1
|
Jiang L, Wang Y, Cui K, Gu Z, Jane JL, Jiang H. High-solids gel properties of acid-hydrolyzed waxy maize starch are determined by the molecular-weight distribution. Int J Biol Macromol 2025; 307:142088. [PMID: 40089233 DOI: 10.1016/j.ijbiomac.2025.142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
This study aimed to understand the effect of molecular-weight distribution on the properties of acid-hydrolyzed waxy maize starches (AH-WMSs) prepared at different acid concentrations and hydrolysis times at 50 °C. A reduction in molecular weight of AH-WMS resulted in increased paste fluidity and light transmittance, as well as decreased sedimentation, amylose‑iodine complex, and pasting viscosity. Freshly prepared AH-WMS viscoelastic gels at 20 % solids showed thixotropy at 25 °C and 50 °C, and both the shear stress and the area of hysteresis loop decreased with decreasing molecular weights. After storage at 4 °C for 24 h, the AH-WMS viscoelastic gels exhibited anti-thixotropy at 25 °C. However, the anti-thixotropy behavior disappeared at 50 °C for those with lower molecular weights. Freshly prepared viscoelastic gels obtained from AH-WMSs with higher molecular weights showed higher values of liquidity, firmness, consistency, cohesiveness, and viscosity at 20 % and 30 % solids. After storage at 4 °C for 24 h, AH-WMS viscoelastic gels at 30 % solids transformed into solid gels, and the gel strength decreased with decreasing molecular weights. AH-WMSs with a similar molecular-weight distribution displayed similar pasting, rheological, and textural properties at high solids.
Collapse
Affiliation(s)
- Lingjie Jiang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yulong Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Kangru Cui
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Zhonghua Gu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jay-Lin Jane
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Hongxin Jiang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
2
|
Zhang Y, Wang D, Zhang Z, Guan H, Zhang Y, Xu D, Xu X, Li D. Improvement on wheat bread quality by in situ produced dextran-A comprehensive review from the viewpoint of starch and gluten. Compr Rev Food Sci Food Saf 2024; 23:e13353. [PMID: 38660747 DOI: 10.1111/1541-4337.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhihong Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yanjie Zhang
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Reotutar AMR, Mamuad RY, Choi AES. Production of Chemically Modified Bio-Based Wood Adhesive from Camote and Cassava Peels. Polymers (Basel) 2024; 16:523. [PMID: 38399902 PMCID: PMC10891709 DOI: 10.3390/polym16040523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Adhesives are significant for manufacturing competent, light, and sturdy goods in various industries. Adhesives are an important part of the modern manufacturing landscape because of their versatility, cost-effectiveness, and ability to enhance product performance. Formaldehyde and polymeric diphenylmethane diisocyanate (PMDI) are conventional adhesives utilized in wood applications and have been classified as carcinogenic, toxic, and unsustainable. Given the adverse environmental and health effects associated with synthetic adhesives, there is a growing research interest aimed at developing environmentally friendly bio-based wood adhesives derived from renewable resources. This study aimed to extract starch from camote and cassava peels and focuses on the oxidization of starch derived from camote and cassava peels using sodium hypochlorite to create bio-based adhesives. The mean yield of starch extracted from camote and cassava peels was 13.19 ± 0.48% and 18.92 ± 0.15%, respectively, while the mean weight of the oxidized starches was 34.80 g and 45.34 g for camote and cassava, respectively. Various starch ratios sourced from camote and cassava peels were examined in the production of bio-based adhesives. The results indicate that the 40:60 camote to cassava ratio yielded the highest solid content, while the 80:20 ratio resulted in the best viscosity. Furthermore, the 40:60 ratio produced the most favorable particle board in terms of mechanical properties, density, thickness, swelling, and water absorption. Consequently, the starch extracted from camote and cassava peels holds promise as a potential source for bio-based adhesives following appropriate chemical modification.
Collapse
Affiliation(s)
- Anna Mae Rabaca Reotutar
- Department of Chemical Engineering, Mariano Marcos State University, City of Batac 2906, Philippines; (A.M.R.R.); (R.Y.M.)
| | - Roselle Yago Mamuad
- Department of Chemical Engineering, Mariano Marcos State University, City of Batac 2906, Philippines; (A.M.R.R.); (R.Y.M.)
- Department of Chemical Engineering, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines
| | - Angelo Earvin Sy Choi
- Department of Chemical Engineering, De La Salle University, 2401 Taft Ave., Manila 0922, Philippines
| |
Collapse
|
4
|
Jha S, Sarkhel S, Saha S, Sahoo B, Kumari A, Chatterjee K, Mazumder PM, Sarkhel G, Mohan A, Roy A. Expanded porous-starch matrix as an alternative to porous starch granule: Present status, challenges, and future prospects. Food Res Int 2024; 175:113771. [PMID: 38129003 DOI: 10.1016/j.foodres.2023.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Exposing the hydrated-soft-starch matrix of intact grain or reconstituted flour dough to a high-temperature-short-time (HTST) leads to rapid vapor generation that facilitates high-pressure build-up in its elastic matrix linked to large deformation and expansion. The expanded starch matrix at high temperatures dries up quickly by flash vaporization of water, which causes loss of its structural flexibility and imparts a porous and rigid structure of the expanded porous starch matrix (EPSM). EPSM, with abundant pores in its construction, offers adsorptive effectiveness, solubility, swelling ability, mechanical strength, and thermal stability. It can be a sustainable and easy-to-construct alternative to porous starch (PS) in food and pharmaceutical applications. This review is a comparative study of PS and EPSM on their preparation methods, structure, and physicochemical properties, finding compatibility and addressing challenges in recommending EPSM as an alternative to PS in adsorbing, dispersing, stabilizing, and delivering active ingredients in a controlled and efficient way.
Collapse
Affiliation(s)
- Shipra Jha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Gautam Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Anand Mohan
- Department of Food Science & Technology, University of Georgia, Athens, GA 30602, USA
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India.
| |
Collapse
|
5
|
Putra ON, Musfiroh I, Elisa S, Musa M, Ikram EHK, Chaidir C, Muchtaridi M. Sodium Starch Glycolate (SSG) from Sago Starch ( Metroxylon sago) as a Superdisintegrant: Synthesis and Characterization. Molecules 2023; 29:151. [PMID: 38202734 PMCID: PMC10779860 DOI: 10.3390/molecules29010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The characteristics of sago starch exhibit remarkable resemblances to those of cassava, potato, and maize starches. This review intends to discuss and summarize the synthesis and characterization of sodium starch glycolate (SSG) from sago starch as a superdisintegrant from published journals using keywords in PubMed, Scopus, and ScienceDirect databases by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020). There are many methods for synthesizing sodium starch glycolate (SSG). Other methods may include the aqueous, extrusion, organic solvent slurry, and dry methods. Sago starch is a novel form of high-yield starch with significant development potential. After cross-linking, the phosphorus content of sago starch increases by approximately 0.3 mg/g, corresponding to approximately one phosphate ester group per 500 anhydroglucose units. The degree of substitution (DS) of sodium starch glycolate (SSG) from sago ranges from 0.25 to 0.30; in drug formulations, sodium starch glycolate (SSG) from sago ranges from 2% to 8% w/w. Higher levels of sodium starch glycolate (SSG) (2% and 4% w/w) resulted in shorter disintegration times (within 1 min). Sago starch is more swellable and less enzymatically digestible than pea and corn starch. These investigations demonstrate that sago starch is a novel form of high-yield starch with tremendous potential for novel development as superdisintegrant tablets and capsules.
Collapse
Affiliation(s)
- Okta Nama Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jatinangor 45363, West Java, Indonesia; (O.N.P.); (I.M.)
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong 16912, West Java, Indonesia; (S.E.); (M.M.)
| | - Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jatinangor 45363, West Java, Indonesia; (O.N.P.); (I.M.)
| | - Sarah Elisa
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong 16912, West Java, Indonesia; (S.E.); (M.M.)
| | - Musa Musa
- Research Centre for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong 16912, West Java, Indonesia; (S.E.); (M.M.)
| | - Emmy Hainida Khairul Ikram
- Centre for Dietetics Studies and Integrated Nutrition Science and Therapy Research Group (INSPIRE), Faculty of Health Sciences, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia;
| | - Chaidir Chaidir
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Cibinong 16912, West Java, Indonesia;
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jatinangor 45363, West Java, Indonesia; (O.N.P.); (I.M.)
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Jl. Soekarno KM-21, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
6
|
Li C, Hou D, Lei H, Xi X, Du G, Zhang H, Cao M, Tondi G. Effective and eco-friendly safe self-antimildew strategy to simultaneously improve the water resistance and bonding strength of starch-based adhesive. Int J Biol Macromol 2023; 248:125889. [PMID: 37479199 DOI: 10.1016/j.ijbiomac.2023.125889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Starch adhesive, as a sustainable biomass-based adhesive, could be used to solve environmental problems from petroleum-derived adhesive. But its application is hindered by poor water resistance, mildew resistance, and storage stability. Here, a fully bio-based citric acid-starch adhesive (CASt) with high properties was successfully introduced by a simple method. Liquid chromatography/mass spectrometry (LC-MS), and Fourier Transform Infrared spectroscopy (FT-IR) determined that esterification of citric acid (CA) and starch (St) occurred to form a stable three-dimensional crosslinking structure, which strengthened water resistance and bonding strength of the starch adhesive. Compared with native starch (100 %), the soluble content of cured CASt was 1-16 %. CASt adhesive has well storage stability and high mildew resistance. Even after being stored for 5 months, the CASt-1 adhesive (mass ratio of CA/St = 1:1, and reaction time = 1 h) still have good liquidity. And its hot water strength (1.05 ± 0.22 MPa) also satisfied the standard requirements (≥0.7 MPa). The exhibited CASt adhesive is eco-friendly with components from plant resources, which performed as a bright alternative that can substitute petroleum-based adhesives in the artificial board industry.
Collapse
Affiliation(s)
- Chunyin Li
- College of Chemistry and Material Engineering, Zhejiang A&F University, Hangzhou 311300, China; College of Material Science and Engineering, Southwest Forestry University, Kunming 650224, China
| | - Defa Hou
- College of Material Science and Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Hong Lei
- College of Chemistry and Material Engineering, Zhejiang A&F University, Hangzhou 311300, China; College of Material Science and Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Xuedong Xi
- College of Material Science and Engineering, Southwest Forestry University, Kunming 650224, China
| | - Guanben Du
- College of Material Science and Engineering, Southwest Forestry University, Kunming 650224, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Ming Cao
- College of Material Science and Engineering, Southwest Forestry University, Kunming 650224, China
| | - Gianluca Tondi
- University of Padova, Department of Land, Environment, Agriculture and Forestry, Viale dell'Universita 16, 35020 Legnaro, PD, Italy
| |
Collapse
|
7
|
He R, Li S, Zhao G, Zhai L, Qin P, Yang L. Starch Modification with Molecular Transformation, Physicochemical Characteristics, and Industrial Usability: A State-of-the-Art Review. Polymers (Basel) 2023; 15:2935. [PMID: 37447580 DOI: 10.3390/polym15132935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Starch is a readily available and abundant source of biological raw materials and is widely used in the food, medical, and textile industries. However, native starch with insufficient functionality limits its utilization in the above applications; therefore, it is modified through various physical, chemical, enzymatic, genetic and multiple modifications. This review summarized the relationship between structural changes and functional properties of starch subjected to different modified methods, including hydrothermal treatment, microwave, pre-gelatinization, ball milling, ultrasonication, radiation, high hydrostatic pressure, supercritical CO2, oxidation, etherification, esterification, acid hydrolysis, enzymatic modification, genetic modification, and their combined modifications. A better understanding of these features has the potential to lead to starch-based products with targeted structures and optimized properties for specific applications.
Collapse
Affiliation(s)
- Ruidi He
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Gongqi Zhao
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Ligong Zhai
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Peng Qin
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Liping Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| |
Collapse
|
8
|
Mohd Shukri A, Cheng LH. The Properties of Different Starches under the Influence of Glucono-Delta-Lactone at Different Concentrations. Foods 2023; 12:foods12091770. [PMID: 37174308 PMCID: PMC10178128 DOI: 10.3390/foods12091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, glucono-delta-lactone (GDL), which is Generally Recognized as Safe (GRAS), was added to native starches to modify their physicochemical properties. The effects of GDL on the molecular weight, pasting properties, flow behavior, gel syneresis, and crystallization properties of potato, tapioca, and corn starches were investigated. GPC results showed that as the GDL concentration increased, the molecular weight of amylose increased, whereas that of amylopectin decreased. An analysis using the Rapid Visco Analyzer revealed that the addition of GDL improved the pasting properties of potato starch, with reduced peak viscosity and breakdown viscosity, and it also improved setback viscosity. On the other hand, tapioca starch degraded substantially after GDL addition, indicating a lower tendency for short-term retrogradation, as reflected in the lower setback viscosity. The effects of GDL on corn starch pasting properties were very similar to those observed for tapioca starch, but the changes were relatively subtle. In terms of flow behavior, GDL addition decreased and increased the flow index values of the potato and tapioca starch pastes, respectively. However, the effect of GDL addition on the flow index value of the corn starch paste was found to be insignificant. The results also showed that the percentage of syneresis under the influence of GDL depended on the starch botanical origin-that is, potato starch, 14-18%, tapioca starch, 10-13%, and corn starch, 17-20%-which was substantiated by crystallinity analysis. It was observed that GDL has the potential to be used for starch modification because it creates desirable functionalities with the advantage of being a green-labelled ingredient.
Collapse
Affiliation(s)
- Afirah Mohd Shukri
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| | - Lai-Hoong Cheng
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Gelugor 11800, Penang, Malaysia
| |
Collapse
|
9
|
A Prospective Review on the Research Progress of Citric Acid Modified Starch. Foods 2023; 12:foods12030458. [PMID: 36765987 PMCID: PMC9914069 DOI: 10.3390/foods12030458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Citric acid (CA) treatment is a convenient, mild and environmentally friendly strategy to modify the composition, structure and function of starch through hydrolysis and esterification, which expands the application of starch in industry. In this paper, the effects of CA modification on amylose content, amylopectin chain length distribution, microscopic morphology, solubility and swelling ability, thermodynamic properties, gelatinization properties, digestibility properties, texture properties and the film-forming properties of starch were summarized. The application status and development trend of CA modified starch were reviewed, which has important implications for the targeted utilization of CA modified starch in the future.
Collapse
|
10
|
Liu R, Zhang R, Zhai X, Li C, Hou H, Wang W. Effects of beeswax emulsified by octenyl succinate starch on the structure and physicochemical properties of acid-modified starchfilms. Int J Biol Macromol 2022; 219:262-272. [PMID: 35931295 DOI: 10.1016/j.ijbiomac.2022.07.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Abstract
This work aimed to develop a novel strategy to modulate the distribution of beeswax in acid-modified starch films via tuning octenyl succinate starch (OSS) ratios and to elucidate their structure-property relationships. The apparent viscosity and storage modulus of the film-forming solution decreased with the increase of OSS ratio. Attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy revealed that the hydrogen bond in the film-forming network was cleaved with the presence of OSS. Scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD) demonstrated that OSS ratio had an obvious effect on the formation and distribution of beeswax crystal particles. Uniform distribution of beeswax effectively enhanced the hydrophobicity and water barrier properties of films and performed preferable elongation at break but at the expense of tensile strength and optical properties. The films with higher OSS ratio (>12 %) presented higher thermal stability. This study provides new information on the rational design of emulsified films to obtain desirable physicochemical properties by tuning the distribution of beeswax.
Collapse
Affiliation(s)
- Ruiping Liu
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Rui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Xiaosong Zhai
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Engineering and Technology Center for Grain Processing of Shandong Province, Tai'an, PR China.
| |
Collapse
|
11
|
Zhang X, Baek NW, Lou J, Xu J, Yuan J, Fan X. Effects of exogenous proteins on enzyme desizing of starch and its mechanism. Int J Biol Macromol 2022; 218:375-383. [PMID: 35902008 DOI: 10.1016/j.ijbiomac.2022.07.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Added protein to starch has abundantly applied to size the yarns. However, scarce information is available about the impact of proteins on the enzyme desizing of starch. Thus, the objective of this study was to explore the effect of corn gluten, soybean protein and bone glue on enzyme desizing and reveal the interference mechanism. The desizing efficiency of starch was detected after added proteins. The contact angle, swelling ability, protein content and structure of starch adhesion on desized yarn were measured to analyze the effect of protein on desizing. In addition, the binding forces between protein and starch were detected, and the inhibition mechanism was analyzed. Experimental results showed that desizing efficiencies of starch were decreased after adding the protein. Corn gluten had the strongest influence in hindering desizing due to the weakest promotion in the swelling of film and the stronger binding force between protein and starch, mainly through hydrophobic interaction and hydrogen bond. Improving the swelling ability of film and inhibiting the binding between starch and protein may be feasible ways to reduce the inhibition of protein on desizing.
Collapse
Affiliation(s)
- Xun Zhang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Na-Won Baek
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiangfei Lou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Fashi A, Delavar AF, Zamani A, Noshiranzadeh N, Zahraei H. Study on Structural and Physicochemical Properties of Modified Corn Starch: Comparison of Ultrasound, Stirring, and Lactic Acid Treatments. STARCH-STARKE 2022. [DOI: 10.1002/star.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Armin Fashi
- Environmental Science Research Laboratory Department of Environmental Science, Faculty of Science University of Zanjan Zanjan Postal Code 45371‐38791 Iran
- Research and Development Department Glucosan Company Alborz Industrial City Qazvin Iran
| | - Ali Fallah Delavar
- Research and Development Department Glucosan Company Alborz Industrial City Qazvin Iran
| | - Abbasali Zamani
- Environmental Science Research Laboratory Department of Environmental Science, Faculty of Science University of Zanjan Zanjan Postal Code 45371‐38791 Iran
| | - Nader Noshiranzadeh
- Department of Chemistry Faculty of Sciences University of Zanjan Zanjan Iran
| | - Hashem Zahraei
- Research and Development Department Glucosan Company Alborz Industrial City Qazvin Iran
| |
Collapse
|
13
|
Ghalambor P, Asadi G, Mohammadi Nafchi A, Seyedin Ardebili SM. Investigation of dual modification on physicochemical, morphological, thermal, pasting, and retrogradation characteristics of sago starch. Food Sci Nutr 2022; 10:2285-2299. [PMID: 35844929 PMCID: PMC9281924 DOI: 10.1002/fsn3.2837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to evaluate the characteristics of dually modified sago starch by acid hydrolysis (AH)-hydroxypropylation (HP). For this purpose, sago starch was modified with the combination by AH (5-20 h hydrolysis times) followed by HP (5%-25% ratio of propylene oxide) processes. The results showed that the dual modification of the sago starch structure didn't have a significant effect on the size of starch granules, and the granule size was in the range of 0.005-0.151 µm; however, the pasting properties and the glass transition temperature decreased significantly (p < .05). Increasing the level of propylene oxide from 5% to 25% caused a significant increase in the substitution degree (DS) and swelling ability of starches and reduced the syneresis, while with increasing acid hydrolysis time from 5 h to 20 h, starch swelling decreased and syneresis increased (p < .05). AH process at high hydrolysis times (20 h) increased the gelatinization temperatures and decreased retrogradation temperatures. Increasing the level of propylene oxide in both single and dual modification reduced the temperatures and enthalpy of gelatinization and retrogradation of sago starch. In summary, dually modified sago starch has a great potential to use in specific food products such as frozen dough or frozen bakery products.
Collapse
Affiliation(s)
- Pantea Ghalambor
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Gholamhassan Asadi
- Department of Food Science and Technology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | | |
Collapse
|
14
|
K Joy J, Kalaivendan RGT, Eazhumalai G, Kahar SP, Annapure US. Effect of pin-to-plate atmospheric cold plasma on jackfruit seed flour functionality modification. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Zaman SA, Kamilah H, Seruji AZRA, Pa’ee KF, Sarbini SR. Physicochemical properties and the functional food potential of resistant sago (Metroxylon sagu) starch type IV produced by phosphorylation/acetylation treatment. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01263-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Chen H, Xia A, Zhu X, Huang Y, Zhu X, Liao Q. Hydrothermal hydrolysis of algal biomass for biofuels production: A review. BIORESOURCE TECHNOLOGY 2022; 344:126213. [PMID: 34715338 DOI: 10.1016/j.biortech.2021.126213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal hydrolysis is an energy-efficient and economical pretreatment technology to disrupt the algal cells and hydrolyze the intracellular compounds, thereby promoting the biofuels production of fermentation. However, complex reaction mechanisms, unpredictable rheological properties of algal slurry, and immature continuous reactors still constrain the commercialization of such a process. To systematically understand the existing status and lay a foundation for promoting the technology, the chemical mechanism of hydrothermal hydrolysis of algal biomass is elaborated in this paper, and the influences of temperature, residence time, total solid content, and pH, on the biomethane production of hydrolyzed algal biomass are summarized. Besides, a comprehensive overview of the rheological behavior of algal slurries is discussed at various operational factors. The recent advances in flow, heat and mass transfer model coupling with the generic kinetics model in continuous reactors and the application of energy-saving strategies for efficient algal biomass pretreatment are detailed reviewed.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
17
|
Effect of moderate electric field on glucoamylase-catalyzed hydrolysis of corn starch: Roles of electrophoretic and polarization effects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Javadian N, Mohammadi Nafchi A, Bolandi M. The effects of dual modification on functional, microstructural, and thermal properties of tapioca starch. Food Sci Nutr 2021; 9:5467-5476. [PMID: 34646517 PMCID: PMC8498069 DOI: 10.1002/fsn3.2506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate the effects of dual modification on the functional, microstructural, and thermal properties of tapioca starch. Tapioca starch was first hydrolyzed by 0.14 M HCl for 0, 6, 12, 18, and 24 hr and then hydroxypropylated by adding 0%, 10%, 20%, and 30% (v/w) propylene oxide. The degree of hydroxypropylation, solubility, water absorption, rheological, thermal, and microstructure characterization of dually modified tapioca starch was determined. Hydroxypropylation did not cause any considerable changes in the starch granular size and shape of tapioca starch. Acid hydrolysis disrupts the starch granules, and the starches with smaller sizes were produced. The degree of molar substitution (DS) of dual modified starches ranged from 0.118 to 0.270. The dual modified starches significantly had higher solubility than native starch (p < .05). Hydrolysis of starches with acid decreases swelling power while hydroxypropylation increases the swelling power. The results also showed lower gelatinization (To, Tp, Tc, and ΔH) and pasting parameters (the peak and final viscosity, peak time, and pasting temperature) for the dual modified starches than other treatments. In summary, this study showed that dually modified tapioca starch has potential application in dip molding and coating.
Collapse
Affiliation(s)
- Neda Javadian
- Department of Food Science and TechnologyIslamic Azad UniversityDamghanIran
| | - Abdorreza Mohammadi Nafchi
- Department of Food Science and TechnologyIslamic Azad UniversityDamghanIran
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Marzieh Bolandi
- Department of Food Science and TechnologyIslamic Azad UniversityDamghanIran
| |
Collapse
|
19
|
Hu A, Chen X, Wang W, Li L, Zhou Y, Zhi W, Zheng J. Properties and Structure of Modified Taro Starch: Comparison of Ultrasound and Malic Acid Treatments. STARCH-STARKE 2021. [DOI: 10.1002/star.202000252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Aijun Hu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Xinli Chen
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Wei Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Li Li
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Yu Zhou
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Wenli Zhi
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| | - Jie Zheng
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin 300457 P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education Tianjin University of Science & Technology Tianjin 300457 P. R. China
- College of Food Science and Engineering Tianjin University of Science & Technology Tianjin 300457 P. R. China
| |
Collapse
|
20
|
Singh H, Sodhi NS, Dhillon B, Chang YH, Lin JH. Physicochemical and structural characteristics of sorghum starch as affected by acid‐ethanol hydrolysis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00792-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Ren Y, Yuan TZ, Chigwedere CM, Ai Y. A current review of structure, functional properties, and industrial applications of pulse starches for value-added utilization. Compr Rev Food Sci Food Saf 2021; 20:3061-3092. [PMID: 33798276 DOI: 10.1111/1541-4337.12735] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022]
Abstract
Pulse crops have received growing attention from the agri-food sector because they can provide advantageous health benefits and offer a promising source of starch and protein. Pea, lentil, and faba bean are the three leading pulse crops utilized for extracting protein concentrate/isolate in food industry, which simultaneously generates a rising volume of pulse starch as a co-product. Pulse starch can be fractionated from seeds using dry and wet methods. Compared with most commercial starches, pea, lentil, and faba bean starches have relatively high amylose contents, longer amylopectin branch chains, and characteristic C-type polymorphic arrangement in the granules. The described molecular and granular structures of the pulse starches impart unique functional attributes, including high final viscosity during pasting, strong gelling property, and relatively low digestibility in a granular form. Starch isolated from wrinkled pea-a high-amylose mutant of this pulse crop-possesses an even higher amylose content and longer branch chains of amylopectin than smooth pea, lentil, and faba bean starches, which make the physicochemical properties and digestibility of the former distinctively different from those of common pulse starches. The special functional properties of pulse starches promote their applications in food, feed, bioplastic and other industrial products, which can be further expanded by modifying them through chemical, physical and/or enzymatic approaches. Future research directions to increase the fractionation efficiency, improve the physicochemical properties, and enhance the industrial utilization of pulse starches have also been proposed. The comprehensive information covered in this review will be beneficial for the pulse industry to develop effective strategies to generate value from pulse starch.
Collapse
Affiliation(s)
- Yikai Ren
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Tommy Z Yuan
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
22
|
Zahib IR, Md Tahir P, Talib M, Mohamad R, Alias AH, Lee SH. Effects of degree of substitution and irradiation doses on the properties of hydrogel prepared from carboxymethyl-sago starch and polyethylene glycol. Carbohydr Polym 2021; 252:117224. [DOI: 10.1016/j.carbpol.2020.117224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
|
23
|
Celikci N, Dolaz M, Colakoglu AS. An environmentally friendly carton adhesive from acidic hydrolysis of waste potato starch. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1855047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nuran Celikci
- Department of Material Science and Engineering, Institute of Science and Technology, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Dolaz
- Department of Material Science and Engineering, Institute of Science and Technology, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
- Department of Environmental Engineering, Faculty of Engineering, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyz Republic
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Abdullah Sinan Colakoglu
- Department of Food Engineering, Faculty of Engineering and Architecture, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
24
|
Physicochemical and structural properties of sago starch. Int J Biol Macromol 2020; 164:1785-1793. [DOI: 10.1016/j.ijbiomac.2020.07.310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 01/30/2023]
|
25
|
Arezoo E, Mohammadreza E, Maryam M, Abdorreza MN. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int J Biol Macromol 2020; 157:743-751. [DOI: 10.1016/j.ijbiomac.2019.11.244] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/19/2022]
|
26
|
Hartiningsih S, Pranoto Y, Supriyanto. Structural and rheological properties of modified sago starch (Metroxylon sagu) using treatment of steam explosion followed by acid-hydrolyzed as an alternative to produce maltodextrin. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1792923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Subekti Hartiningsih
- Department of Food and Agricultural Products Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yudi Pranoto
- Department of Food and Agricultural Products Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Supriyanto
- Department of Food and Agricultural Products Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
27
|
Kringel DH, El Halal SLM, Zavareze EDR, Dias ARG. Methods for the Extraction of Roots, Tubers, Pulses, Pseudocereals, and Other Unconventional Starches Sources: A Review. STARCH-STARKE 2020. [DOI: 10.1002/star.201900234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Dianini Hüttner Kringel
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas 96010–900 Brazil
| | | | | | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas 96010–900 Brazil
| |
Collapse
|
28
|
Bunyasetthakun T, Huang Q, Sureepisan K, Suphantharika M, Tangsrianugul N, Wongsagonsup R. Effects of Dual Pullulanase‐Debranching and Temperature‐Cycling Treatments on Physicochemical Properties and In Vitro Digestibility of Sago Starch and Its Application in Chinese Steamed Buns. STARCH-STARKE 2020. [DOI: 10.1002/star.202000034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Qiang Huang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Kanchana Sureepisan
- Unit of Scientific Laboratory for Education, Kanchanaburi Campus Mahidol University Kanchanaburi 71150 Thailand
| | - Manop Suphantharika
- Faculty of Science Department of Biotechnology Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Nuttinee Tangsrianugul
- Faculty of Science Department of Biotechnology Mahidol University Rama 6 Road Bangkok 10400 Thailand
| | - Rungtiwa Wongsagonsup
- Division of Food Technology, Kanchanaburi Campus Mahidol University Kanchanaburi 71150 Thailand
| |
Collapse
|
29
|
Bhat MS, Arya SS. Physico-functional, pasting and structural properties of gorgon nut (Euryale ferox) flour as affected by heat-moisture and acid treatment. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00413-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Cabrera Canales ZE, Rodríguez Marín ML, Gómez Aldapa CA, Méndez Montealvo G, Chávez Gutiérrez M, Velazquez G. Effect of dual chemical modification on the properties of biodegradable films from achira starch. J Appl Polym Sci 2020. [DOI: 10.1002/app.49411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - María Luisa Rodríguez Marín
- Área Académica de Química, Instituto de Ciencias Básicas e IngenieríaUniversidad Autónoma del Estado de Hidalgo Pachuca Hidalgo Mexico
- CátedrasCONACyT Ciudad de México Mexico
| | - Carlos Alberto Gómez Aldapa
- Área Académica de Química, Instituto de Ciencias Básicas e IngenieríaUniversidad Autónoma del Estado de Hidalgo Pachuca Hidalgo Mexico
| | | | - Miguel Chávez Gutiérrez
- CONACyT ‐ Instituto Politécnico NacionalCIIDIR Unidad Oaxaca Santa Cruz Xoxocotlán Oaxaca Mexico
| | - Gonzalo Velazquez
- Instituto Politécnico NacionalCICATA unidad Querétaro Santiago de Querétaro Mexico
| |
Collapse
|
31
|
Ulbrich M, Bai Y, Flöter E. The supporting effect of ultrasound on the acid hydrolysis of granular potato starch. Carbohydr Polym 2020; 230:115633. [DOI: 10.1016/j.carbpol.2019.115633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 10/25/2022]
|
32
|
Achudan SN, Dos Mohamed AM, Rashid RSA, Mittis P. Yield and physicochemical properties of starch at different sago palm stages. MATERIALS TODAY: PROCEEDINGS 2020; 31:122-126. [DOI: 10.1016/j.matpr.2020.01.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
33
|
Chen H, Fu Q, Liao Q, Xiao C, Huang Y, Xia A, Zhu X, Kang Z. Rheokinetics of microalgae slurry during hydrothermal pretreatment processes. BIORESOURCE TECHNOLOGY 2019; 289:121650. [PMID: 31228746 DOI: 10.1016/j.biortech.2019.121650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Hydrothermal pretreatment is an efficient process for improving the productivity of biofuels from wet microalgae biomass. The rheological behavior of microalgae slurry is a significant parameter affecting the performance of hydrothermal pretreatment reactors. Herein, the dynamic rheological behavior of microalgae slurry during hydrothermal pretreatment was investigated for the first time. The results revealed that the insoluble organics released from microalgae cells was the main factor affecting the rheological behavior of microalgae slurry. The denaturation and hydrolysis of starch and protein in liquid phase at different temperature regions caused the increasing and decreasing of viscosity of the microalgae slurry, respectively. The rheokinetics equations were established based on four-parameter cross-linking rheokinetics equation to describe the variation of viscosity with reaction time in different temperature. The variation of the rheokinetics model parameters with temperature revealed that the temperature has an obviously positive influence on the hydrothermal pretreatment process of the microalgae slurry.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Chao Xiao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Zhongyin Kang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
34
|
Shaikh F, Ali TM, Mustafa G, Hasnain A. Comparative study on effects of citric and lactic acid treatment on morphological, functional, resistant starch fraction and glycemic index of corn and sorghum starches. Int J Biol Macromol 2019; 135:314-327. [DOI: 10.1016/j.ijbiomac.2019.05.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/12/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
35
|
Reddy CK, Lee DJ, Lim ST, Park EY. Enzymatic debranching of starches from different botanical sources for complex formation with stearic acid. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
An insight into the multi-scale structures and pasting behaviors of starch following citric acid treatment. Int J Biol Macromol 2018; 116:793-800. [DOI: 10.1016/j.ijbiomac.2018.05.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/30/2018] [Accepted: 05/16/2018] [Indexed: 01/12/2023]
|
37
|
Ulbrich M, Flöter E. Impact of Process Parameters on the Acid Modification of Potato Starch. STARCH-STARKE 2018. [DOI: 10.1002/star.201800111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Marco Ulbrich
- Department of Food Technology and Food Chemistry; Chair of Food Process Engineering; Technische Universität Berlin; Office GG 2, Seestraße 13 13353 Berlin Germany
| | - Eckhard Flöter
- Department of Food Technology and Food Chemistry; Chair of Food Process Engineering; Technische Universität Berlin; Office GG 2, Seestraße 13 13353 Berlin Germany
| |
Collapse
|
38
|
Ng J, Siew CK, Mamat H, Matanjun P, Lee J. Effect of Acid Methanol Treatment and Heat Moisture Treatment on In Vitro Digestibility and Estimated Glycemic Index of Raw and Gelatinized Sago (
Metroxylon Sagu
) Starch. STARCH-STARKE 2018. [DOI: 10.1002/star.201700198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jia‐Qin Ng
- Faculty of Food Science and NutritionUniversiti Malaysia SabahJalan UMS88400Kota KinabaluSabahMalaysia
| | - Chee Kiong Siew
- Faculty of Food Science and NutritionUniversiti Malaysia SabahJalan UMS88400Kota KinabaluSabahMalaysia
| | - Hasmadi Mamat
- Faculty of Food Science and NutritionUniversiti Malaysia SabahJalan UMS88400Kota KinabaluSabahMalaysia
| | - Patricia Matanjun
- Faculty of Food Science and NutritionUniversiti Malaysia SabahJalan UMS88400Kota KinabaluSabahMalaysia
| | - Jau‐Shya Lee
- Faculty of Food Science and NutritionUniversiti Malaysia SabahJalan UMS88400Kota KinabaluSabahMalaysia
| |
Collapse
|
39
|
Moin A, Ali TM, Hasnain A. Influence of different molar concentrations of acid on morphological, physicochemical and pasting properties of Pakistani Basmati and Irri rice starches. Int J Biol Macromol 2017; 101:214-221. [DOI: 10.1016/j.ijbiomac.2017.03.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/15/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
|
40
|
Marvizadeh MM, Oladzadabbasabadi N, Mohammadi Nafchi A, Jokar M. Preparation and characterization of bionanocomposite film based on tapioca starch/bovine gelatin/nanorod zinc oxide. Int J Biol Macromol 2017; 99:1-7. [DOI: 10.1016/j.ijbiomac.2017.02.067] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/02/2017] [Accepted: 02/17/2017] [Indexed: 02/07/2023]
|
41
|
Falade KO, Ayetigbo OE. Effects of tempering (annealing), acid hydrolysis, low-citric acid substitution on chemical and physicochemical properties of starches of four yam ( Dioscorea spp.) cultivars. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:1455-1466. [PMID: 28559604 PMCID: PMC5430176 DOI: 10.1007/s13197-017-2568-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/23/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
The effects of tempering (annealing), acid hydrolysis and low-citric acid substitution on chemical and physicochemical properties of starches of four Nigerian yam cultivars were investigated. Crude fat and protein contents of the native starches decreased significantly after the modifications, while nitrogen-free extract increased significantly with acid hydrolysis and citric acid substitution. Acid hydrolysis and low-citric acid substitution reduced the least concentration for gel formation of the starches from 4 to 2% w/v, but tempering had no effect. Swelling power of the starches reduced significantly, and water solubility increased significantly at 75 and 85 °C, especially with acid hydrolysis and low-citric acid substitution. However, tempering significantly reduced starch solubility in the four cultivars. Paste clarity of starches of white (29.17%), water (18.90%), yellow (30.90%) and bitter (10.57%) yams reduced significantly with tempering to 14.43, 11.83, 16.93 and 7.27%, but increased significantly with acid hydrolysis to 41.40, 35.37, 28.77 and 32.33%, and low-citric acid substitution to 36.60, 44.17, 50.67 and 14.33%, respectively. Pasting properties such as peak, trough, breakdown, final, and setback viscosities and peak time of native starches reduced significantly with acid hydrolysis and low-citric acid substitution, however, tempering significantly increased their pasting temperature, peak time, setback and final viscosities.
Collapse
|
42
|
Ulbrich M, Flöter E. Properties of heated aqueous starch dispersions dependent on the preparation conditions. STARCH-STARKE 2017. [DOI: 10.1002/star.201600381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marco Ulbrich
- Department of Food Technology and Food Chemistry, Chair of Food Process Engineering; Technische Universität Berlin; Berlin Germany
| | - Eckhard Flöter
- Department of Food Technology and Food Chemistry, Chair of Food Process Engineering; Technische Universität Berlin; Berlin Germany
| |
Collapse
|
43
|
Oladzadabbasabadi N, Ebadi S, Mohammadi Nafchi A, Karim A, Kiahosseini SR. Functional properties of dually modified sago starch/κ-carrageenan films: An alternative to gelatin in pharmaceutical capsules. Carbohydr Polym 2017; 160:43-51. [DOI: 10.1016/j.carbpol.2016.12.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/10/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
|
44
|
Hedayati S, Shahidi F, Koocheki A, Farahnaky A, Majzoobi M. Physical properties of pregelatinized and granular cold water swelling maize starches at different pH values. Int J Biol Macromol 2016; 91:730-5. [DOI: 10.1016/j.ijbiomac.2016.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/17/2016] [Accepted: 06/07/2016] [Indexed: 12/15/2022]
|
45
|
Influence of a cationic polysaccharide on starch functionality. Carbohydr Polym 2016; 150:369-77. [DOI: 10.1016/j.carbpol.2016.05.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/17/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022]
|
46
|
Ahmad Malik M, Saxena D. Effect on Physicochemical and Thermal Properties of Buckwheat (Fagopyrum esculentum) Starch by Acid Hydrolysis Combined with Heat Moisture Treatment. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mudasir Ahmad Malik
- Department of Food Engineering and Technology; Sant Longowal Institute of Engineering and Technology; Longowal, Sangrur Punjab India
| | - D.C. Saxena
- Department of Food Engineering and Technology; Sant Longowal Institute of Engineering and Technology; Longowal, Sangrur Punjab India
| |
Collapse
|
47
|
Ulbrich M, Lampl V, Flöter E. Impact of modification temperature on the properties of acid-thinned potato starch. STARCH-STARKE 2016. [DOI: 10.1002/star.201500365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco Ulbrich
- Department of Food Technology and Food Chemistry, Chair of Food Process Engineering; Technische Universität Berlin; Berlin Germany
| | - Viktoria Lampl
- Department of Food Technology and Food Chemistry, Chair of Food Process Engineering; Technische Universität Berlin; Berlin Germany
| | - Eckhard Flöter
- Department of Food Technology and Food Chemistry, Chair of Food Process Engineering; Technische Universität Berlin; Berlin Germany
| |
Collapse
|
48
|
Awolu OO, Olofinlae SJ. Physico-chemical, functional and pasting properties of native and chemically modified water yam (Dioscorea alata)
starch and production of water yam starch-based yoghurt. STARCH-STARKE 2016. [DOI: 10.1002/star.201500302] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sunday John Olofinlae
- Department of Food Science and Technology; Federal University of Technology; Akure Nigeria
| |
Collapse
|
49
|
Fakharian MH, Tamimi N, Abbaspour H, Mohammadi Nafchi A, Karim A. Effects of κ-carrageenan on rheological properties of dually modified sago starch: Towards finding gelatin alternative for hard capsules. Carbohydr Polym 2015; 132:156-63. [DOI: 10.1016/j.carbpol.2015.06.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 05/29/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
|
50
|
Ulbrich M, Beresnewa-Seekamp T, Walther W, Flöter E. Acid-thinned corn starch-impact of modification parameters on molecular characteristics and functional properties. STARCH-STARKE 2015. [DOI: 10.1002/star.201500210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marco Ulbrich
- Department of Food Technology and Food Chemistry, Chair of Food Process Engineering, Technische Universität Berlin; Berlin Germany
| | - Tatjana Beresnewa-Seekamp
- Department of Food Technology and Food Chemistry, Chair of Food Process Engineering, Technische Universität Berlin; Berlin Germany
| | - Wendy Walther
- Department of Food Technology and Food Chemistry, Chair of Food Process Engineering, Technische Universität Berlin; Berlin Germany
| | - Eckhard Flöter
- Department of Food Technology and Food Chemistry, Chair of Food Process Engineering, Technische Universität Berlin; Berlin Germany
| |
Collapse
|