Enrichment Analysis using TCGA data, and predicted substrates of TRIM28 using UbiBrowser. The results indicated that TRIM28 may negatively regulate the TIME by increasing the SUMOylation of IRF5 and IRF8. Correlation analyses and validations in two lung adenocarcinoma cell lines (PC9 and H1299) confirmed these findings. Thus, TRIM28 may worsen the TIME and prognosis of lung adenocarcinoma.
Collapse
|
34
|
Huang L, Li L, Zhou Y, Yang Z, Wang M, Gao Y, Yang Y, Yang F, Liu B, Hong X, Chen G. Clinical Characteristics Correlate With Outcomes of Immunotherapy in Advanced Non-Small Cell Lung Cancer. J Cancer 2020; 11:7137-7145. [PMID: 33193876 PMCID: PMC7646175 DOI: 10.7150/jca.49213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Considering the existing indicators are not sufficient to predict the patient's response to immune checkpoint inhibitors (ICIs), we conducted this study to evaluate the efficacy and safety of ICIs in advanced non-small cell lung cancer (NSCLC) patients, and to determine prognostic factors of ICIs. In this study, 61 patients diagnosed with advanced NSCLC who underwent ICIs were recruited. The univariate analysis revealed the number of metastatic sites, immune-related adverse events (irAEs) (≥ G2) and best response were significantly associated with both progression-free survival (PFS) and overall survival (OS). Peripheral blood biomarkers, including post-treatment neutrophil-to-lymphocyte ratio (NLR) and CEA levels were also associated with PFS, but not OS. The irAEs (≥ G2), best response and age were confirmed as independent predictors of a prolonged survival by multivariate analysis. The development of irAEs ≥ G2 correlated with a survival benefit in patients with advanced NSCLC (median PFS: 7.1 months vs. 4.6 months, P = 0.013). Thus, we concluded that identifying predictors of benefit from ICIs treatment will help to further extend patient survival in advanced NSCLC.
Collapse
Affiliation(s)
- Lan Huang
- Department of Medical Oncology, Heilongjiang Provincial Hospital, Harbin, China.,Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingxu Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhaoyang Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meng Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yina Gao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fang Yang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bao Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuan Hong
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Gongyan Chen
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
35
|
Kerr SC, Morgan MM, Gillette AA, Livingston MK, Lugo-Cintron KM, Favreau PF, Florek L, Johnson BP, Lang JM, Skala MC, Beebe DJ. A bioengineered organotypic prostate model for the study of tumor microenvironment-induced immune cell activation. Integr Biol (Camb) 2020; 12:250-262. [PMID: 33034643 PMCID: PMC7569006 DOI: 10.1093/intbio/zyaa020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022]
Abstract
The prostate tumor microenvironment (TME) is strongly immunosuppressive; it is largely driven by alteration in cell phenotypes (i.e. tumor-associated macrophages and exhausted cytotoxic T cells) that result in pro-tumorigenic conditions and tumor growth. A greater understanding into how these altered immune cell phenotypes are developed and could potentially be reversed would provide important insights into improved treatment efficacy for prostate cancer. Here, we report a microfluidic model of the prostate TME that mimics prostate ducts across various stages of prostate cancer progression, with associated stroma and immune cells. Using this platform, we exposed immune cells to a benign prostate TME or a metastatic prostate TME and investigated their metabolism, gene and cytokine expression. Immune cells exposed to the metastatic TME showed metabolic differences with a higher redox ratio indicating a switch to a more glycolytic metabolic profile. These cells also increased expression of pro-tumor response cytokines that have been shown to increase cell migration and angiogenesis such as Interleukin-1 (IL-1) a and Granulocyte-macrophage colony-stimulating factor (GM-CSF). Lastly, we observed decreased TLR, STAT signaling and TRAIL expression, suggesting that phenotypes derived from exposure to the metastatic TME could have an impaired anti-tumor response. This platform could provide a valuable tool for studying immune cell phenotypes in in vitro tumor microenvironments.
Collapse
Affiliation(s)
- Sheena C Kerr
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Molly M Morgan
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Amani A Gillette
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Megan K Livingston
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Karina M Lugo-Cintron
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Logan Florek
- Morgridge Institute for Research, Madison, WI, USA
| | - Brian P Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua M Lang
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Melissa C Skala
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
36
|
Aiello MM, Solinas C, Santoni M, Battelli N, Restuccia N, Latteri F, Paratore S, Verderame F, Albanese GV, Bruzzi P, Soto Parra HJ. Excision Repair Cross Complementation Group 1 Single Nucleotide Polymorphisms and Nivolumab in Advanced Non-Small Cell Lung Cancer. Front Oncol 2020; 10:1167. [PMID: 32983959 PMCID: PMC7493643 DOI: 10.3389/fonc.2020.01167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Background: We hypothesized that non-small cell lung cancer (NSCLC) patients with a tumor positive for single nucleotide polymorphisms (SNPs) of the Excision Repair Cross Complementation Group 1 (ERCC-1) gene could be more genetically instable and consequently more responsive to a programmed cell death-1 (PD-1) blockade. Methods: We evaluated the T19007C and C8092A ERCC-1 SNPs by pyrosequencing assay, on tumor specimens from two independent cohorts of patients who relapsed after one or more prior systemic treatments for advanced NSCLC and who received nivolumab (3 mg/kg intravenously every 2 weeks) as part of the Italian Expanded Access Program. We aimed to assess the outcome of enrolled subjects according to the ERCC-1 SNPs status, to evaluate the role of these polymorphisms as putative biomarkers associated with a response/clinical benefit to anti-PD-1 therapies. Results: Of the 45 patients included in the final analysis, 21 (47%) and 16 (36%) were positive for the T19007C and C8092A polymorphic genotype (PG), respectively. In univariate analyses, overall survival (OS) and progression free survival (PFS) were shorter in patients with the T19007C PG, but neither difference achieved statistical significance (P = 0.131 and P = 0.717, respectively). The presence of the C8092A PG was associated with a longer OS and PFS, although statistical significance was only reached for PFS (P = 0.112 and P = 0.025, respectively). These results were confirmed by multivariate analyses. The response rate was only significantly higher in patients with the C8092A PG vs. wild type ERCC-1 (62 vs. 7%, P < 0.001). Conclusions: Results from this hypothesis generating pilot study, provided suggestive evidence that a subgroup of NSCLC patients could benefit differently from nivolumab according to the C8092A ERCC-1 SNP status. However, these data warrant further investigation.
Collapse
Affiliation(s)
- Marco Maria Aiello
- Oncology Unit, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele, Catania, Italy
| | - Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Brussels, Belgium.,Azienda AUSL, Regional Hospital of Aosta, Aosta, Italy
| | | | | | - Nunzio Restuccia
- Oncology Unit, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele, Catania, Italy
| | - Fiorenza Latteri
- Oncology Unit, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele, Catania, Italy
| | - Sabrina Paratore
- Oncology Unit, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele, Catania, Italy
| | - Francesco Verderame
- Oncology Unit, Azienda Ospedaliera Ospedali Riuniti Villa Sofia Cervello, Palermo, Italy
| | | | - Paolo Bruzzi
- Clinical Epidemiology, IRCCS Azienda Ospedaliera Universitaria San Martino, IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Hector Josè Soto Parra
- Oncology Unit, Azienda Ospedaliero Universitaria Policlinico Vittorio Emanuele, Catania, Italy
| |
Collapse
|
37
|
Shi S, Gu S, Han T, Zhang W, Huang L, Li Z, Pan D, Fu J, Ge J, Brown M, Zhang P, Jiang P, Wucherpfennig KW, Liu XS. Inhibition of MAN2A1 Enhances the Immune Response to Anti-PD-L1 in Human Tumors. Clin Cancer Res 2020; 26:5990-6002. [PMID: 32723834 DOI: 10.1158/1078-0432.ccr-20-0778] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/30/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune checkpoint blockade has shown remarkable efficacy, but in only a minority of patients with cancer, suggesting the need to develop additional treatment strategies. Aberrant glycosylation in tumors, resulting from the dysregulated expression of key enzymes in glycan biosynthesis, modulates the immune response. However, the role of glycan biosynthesis enzymes in antitumor immunity is poorly understood. We aimed to study the immunomodulatory effects of these enzymes. EXPERIMENTAL DESIGN We integrated transcriptional profiles of treatment-naïve human tumors and functional CRISPR screens to identify glycometabolism genes with immunomodulatory effects. We further validated our findings using in vitro coculture and in vivo syngeneic tumor growth assays. RESULTS We identified MAN2A1, encoding an enzyme in N-glycan maturation, as a key immunomodulatory gene. Analyses of public immune checkpoint blockade trial data also suggested a synergy between MAN2A1 inhibition and anti-PD-L1 treatment. Loss of Man2a1 in cancer cells increased their sensitivity to T-cell-mediated killing. Man2a1 knockout enhanced response to anti-PD-L1 treatment and facilitated higher cytotoxic T-cell infiltration in tumors under anti-PD-L1 treatment. Furthermore, a pharmacologic inhibitor of MAN2A1, swainsonine, synergized with anti-PD-L1 in syngeneic melanoma and lung cancer models, whereas each treatment alone had little effect. CONCLUSIONS Man2a1 loss renders cancer cells more susceptible to T-cell-mediated killing. Swainsonine synergizes with anti-PD-L1 in suppressing tumor growth. In light of the limited efficacy of anti-PD-L1 and failed phase II clinical trial on swainsonine, our study reveals a potential therapy combining the two to overcome tumor immune evasion.See related commentary by Bhat and Kabelitz, p. 5778.
Collapse
Affiliation(s)
- Sailing Shi
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shengqing Gu
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Tong Han
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wubing Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lei Huang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ziyi Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Deng Pan
- Department of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jingxin Fu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jun Ge
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Peng Zhang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Peng Jiang
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
38
|
Lin LL, Lin GF, Yang F, Chen XQ. A systematic review and meta-analysis of immune-mediated liver dysfunction in non-small cell lung cancer. Int Immunopharmacol 2020; 83:106537. [PMID: 32371246 DOI: 10.1016/j.intimp.2020.106537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been identified as validated medications in non-small cell lung cancer (NSCLC). However, they are often associated with immune-related adverse events (irAEs) including liver dysfunction. Therefore, we conducted a systematic review of the literature and performed a meta-analysis to ascertain overall incidence and risk of immune mediated liver dysfunction in NSCLC patients. METHODS PubMed, the Cochrane Library, Embase and ClinicalTrials.gov (http://clinicaltrials.gov/) were searched from inception to December 2019. Studies regarding all grade (1-5), high grade (3-5) hepatitis and ALT or AST elevation were included. RESULTS A total of 11 clinical trials including 7086 patients were selected for further assessment. The overall incidence of ALT elevation, AST elevation and hepatitis for the application of ICIs was 6.18%, 4.99% and 1.09%, respectively. Compared with chemotherapy group, treatment with ICIs had a significantly higher risk of all grade (RR: 7.27, p = 0.001) and high grade (RR: 6.70, p = 0.003) hepatitis. When ICIs combined with chemotherapy, the relative risk of all grade hepatitis was higher than monotherapy group (RR: 7.89, p = 0.044 vs RR: 6.94, p = 0.008). CONCLUSION The application of ICIs could result in a higher incidence and relative risk of all grade immune-induced liver dysfunction. Moreover, immunotherapy combined with chemotherapy may also increase relative risk of all grade hepatic AEs when compared with monotherapy. Prompt recognition and proper administration is required for clinicians to prevent potentially hepatic deterioration.
Collapse
Affiliation(s)
- Lan-Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, People's Republic of China
| | - Guo-Fu Lin
- Department of Respiratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, People's Republic of China
| | - Fan Yang
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, People's Republic of China
| | - Xiang-Qi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, People's Republic of China.
| |
Collapse
|
39
|
Liu Z, Zhao K, Wei S, Liu C, Zhou J, Gou Q, Wu X, Yang Z, Yang Y, Peng Y, Cheng Q, Liu L. ROS1-fusion protein induces PD-L1 expression via MEK-ERK activation in non-small cell lung cancer. Oncoimmunology 2020; 9:1758003. [PMID: 32923114 PMCID: PMC7458663 DOI: 10.1080/2162402x.2020.1758003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Introduction Despite some of the oncogenic driver mutations that have been associated with increased expression of programmed death-ligand 1 (PD-L1), the correlation between PD-L1 expression and ROS1 fusion in NSCLC cells, especially for those with Crizotinib resistance has not been fully addressed. Materials and Methods The expression of PD-L1 in 30 primary NSCLC tumors with/without ROS1-fusion protein was evaluated by immunohistochemical (IHC) analysis. To assess the correlation between ROS1 fusion and PD-L1 expression, we down-regulated ROS1 with RNA interference or specific inhibitor (Crizotinib) in ROS1-fusion positive NSCLC cell line HCC78; or up-regulate ROS1-fusion gene in an immortalized human bronchial epithelial cell line (HBE). Mouse xenograft models were also used to determine the effect of ROS1 expression on PD-L1 expression in vivo. Crizotinib-resistant cell line was generated for measuring the association between Crizotinib resistance and PD-L1 expression. Results ROS1-rearrangement in primary NSCLC tumor was significantly associated with up-regulated PD-L1 expression. PD-L1 expression was significantly up-regulated in bronchial epithelial cells after forced expression of ROS1 fusion and was eliminated when HCC78 xenograft mouse models were treated with Crizotinib. We found PD-L1 expression was modulated by MEK-ERK pathway signaling in both parental and Crizotinib-resistant NSCLC cells with ROS1 fusion. Conclusions The correlation between ROS1-fusion and PD-L1 overexpression suggested that PD-L1/PD-1 blockade could be the second-line treatment option for the Crizotinib-resistant NSCLC with ROS1 rearrangement.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Shiyou Wei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Chengwu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Jiankang Zhou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiheng Gou
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Wu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenyu Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yanbo Yang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Cheng
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Filipovic A, Miller G, Bolen J. Progress Toward Identifying Exact Proxies for Predicting Response to Immunotherapies. Front Cell Dev Biol 2020; 8:155. [PMID: 32258034 PMCID: PMC7092703 DOI: 10.3389/fcell.2020.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
Clinical value and utility of checkpoint inhibitors, a drug class targeting adaptive immune suppression pathways (PD-1, PDL-1, and CTLA-4), is growing rapidly and maintains status of a landmark achievement in oncology. Their efficacy has transformed life expectancy in multiple deadly cancer types (melanoma, lung cancer, renal/urothelial carcinoma, certain colorectal cancers, lymphomas, etc.). Despite significant clinical development efforts, therapeutic indication of approved checkpoint inhibitors are not as wide as the oncology community and patients would like them to be, potentially bringing into question their universal efficacy across tumor histologies. With the main goal of expanding immunotherapy applications, identifying of biomarkers to accurately predict therapeutic response and treatment related side-effects are a paramount need in the field. Specificities surrounding checkpoint inhibitors in clinic, such as unexpected tumor response patterns (pseudo- and hyper-progression), late responders, as well as specific immune mediated toxicities, complicate the management of patients. They stem from the complexities and dynamics of the tumor/host immune interactions, as well as baseline tumor biology. Search for clinically effective biomarkers therefore calls for a holistic approach, rather than implementation of a single analyte. The goal is to achieve dynamic and comprehensive acquisition, analyses and interpretation of immunological and biologic information about the tumor and the immune system, and to compute these parameters into an actionable, maximally predictive value at the individual patient level. Limitation delaying swift incorporation of validated immuno-oncology biomarkers span from standardized biospecimens acquisition and processing, selection of proficient biomarker discovery and validation methods, to establishing multidisciplinary consortiums and data sharing platforms. Multi-disciplinary efforts have already yielded some approved (PDL-1 and MSI-status) and other advanced tests (TMB, neoantigen pattern, and TIL infiltration rate). Importantly, clinical trial taskforces now recognize the imperative of the biomarker-driven trial design and execution, to enable translating biomarker discoveries into the clinical setting. This will ensure we utilize the “conspiracy” between the peripheral and intra-tumoral dynamic markers in shaping responses to checkpoint blockade, for the ultimate patient benefit.
Collapse
Affiliation(s)
| | - George Miller
- New York University School of Medicine, New York, NY, United States
| | | |
Collapse
|
41
|
Liang MQ, Yu FQ, Chen C. C-Myc regulates PD-L1 expression in esophageal squamous cell carcinoma. Am J Transl Res 2020; 12:379-388. [PMID: 32194890 PMCID: PMC7061834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
Immunotherapy using antibodies blocking the programmed cell death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) pathway has achieved great success in preclinical models and the clinical treatment of esophageal squamous cell carcinoma (ESCC). The c-Myc proto-oncogene helps prevent immune cells from attacking tumor cells by inducing PD-L1 expression. However, the underlying mechanisms of c-Myc and PD-L1 in ESCC remain unclear, and a thorough understanding of this regulation would allow the development of new approaches to enhance antitumor immunity. In the present study, the positive relationship between c-Myc and PD-L1 was explored in the Cancer Genome Atlas dataset using the bioinformatics tool GEPIA, and was confirmed in 105 ESCC tissues by immunostaining (r=0.516, P<0.001). The patients positive for both proteins had a poorer overall survival (P=0.032). Furthermore, in ESCC cell lines, c-Myc overexpression, depletion, and inhibition was able to regulate the expression of PD-L1. Also, the ChIP assays showed that the increase in PD-L1 expression was likely due to the binding of c-Myc to the PD-L1 promoter. Taken together, c-Myc and PD-L1 levels were significantly correlated, and c-Myc expression regulated the expression of PD-L1 in ESCC cells. In addition, a small molecule inhibitor of c-Myc effectively regulated PD-L1 expression. This indicates that synergistic therapy combining a c-Myc inhibitor with PD-L1 immunotherapy might be a promising new treatment strategy for ESCC.
Collapse
Affiliation(s)
- Ming-Qiang Liang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, China
| | - Feng-Qiang Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital Fuzhou, Fujian, China
| |
Collapse
|
42
|
Toki MI, Kumar D, Ahmed FS, Rimm DL, Xu ML. Benign lymph node microenvironment is associated with response to immunotherapy. PRECISION CLINICAL MEDICINE 2020; 3:44-53. [PMID: 35693430 PMCID: PMC8985791 DOI: 10.1093/pcmedi/pbaa003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/12/2022] Open
Abstract
Introduction Benign lymph nodes have been considered the hubs of immune surveillance in cancer patients. The microenvironment of these lymphoid tissues can be immune suppressed, hence allowing for tumor progression. Understanding the spectrum of benign findings in bystander lymph nodes in immune checkpoint blockade therapy could prove to be key to understanding the mechanism and assessing treatment response. Methods Benign lymph nodes and spleen were evaluated from patients treated with immunotherapy who subsequently received postmortem examination. We used quantitative immunofluorescence (QIF) to assess tumor infiltrating lymphocytes (TIL) and macrophage marker expression and characterized activation status using a novel multiplexed QIF assay including CD3, GranzymeB, and Ki67. We performed immunohistochemistry to correlate results of QIF. Results Benign lymph nodes from non-responders to immunotherapy showed significantly higher expression of cytotoxic markers and proliferation index (Ki67) in T cells compared to responders. Higher expression of PD-L1 in macrophages was also observed. There was no significant difference in CD3+ expression, but higher levels of CD8+ T cells as well as CD20+ B cells were seen in lymph nodes of non-responders. No significant differences were seen between responder and non-responder splenic tissue. Findings were supported by traditional immunostaining methods. Conclusions While most studies in biomarkers for immunotherapy focus on tumor microenvironment, we show that benign lymph node microenvironment may predict response to immunotherapy. In responding patients, bystander lymph nodes appear to have been mobilized, resulting in reduced cytotoxic T cells. Conversely, patients whose disease progressed on immunotherapy demonstrate higher levels of macrophages that express increased PD-L1, and activated T cells not recruited to the tumor site.
Collapse
Affiliation(s)
- Maria I Toki
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Deepika Kumar
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Fahad S Ahmed
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - David L Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
43
|
Lan Q, Ji C, Yao Y. [Basis of Tumor Microenvironment Relevant to Immunotherapies for Brain Metastases of NSCLC]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 22:512-519. [PMID: 31451142 PMCID: PMC6717868 DOI: 10.3779/j.issn.1009-3419.2019.08.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
脑是非小细胞肺癌(non-small cell lung cancer, NSCLC)最常见的远处转移部位,脑转移也是晚期肺癌致残致死的主要原因。近年来,小分子酪氨酸激酶抑制剂的应用和疗效奠定了驱动基因突变阳性的NSCLC脑转移的治疗基础。随着程序性死亡受体1(programmed cell death protein 1, PD-1)/程序性死亡受体配体1(programmed cell death protein ligand 1, PD-L1)抑制剂及相应联合疗法的不断发展,免疫治疗已成为驱动基因突变泛阴性的NSCLC脑转移患者的重要选择,相关生物标志物的价值也日益凸显。由于NSCLC脑转移肿瘤及其微环境的免疫病理特征具有一定的特殊性,本文旨在回顾相关研究进展,并为免疫治疗联合策略的探索与新型免疫疗法的开发提供参考。
Collapse
Affiliation(s)
- Qing Lan
- Immunology Laboratory, Neurosurgical Institute of Fudan University; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chunxia Ji
- Immunology Laboratory, Neurosurgical Institute of Fudan University; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Yao
- Immunology Laboratory, Neurosurgical Institute of Fudan University; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
44
|
Sun Z, Hu S, Ge Y, Wang J, Duan S, Song J, Hu C, Li Y. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020; 28:449-459. [PMID: 32176676 DOI: 10.3233/xst-200642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE To predict programmed death-ligand 1 (PD-L1) expression of tumor cells in non-small cell lung cancer (NSCLC) patients by using a radiomics study based on CT images and clinicopathologic features. MATERIALS AND METHODS A total of 390 confirmed NSCLC patients who performed chest CT scan and immunohistochemistry (IHC) examination of PD-L1 of lung tumors with clinic data were collected in this retrospective study, which were divided into two cohorts namely, training (n = 260) and validation (n = 130) cohort. Clinicopathologic features were compared between two cohorts. Lung tumors were segmented by using ITK-snap kit on CT images. Total 200 radiomic features in the segmented images were calculated using in-house texture analysis software, then filtered and minimized by least absolute shrinkage and selection operator (LASSO) regression to select optimal radiomic features based on its relevance of PD-L1 expression status in IHC results and develop radiomics signature. Radiomics signature and clinicopathologic risk factors were incorporated to develop prediction model by using multivariable logistic regression analysis. The receiver operating characteristic (ROC) curves were generated and the areas under the curves (AUC) were reckoned to predict PD-L1 expression in both training and validation cohorts. RESULTS In 200 extracted radiomic features, 9 were selected to develop radiomics signature. In univariate analysis, PD-L1 expression of lung tumors was significantly correlated with radiomics signature, histologic type, and histologic grade (p < 0.05, respectively). However, PD-L1 expression was not correlated with gender, age, tumor location, CEA level, TNM stage, and smoking (p > 0.05). For prediction of PD-L1 expression, the prediction model that combines radiomics signature and clinicopathologic features resulted in AUCs of 0.829 and 0.848 in the training and validation cohort, respectively. CONCLUSION The prediction model that incorporates the radiomics signature and clinical risk factors has potential to facilitate the individualized prediction of PD-L1 expression in NSCLC patients and identify patients who can benefit from anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Zongqiong Sun
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City, Jiangsu Province, China
| | - Jun Wang
- Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Shaofeng Duan
- General Electric (GE) Healthcare China, Shanghai, China
| | - Jiayang Song
- General Electric (GE) Healthcare China, Shanghai, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
45
|
Tøndell A, Wahl SGF, Sponaas AM, Sørhaug S, Børset M, Haug M. Ectonucleotidase CD39 and Checkpoint Signalling Receptor Programmed Death 1 are Highly Elevated in Intratumoral Immune Cells in Non-small-cell Lung Cancer. Transl Oncol 2020; 13:17-24. [PMID: 31733591 PMCID: PMC6872777 DOI: 10.1016/j.tranon.2019.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/17/2023] Open
Abstract
Lung cancer is the leading cause of cancer death in both sexes worldwide and has a predicted 5-year survival rate of <20%. Immunotherapy targeting immune checkpoints such as the programmed death 1 (PD-1) signaling pathway has led to a shift of paradigm in the treatment of advanced non-small-cell lung cancer (NSCLC) but remains without effect in ∼80% of patients. Accumulating evidence suggests that several immunosuppressive mechanisms may work together in NSCLC. The contribution and cooperation between different immunosuppressive mechanisms in NSCLC remain unknown. Recently, the CD39-adenosine pathway has gained increasing attention as a crucial immunosuppressive mechanism and possible target for immunotherapy. Immune cells were extracted from lung and tumor tissue after lung resection in 12 patients by combined enzymatic and mechanical tissue disaggregation. A multiparameter flow cytometry panel was established to investigate the expression and coexpression of CD39 and PD-1 on key lymphocyte subtypes. Frequencies of CD39+, PD-1+, and CD39+/PD-1+cells were higher among both CD4+ and CD8+ T cells isolated from NSCLC tumor tissue than in T cells from normal lung tissue. Similarly, the frequency of FoxP3+ CD4+ T cells (Tregs) was highly significantly elevated in tumor tissue compared to adjacent lung tissue. The consistent upregulation of CD39 on immune cells in tumor microenvironment indicates that the CD39 signaling pathway may, in addition to the PD-1 pathway, represent another important mechanism for tumor-induced immunosuppression in NSCLC. In addition, the present study indicates that a comprehensive immune response profiling with flow cytometry may be both feasible and clinically relevant.
Collapse
Affiliation(s)
- Anders Tøndell
- Department of Thoracic Medicine, St.Olavs University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, St.Olavs University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sveinung Sørhaug
- Department of Thoracic Medicine, St.Olavs University Hospital, Trondheim, Norway
| | - Magne Børset
- Department of Immunology and Transfusion Medicine, St.Olavs University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Haug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway; Department of Infectious Diseases, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
46
|
Li W, Yu H. Separating or combining immune checkpoint inhibitors (ICIs) and radiotherapy in the treatment of NSCLC brain metastases. J Cancer Res Clin Oncol 2020; 146:137-152. [PMID: 31813004 DOI: 10.1007/s00432-019-03094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
With the advancement of imaging technology, systemic disease control rate and survival rate, the morbidity of brain metastases (BMs) from non-small cell lung cancer (NSCLC) has been riding on a steady upward trend (40%), but management of BMs from NSCLC remains obscure. Systemic therapy is anticipated to offer novel therapeutic avenues in the management of NSCLC BMs, and radiotherapy (RT) and immunotherapy have their own advantages. Recently, it was confirmed that immune checkpoint inhibitors (ICIs) and RT could mutually promote the efficacy in the treatment of BMs from NSCLC. In this paper, we provide a review on current understandings and practices of separating or combining ICIs and RT, which could provide a reference for the coming laboratory and clinical studies and contribute to the development of new approaches in NSCLC BMs.
Collapse
Affiliation(s)
- Wang Li
- Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hong Yu
- Radiation Oncology Department of Thoracic cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, People's Republic of China.
| |
Collapse
|
47
|
Humbert O, Cadour N, Paquet M, Schiappa R, Poudenx M, Chardin D, Borchiellini D, Benisvy D, Ouvrier MJ, Zwarthoed C, Schiazza A, Ilie M, Ghalloussi H, Koulibaly PM, Darcourt J, Otto J. 18FDG PET/CT in the early assessment of non-small cell lung cancer response to immunotherapy: frequency and clinical significance of atypical evolutive patterns. Eur J Nucl Med Mol Imaging 2019; 47:1158-1167. [PMID: 31760467 DOI: 10.1007/s00259-019-04573-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE This prospective study aimed (1) to assess the non-small cell lung cancer (NSCLC) evolutive patterns to immunotherapy using FDG-PET and (2) to describe their association with clinical outcome. DESIGN Fifty patients with metastatic NSCLC were included before pembrolizumab or nivolumab initiation. FDG-PET scan was performed at baseline and after 7 weeks of treatment (PETinterim1) and different criteria/parameters of tumor response were assessed, including PET response criteria in solid tumors (PERCIST). If a first PERCIST progressive disease (PD) without clinical worsening was observed, treatment was continued and a subsequent FDG-PET (PETinterim2) was performed at 3 months of treatment. Pseudo-progression (PsPD) was defined as a PERCIST response/stability on PETinterim2 after an initial PD. If a second PERCIST PD was assessed on PETinterim2, a homogeneous progression of lesions (termed immune homogeneous progressive-disease: iPDhomogeneous) was distinguished from a heterogeneous evolution (termed immune dissociated-response: iDR). A durable clinical benefit (DCB) of immunotherapy was defined as treatment continuation over a 6-month period. The association between PET evolutive profiles and DCB was assessed. RESULTS Using PERCIST on PETinterim1, 42% (21/50) of patients showed a response or stable disease, most of them (18/21) reached a DCB. In contrast, 58% (29/50) showed a PD, but more than one-third (11/29) were misclassified as they finally reached a DCB. No standard PETinterim1 criteria could accurately distinguished responding from non-responding patients. Treatment was continued in 19/29 of patients with a first PERCIST PD; the subsequent PETinterim2 demonstrated iPDhomogeneous, iDR and PsPD in 42% (8/19), 26% (5/19), and 32% (6/19), respectively. Whereas no patients with iPDhomogeneous experienced a DCB, all patients with iDR and PsPD reached a clinical benefit to immunotherapy. CONCLUSION In patients with a first PD on PERCIST and treatment continuation, a subsequent PET identifies more than half of them with iDR and PsPD, both patterns being strongly associated with a clinical benefit of immunotherapy.
Collapse
Affiliation(s)
- O Humbert
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France. .,Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), UMR E 4320, CEA, UCA, Nice, France.
| | - N Cadour
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France
| | - M Paquet
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France
| | - R Schiappa
- Department of Biostatistics, Centre Antoine-Lacassagne, UCA, Nice, France
| | - M Poudenx
- Department of Medical Oncology, Centre Antoine-Lacassagne, UCA, Nice, France
| | - D Chardin
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France.,Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), UMR E 4320, CEA, UCA, Nice, France
| | - D Borchiellini
- Department of Medical Oncology, Centre Antoine-Lacassagne, UCA, Nice, France.,Clinical Research and Innovation Office, Centre Antoine-Lacassagne, UCA, Nice, France
| | - D Benisvy
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France
| | - M J Ouvrier
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France
| | - C Zwarthoed
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France
| | - A Schiazza
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France
| | - M Ilie
- Laboratory of Clinical and Experimental Pathology, Hospital-Integrated Biobank (BB-0033-00025), Nice Hospital University, FHU OncoAge, UCA, Nice, France
| | - H Ghalloussi
- Department of Medical Oncology, Centre Antoine-Lacassagne, UCA, Nice, France
| | - P M Koulibaly
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France
| | - J Darcourt
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur (UCA), 33 Avenue de Valombrose, 06189, Nice, France.,Laboratory Transporter in Imaging and Radiotherapy in Oncology (TIRO), UMR E 4320, CEA, UCA, Nice, France
| | - J Otto
- Department of Medical Oncology, Centre Antoine-Lacassagne, UCA, Nice, France
| |
Collapse
|
48
|
Leal AS, Zydeck K, Carapellucci S, Reich LA, Zhang D, Moerland JA, Sporn MB, Liby KT. Retinoid X receptor agonist LG100268 modulates the immune microenvironment in preclinical breast cancer models. NPJ Breast Cancer 2019; 5:39. [PMID: 31700995 PMCID: PMC6825145 DOI: 10.1038/s41523-019-0135-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023] Open
Abstract
Despite numerous therapeutic advances in the past decade, breast cancer is expected to cause over 42,000 deaths in the United States in 2019. Breast cancer had been considered an immunologically silent tumor; however recent findings suggest that immune cells play important roles in tumor growth even in the breast. Retinoid X receptors (RXRs) are a subclass of nuclear receptors that act as ligand-dependent transcription factors that regulate a variety of cellular processes including proliferation and differentiation; in addition, they are essential for macrophage biology. Rexinoids are synthetic molecules that bind and activate RXRs. Bexarotene is the only rexinoid approved by the FDA for the treatment of refractory cutaneous T-cell lymphoma. Other more-potent rexinoids have been synthesized, such as LG100268 (LG268). Here, we report that treatment with LG 268, but not bexarotene, decreased infiltration of myeloid-derived suppressor cells and CD206-expressing macrophages, increased the expression of PD-L1 by 50%, and increased the ratio of CD8/CD4, CD25 T cells, which correlates with increased cytotoxic activity of CD8 T cells in tumors of MMTV-Neu mice (a model of HER2-positive breast cancer). In the MMTV-PyMT murine model of triple negative breast cancer, LG268 treatment of established tumors prolonged survival, and in combination with anti-PD-L1 antibodies, significantly (p = 0.05) increased the infiltration of cytotoxic CD8 T cells and apoptosis. Collectively, these data suggest that the use of LG268, a RXR agonist, can improve response to immune checkpoint blockade in HER2+ or triple-negative breast cancer.
Collapse
Affiliation(s)
- Ana S. Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Kayla Zydeck
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Sarah Carapellucci
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Lyndsey A. Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Jessica A. Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| | - Michael B. Sporn
- Department of Molecular and Systems Biology, Dartmouth/Geisel School of Medicine at Dartmouth, Hanover, NH USA
| | - Karen T. Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI USA
| |
Collapse
|
49
|
Jiao XD, He X, Qin BD, Liu K, Wu Y, Liu J, Hou T, Zang YS. The prognostic value of tumor mutation burden in EGFR-mutant advanced lung adenocarcinoma, an analysis based on cBioPortal data base. J Thorac Dis 2019; 11:4507-4515. [PMID: 31903239 DOI: 10.21037/jtd.2019.11.04] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Tumor mutation burden (TMB) is novel biomarker of promising predict value in prediction of immune checkpoint inhibitors (ICPis) in non-small cell lung cancer (NSCLC). However, the distribution of TMB in epidermal growth factor receptor (EGFR)-mutant advanced lung adenocarcinoma (LUAD) patients and the impact on overall survival (OS) time are not well demonstrated. Methods Information regarding gene mutations and patients' survival time in advanced LUAD was downloaded from The Cancer Genome Atlas (TCGA) database. The diversity of TMB in different EGFR-mutant types was observed and the predicted value of TMB for OS as well as other co-mutations were analyzed. The diversity of TMB was also observed in another Chinese cohort of advanced LUAD patients. Results The median TMB values of EGFR wild-type, other types of EGFR mutations, exon 19 deletions and L858R were 6.12, 5.66, 3.77 and 4.72, differences between wild-type and EGFR sensitive mutations (exon 19 deletion or L858R) were significant (P<0.001 and P<0.01). OS time of high TMB group was inferior to that of the low TMB group (24.03 months vs. not reached, P=0.0020). TMB and TP53 together will make more accurate prediction of OS in EGFR-mutant advanced LUAD patients. Distribution of TMB in another Chinese cohort had the same trend. Conclusions In advanced LUAD patients, TMB was lower in patients with EGFR-mutant group than EGFR wild group. TMB was a negative prognostic biomarker of OS in EGFR-mutant LUAD patients, especially when TP53 was mutated together.
Collapse
Affiliation(s)
- Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xi He
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ying Wu
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jun Liu
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| | - Ting Hou
- Burning Rock Company, Guangzhou 510320, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
50
|
Almutairi AR, Alkhatib N, Martin J, Babiker HM, Garland LL, McBride A, Abraham I. Comparative efficacy and safety of immunotherapies targeting the PD-1/PD-L1 pathway for previously treated advanced non-small cell lung cancer: A Bayesian network meta-analysis. Crit Rev Oncol Hematol 2019; 142:16-25. [PMID: 31326706 DOI: 10.1016/j.critrevonc.2019.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/15/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Two PD-1 (pembrolizumab, nivolumab) and one PD-L1(atezolizumab) inhibitors are approved for previously treated advanced non-small cell lung cancer but have not been compared in head-to-head trials. METHOD A network meta-analysis was conducted to compare efficacy/safety of PD-1/PD-L1 inhibitors. RESULTS In five-trials (including long-term updates) with docetaxel as common comparator there were no differences in OS and PFS between PD-1/PD-L1 inhibitors. Pembrolizumab (odds ratio(OR) = 2.22, 95%CrI = 1.28-3.70) and nivolumab (OR = 1.92, 95%CrI = 1.15-3.23) had higher ORRs than atezolizumab and at PD-L1 expression ≥50% and ≥1%. Probabilistically, pembrolizumab ranked first in OS and ORR, and in OS sub-analyses for adenocarcinoma, EGFR-mutant, ECOG-score-1, male, and age <65 years. Nivolumab ranked first in PFS, and in OS sub-analyses for squamous-cell disease, EGFR-wild-type, and ECOG-score-0. Pembrolizumab and nivolumab ranked the best option for most of adverse events. CONCLUSION While pembrolizumab and nivolumab prevailed in rank in OS and ORR benefit, patient characteristics, safety and tolerance should be considered in treatment decision-making.
Collapse
MESH Headings
- Aged
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Docetaxel/therapeutic use
- Female
- Humans
- Immunotherapy
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Male
- Middle Aged
- Nivolumab/adverse effects
- Nivolumab/pharmacology
- Nivolumab/therapeutic use
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Treatment Outcome
Collapse
Affiliation(s)
- Abdulaali R Almutairi
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Center for Health Outcomes and PharmacoEconomic Research, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| | - Nimer Alkhatib
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Center for Health Outcomes and PharmacoEconomic Research, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| | - Jennifer Martin
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Arizona Health Sciences Library, University Libraries, University of Arizona, Tucson, AZ, USA.
| | - Hani M Babiker
- Division of Hematology and Oncology, College of Medicine, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Linda L Garland
- Division of Hematology and Oncology, College of Medicine, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Ali McBride
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA.
| | - Ivo Abraham
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, AZ, USA; Center for Health Outcomes and PharmacoEconomic Research, College of Pharmacy, University of Arizona, Tucson, AZ, USA; University of Arizona Cancer Center, Tucson, AZ, USA; Department of Family and Community Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|