1
|
Elfving H, Yu H, Fessehatsion KK, Brunnström H, Botling J, Gulyas M, Backman M, Lindberg A, Strell C, Micke P. Spatial distribution of tertiary lymphoid structures in the molecular and clinical context of non-small cell lung cancer. Cell Oncol (Dordr) 2025; 48:801-813. [PMID: 40029549 PMCID: PMC12119696 DOI: 10.1007/s13402-025-01052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
INTRODUCTION Tertiary lymphoid structures (TLS) are lymphocyte aggregates resembling secondary lymphoid organs and are pivotal in cancer immunity. The ambiguous morphological definition of TLS makes it challenging to ascertain their clinical impact on patient survival and response to immunotherapy. OBJECTIVES This study aimed to characterize TLS in hematoxylin-eosin tissue sections from lung cancer patients, assessing their occurrence in relation to the local immune environment, mutational background, and patient outcome. METHODS Two pathologists evaluated one whole tissue section from resection specimens of 680 NSCLC patients. TLS were spatially quantified within the tumor area or periphery and further categorized based on the presence of germinal centers (mature TLS). Metrics were integrated with immune cell counts, genomic and transcriptomic data, and correlated with clinical parameters. RESULTS TLS were present in 86% of 536 evaluable cases, predominantly in the tumor periphery, with a median of eight TLS per case. Mature TLS were found in 24% of cases. TLS presence correlated positively with increased plasma cell (CD138+) and lymphocytic cell (CD3+, CD8+, FOXP3+) infiltration. Tumors with higher tumor mutational burden exhibited higher numbers of peripheral TLS. The overall TLS quantity was independently associated with improved patient survival, irrespective of TLS maturation status. This prognostic association held true for peripheral TLS but not for tumor TLS. CONCLUSION TLS in NSCLC is common and their correlation with a specific immune phenotype suggests biological relevance in the local immune reaction. The prognostic significance of this scoring system on routine hematoxylin-eosin sections has the potential to augment diagnostic algorithms for NSCLC patients.
Collapse
Affiliation(s)
- Hedvig Elfving
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden.
| | - Hui Yu
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | | | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Botling
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Miklos Gulyas
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Max Backman
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Amanda Lindberg
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| | - Carina Strell
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Patrick Micke
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, 751 85, Sweden
| |
Collapse
|
2
|
Chiaruttini MV, Proto C, Lo Russo G, Prelaj A, Segale M, Zanghì A, Galli F, Greco FG, Signorelli D, Brambilla M, Occhipinti M, De Braud F, Garassino MC, Sozzi G, Rulli E, Boeri M. Tracking the Response to Immunotherapy: Blood microRNA Dynamics in Patients With Advanced Non-Small Cell Lung Cancer. JCO Precis Oncol 2025; 9:e2400790. [PMID: 40403209 PMCID: PMC12122099 DOI: 10.1200/po-24-00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/19/2025] [Accepted: 03/27/2025] [Indexed: 05/24/2025] Open
Abstract
PURPOSE Despite the significant improvement in outcomes for patients with advanced non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs), resistance, whether primary or secondary, remains a substantial challenge. Currently, reliable biomarkers to monitor ICI response are lacking, highlighting the need for minimally invasive tools like liquid biopsy to track treatment efficacy. This study aimed to identify circulating microRNAs (miRNAs) as potential biomarkers to track ICI response in patients with NSCLC. MATERIALS AND METHODS The Apollo longitudinal study enrolled patients with advanced NSCLC receiving ICI in first or subsequent lines. Plasma samples were collected at baseline and follow-up to prospectively assess miRNA profiles until progressive disease (PD). Using a custom reverse transcription-quantitative polymerase chain reaction platform, 276 ratios among 24 lung cancer-related miRNAs were analyzed. The generalized estimating equation and joint models were applied to select the miRNA ratios most associated with PD over time. To control for multiple testing, the Benjamini-Yekutieli method was applied setting a 10% false discovery rate threshold. RESULTS From the 211 patients, a total of 454 plasma samples were analyzed. Clinical and biochemical variables had little effect on miRNAs' profile. The analysis identified nine miRNA ratios, all involving miR-145-5p, as significant biomarkers for monitoring treatment response, even after adjustment for the line of therapy. These ratios exhibited a longitudinal modulation pattern consistent with radiologic response, particularly in patients who initially benefited from ICI treatment. In addition, in an independent set of 32 plasma samples from 10 patients receiving ICI as maintenance therapy, the same trends were observed. CONCLUSION A focused panel of miRNA ratios, driven by miR-145-5p, effectively reflects response to ICI therapy in patients with advanced NSCLC, highlighting their potential as biomarkers for treatment monitoring.
Collapse
Affiliation(s)
- Maria Vittoria Chiaruttini
- Laboratory of Methodology for Clinical Research, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Unit of Biostatistics, Epidemiology and Public Health, University of Padua, Padua, Italy
| | - Claudia Proto
- Thoracic Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Thoracic Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arsela Prelaj
- Thoracic Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Electronics, Information, and Bioengineering, Polytechnic University of Milan, Milan, Italy
| | - Miriam Segale
- Epigenomics and Biomarkers of Solid Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Zanghì
- Epigenomics and Biomarkers of Solid Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Galli
- Laboratory of Methodology for Clinical Research, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca G. Greco
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diego Signorelli
- Thoracic Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Marta Brambilla
- Thoracic Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Occhipinti
- Thoracic Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Thoracic Oncology Unit, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina C. Garassino
- Section of Hematology-Oncology, Department of Medicine, Knapp Center for Biomedical Discovery, The University of Chicago, Chicago, IL
| | - Gabriella Sozzi
- Epigenomics and Biomarkers of Solid Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eliana Rulli
- Laboratory of Methodology for Clinical Research, Clinical Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Mattia Boeri
- Epigenomics and Biomarkers of Solid Tumors Unit, Experimental Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
3
|
Zieliński P, Stępień M, Chowaniec H, Kalyta K, Czerniak J, Borowczyk M, Dwojak E, Mroczek M, Dworacki G, Ślubowska A, Markiewicz H, Ałtyn R, Dobosz P. Resistance in Lung Cancer Immunotherapy and How to Overcome It: Insights from the Genetics Perspective and Combination Therapies Approach. Cells 2025; 14:587. [PMID: 40277912 PMCID: PMC12026305 DOI: 10.3390/cells14080587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Lung cancer with the highest number of new cases diagnosed in Europe and in Poland, remains an example of malignancy with a very poor prognosis despite the recent progress in medicine. Different treatment strategies are now available for cancer therapy based on its type, molecular subtype and other factors including overall health, the stage of disease and cancer molecular profile. Immunotherapy is emerging as a potential addition to surgery, chemotherapy, radiotherapy or other targeted therapies, but also considered a mainstay therapy mode. This combination is an area of active investigation in order to enhance efficacy and overcome resistance. Due to the complexity and dynamic of cancer's ecosystem, novel therapeutic targets and strategies need continued research into the cellular and molecular mechanisms within the tumour microenvironment. From the genetic point of view, several signatures ranging from a few mutated genes to hundreds of them have been identified and associated with therapy resistance and metastatic potential. ML techniques and AI can enhance the predictive potential of genetic signatures and model the prognosis. Here, we present the overview of already existing treatment approaches, the current findings of key aspects of immunotherapy, such as immune checkpoint inhibitors (ICIs), existing molecular biomarkers like PD-L1 expression, tumour mutation burden, immunoscore, and neoantigens, as well as their roles as predictive markers for treatment response and resistance.
Collapse
Affiliation(s)
- Paweł Zieliński
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| | - Maria Stępień
- Université Paris-Saclay, UVSQ, INSERM, END-ICAP, 94805 Versailles, France;
- Doctoral School, Medical University of Lublin, 20-954 Lublin, Poland
| | - Hanna Chowaniec
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| | - Kateryna Kalyta
- Faculty of Biology, University of Basel, 4123 Basel, Switzerland;
| | - Joanna Czerniak
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| | - Martyna Borowczyk
- Department of Endocrinology, Internal Medicine and Metabolism, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Ewa Dwojak
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
- Department of Pathomorphology, University Clinical Hospital, 61-701 Poznan, Poland
| | - Magdalena Mroczek
- Department of Neurology, University Hospital Basel, 4123 Basel, Switzerland;
| | - Grzegorz Dworacki
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| | - Antonina Ślubowska
- Department of Biostatistics and Research Methodology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University of Warsaw, 02-004 Warsaw, Poland;
| | - Hanna Markiewicz
- Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
- Department of Methodology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Rafał Ałtyn
- IT Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Paula Dobosz
- Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (H.C.); (J.C.); (E.D.); (G.D.); (P.D.)
| |
Collapse
|
4
|
Gomatou G, Charpidou A, Li P, Syrigos N, Gkiozos I. Mechanisms of primary resistance to immune checkpoint inhibitors in NSCLC. Clin Transl Oncol 2025; 27:1426-1437. [PMID: 39307892 DOI: 10.1007/s12094-024-03731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 04/16/2025]
Abstract
Immune checkpoint inhibitors (ICIs) redefined the therapeutics of non-small cell lung cancer (NSCLC), leading to significant survival benefits and unprecedented durable responses. However, the majority of the patients develop resistance to ICIs, either primary or acquired. Establishing a definition of primary resistance to ICIs in different clinical scenarios is challenging and remains a work in progress due to the changing landscape of ICI-based regimens, mainly in the setting of early-stage NSCLC. The mechanisms of primary resistance to ICIs in patients with NSCLC include a plethora of pathways involving a cross-talk of the tumor cells, the tumor microenvironment and the host, leading to the development of an immunosuppressive phenotype. The optimal management of patients with NSCLC following primary resistance to ICIs represents a significant challenge in current thoracic oncology. Research in this field includes exploring other immunotherapeutic approaches, such as cancer vaccines, and investigating novel antibody-drug conjugates in patients with NSCLC.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andriani Charpidou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Nikolaos Syrigos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Gkiozos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Chest Diseases, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Kang DH, Lee J, Im S, Chung C. Navigating the Complexity of Resistance in Lung Cancer Therapy: Mechanisms, Organoid Models, and Strategies for Overcoming Treatment Failure. Cancers (Basel) 2024; 16:3996. [PMID: 39682183 DOI: 10.3390/cancers16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The persistence of chemotherapy-resistant and dormant cancer cells remains a critical challenge in the treatment of lung cancer. Objectives: This review focuses on non-small cell lung cancer and small cell lung cancer, examining the complex mechanisms that drive treatment resistance. Methods: This review analyzed current studies on chemotherapy resistance in NSCLC and SCLC, focusing on tumor microenvironment, genetic mutations, cancer cell heterogeneity, and emerging therapies. Results: Conventional chemotherapy and targeted therapies, such as tyrosine kinase inhibitors, often fail due to factors including the tumor microenvironment, genetic mutations, and cancer cell heterogeneity. Dormant cancer cells, which can remain undetected in a quiescent state for extended periods, pose a significant risk of recurrence upon reactivation. These cells, along with intrinsic resistance mechanisms, greatly complicate treatment efforts. Understanding these pathways is crucial for the development of more effective therapies. Emerging strategies, including combination therapies that target multiple pathways, are under investigation to improve treatment outcomes. Innovative approaches, such as antibody-drug conjugates and targeted protein degradation, offer promising solutions by directly delivering cytotoxic agents to cancer cells or degrading proteins that are essential for cancer survival. The lung cancer organoid model shows substantial promise to advance both research and clinical applications in this field, enhancing the ability to study resistance mechanisms and develop personalized treatments. The integration of current research underscores the need for continuous innovation in treatment modalities. Conclusions: Personalized strategies that combine novel therapies with an in-depth understanding of tumor biology are essential to overcome the challenges posed by treatment-resistant and dormant cancer cells in lung cancer. A multifaceted approach has the potential to significantly improve patient outcomes.
Collapse
Affiliation(s)
- Da Hyun Kang
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jisoo Lee
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Subin Im
- College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
6
|
Meng S, Hara T, Miura Y, Ishii H. Fibroblast activation protein constitutes a novel target of chimeric antigen receptor T-cell therapy in solid tumors. Cancer Sci 2024; 115:3532-3542. [PMID: 39169645 PMCID: PMC11531970 DOI: 10.1111/cas.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/23/2024] Open
Abstract
With recent advances in tumor immunotherapy, chimeric antigen receptor T (CAR-T) cell therapy has achieved unprecedented success in several hematologic tumors, significantly improving patient prognosis. However, in solid tumors, the efficacy of CAR-T cell therapy is limited because of high antigen uncertainty and the extremely restrictive tumor microenvironment (TME). This challenge has led to the exploration of new targets, among which fibroblast activation protein (FAP) has gained attention for its relatively stable and specific expression in the TME of various solid tumors, making it a potential new target for CAR-T cell therapy. This study comprehensively analyzed the biological characteristics of FAP and discussed its potential application in CAR-T cell therapy, including the theoretical basis, and preclinical and clinical research progress of targeting FAP with CAR-T cell therapy for solid tumor treatment. The challenges and future optimization directions of this treatment strategy were also explored, providing new perspectives and strategies for CAR-T cell therapy in solid tumors.
Collapse
Grants
- 2024 Princess Takamatsu Cancer Research Fund
- JP23ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- JP24ym0126809 Ministry of Education, Culture, Sports, Science and Technology
- A20H0054100 Ministry of Education, Culture, Sports, Science and Technology
- T23KK01530 Ministry of Education, Culture, Sports, Science and Technology
- T22K195590 Ministry of Education, Culture, Sports, Science and Technology
- A22H031460 Ministry of Education, Culture, Sports, Science and Technology
- T23K183130 Ministry of Education, Culture, Sports, Science and Technology
- T23K195050 Ministry of Education, Culture, Sports, Science and Technology
- T24K199920 Ministry of Education, Culture, Sports, Science and Technology
- IFO Research Communications (2024)
- Oceanic Wellness Foundation (2024)
- Princess Takamatsu Cancer Research Fund
- Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yutaka Miura
- Laboratory for Chemistry and Life ScienceInstitute of Innovative Research, Tokyo Institute of TechnologyYokohamaKanagawaJapan
- Department of Life Science and Technology, School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
7
|
He ZN, Zhang CY, Zhao YW, He SL, Li Y, Shi BL, Hu JQ, Qi RZ, Hua BJ. Regulation of T cells by myeloid-derived suppressor cells: emerging immunosuppressor in lung cancer. Discov Oncol 2023; 14:185. [PMID: 37857728 PMCID: PMC10587041 DOI: 10.1007/s12672-023-00793-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), major components maintaining the immune suppressive microenvironment in lung cancer, are relevant to the invasion, metastasis, and poor prognosis of lung cancer, through the regulation of epithelial-mesenchymal transition, remodeling of the immune microenvironment, and regulation of angiogenesis. MDSCs regulate T-cell immune functions by maintaining a strong immunosuppressive microenvironment and promoting tumor invasion. This raises the question of whether reversing the immunosuppressive effect of MDSCs on T cells can improve lung cancer treatment. To understand this further, this review explores the interactions and specific mechanisms of different MDSCs subsets, including regulatory T cells, T helper cells, CD8 + T cells, natural killer T cells, and exhausted T cells, as part of the lung cancer immune microenvironment. Second, it focuses on the guiding significance confirmed via clinical liquid biopsy and tissue biopsy that different MDSC subsets improve the prognosis of lung cancer. Finally, we conclude that targeting MDSCs through action targets or signaling pathways can help regulate T-cell immune functions and suppress T-cell exhaustion. In addition, immune checkpoint inhibitors targeting MDSCs may serve as a new approach for enhancing the efficiency of immunotherapy and targeted therapy for lung cancer in the future, providing better comprehensive options for lung cancer treatment.
Collapse
Affiliation(s)
- Zhong-Ning He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Yu-Wei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu-Lin He
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Shanxi Medical University, Shanxi, China
| | - Yue Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Shanxi Medical University, Shanxi, China
| | - Bo-Lun Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Qi Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Shanxi Medical University, Shanxi, China
| | - Run-Zhi Qi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bao-Jin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Haratani K, Nakamura A, Mamesaya N, Mitsuoka S, Yoneshima Y, Saito R, Tanizaki J, Fujisaka Y, Hata A, Tsuruno K, Sakamoto T, Teraoka S, Oki M, Watanabe H, Sato Y, Nakano Y, Otani T, Sakai K, Tomida S, Chiba Y, Ito A, Nishio K, Yamamoto N, Nakagawa K, Hayashi H. Tumor Microenvironment Landscape of NSCLC Reveals Resistance Mechanisms for Programmed Death-Ligand 1 Blockade After Chemoradiotherapy: A Multicenter Prospective Biomarker Study (WJOG11518L:SUBMARINE). J Thorac Oncol 2023; 18:1334-1350. [PMID: 37364849 DOI: 10.1016/j.jtho.2023.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION The PACIFIC regimen of consolidation therapy with the programmed cell death-ligand 1 inhibitor durvalumab after definitive concurrent chemoradiation therapy has become a standard of care for individuals with unresectable stage III NSCLC. Nevertheless, approximately half of the treated patients experience disease progression within 1 year, with the mechanisms of treatment resistance being poorly understood. We here performed a nationwide prospective biomarker study to explore the resistance mechanisms (WJOG11518L:SUBMARINE). METHODS A total of 135 patients with unresectable stage III NSCLC who received the PACIFIC regimen were included for comprehensive profiling of the tumor microenvironment by immunohistochemistry, transcriptome analysis, and genomic sequencing of pretreatment tumor tissue and flow cytometric analysis of circulating immune cells. Progression-free survival was compared on the basis of these biomarkers. RESULTS The importance of preexisting effective adaptive immunity in tumors was revealed for treatment benefit regardless of genomic features. We also identified CD73 expression by cancer cells as a mechanism of resistance to the PACIFIC regimen. Multivariable analysis of immunohistochemistry data with key clinical factors as covariables indicated that low CD8+ tumor-infiltrating lymphocyte density and the high CD73+ cancer cells were independently associated with poor durvalumab outcome (hazard ratios = 4.05 [95% confidence interval: 1.17-14.04] for CD8+ tumor-infiltrating lymphocytes; 4.79 [95% confidence interval: 1.12-20.58] for CD73). In addition, whole-exome sequencing of paired tumor samples suggested that cancer cells eventually escaped immune pressure as a result of neoantigen plasticity. CONCLUSIONS Our study emphasizes the importance of functional adaptive immunity in stage III NSCLC and implicates CD73 as a promising treatment target, thus providing insight forming a basis for development of a new treatment approach in NSCLC.
Collapse
Affiliation(s)
- Koji Haratani
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan.
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Miyagi, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Sunto-gun, Shizuoka, Japan
| | - Shigeki Mitsuoka
- Department of Clinical Oncology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Ryota Saito
- Department of Respiratory Medicine, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Junko Tanizaki
- Division of Medical Oncology, Kishiwada City Hospital, Kishiwada, Osaka, Japan
| | - Yasuhito Fujisaka
- Medical Oncology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Akito Hata
- Division of Thoracic Oncology, Kobe Minimally Invasive Cancer Center, Kobe, Hyogo, Japan
| | - Kosuke Tsuruno
- Department of Respiratory Medicine, Iizuka Hospital, Iizuka, Fukuoka, Japan
| | - Tomohiro Sakamoto
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Shunsuke Teraoka
- Internal Medicine III, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Masahide Oki
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Hiroshi Watanabe
- Department of Respiratory Medicine, Saka General Hospital, Shiogama, Miyagi, Japan
| | - Yuki Sato
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Yusuke Nakano
- Department of Medical Oncology, Izumi City General Hospital, Izumi, Osaka, Japan
| | - Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Okayama, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Osaka, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Nobuyuki Yamamoto
- Internal Medicine III, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
9
|
Leal T, Socinski MA. Emerging agents for the treatment of advanced or metastatic NSCLC without actionable genomic alterations with progression on first-line therapy. Expert Rev Anticancer Ther 2023; 23:817-833. [PMID: 37486248 DOI: 10.1080/14737140.2023.2235895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
INTRODUCTION Lung cancer is the second most common cancer in the world and the leading cause of cancer-related mortality. Immune checkpoint inhibitors (ICIs), as monotherapy or in combination with platinum-based chemotherapy, have emerged as the standard of care first-line treatment option for patients with advanced non-small cell lung cancer (NSCLC) without actionable genomic alterations (AGAs). Despite significant improvements in patient outcomes with these regimens, primary or acquired resistance is common and most patients develop disease progression, resulting in poor survival. AREAS COVERED We review the current treatments commonly used for NSCLC without AGAs in the first-line and subsequent settings and describe the unmet needs for these patients in the second-line setting, including a lack of standard definitions for primary and required resistance, and few effective treatment options for patients who develop progression of their disease on first-line therapy. We describe key mechanisms of resistance to ICIs and emerging therapies that are being investigated for patients who develop progression on ICIs and platinum-based chemotherapy. EXPERT OPINION Emerging agents in development have a variety of different mechanisms of action and will likely change standard of care for second-line therapy and beyond for patients with NSCLC without AGAs in the future.
Collapse
|