1
|
Ede-Cintesun E, Çatak J, Ateş E, Yaman M. Glyoxal and methylglyoxal formation in chocolate and their bioaccessibility. Food Res Int 2024; 189:114552. [PMID: 38876591 DOI: 10.1016/j.foodres.2024.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
The objective of this study was to assess the effects of simulated digestion on the formation of α-dicarbonyl compounds (α-DCs) in chocolates. For that purpose, the concentrations of glyoxal and methylglyoxal in chocolates were determined through High-Performance Liquid Chromatography (HPLC) analysis before and after in vitro digestion. The initial concentrations ranged from 0.0 and 228.2 µg/100 g, and 0.0 and 555.1 for glyoxal and methylglyoxal, respectively. Following digestion, there was a significant increase in both glyoxal and methylglyoxal levels, reaching up to 1804 % and 859 %, respectively. The findings indicate that digestive system conditions facilitate the formation of advanced glycation end product (AGE) precursors. Also, glyoxal and methylglyoxal levels were found to be low in chocolate samples containing dark chocolate. In contrast, they were found to be high in samples containing hazelnuts, almonds, pistache, and milk. Further studies should focus on α-DCs formation under digestive system conditions, including the colon, to determine the effects of gut microbiota.
Collapse
Affiliation(s)
- Elif Ede-Cintesun
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Sabahattin Zaim University, Istanbul, Halkalı Merkez Street, Halkalı Blvd, 34303 Küçükçekmece/İstanbul, Turkey.
| | - Jale Çatak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Sabahattin Zaim University, Istanbul, Halkalı Merkez Street, Halkalı Blvd, 34303 Küçükçekmece/İstanbul, Turkey.
| | - Esra Ateş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Sabahattin Zaim University, Istanbul, Halkalı Merkez Street, Halkalı Blvd, 34303 Küçükçekmece/İstanbul, Turkey.
| | - Mustafa Yaman
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, İstanbul Sabahattin Zaim University, Istanbul, Halkalı Merkez Street, Halkalı Blvd, 34303 Küçükçekmece/İstanbul, Turkey.
| |
Collapse
|
2
|
Sawicki T, Błaszczak W, Latocha P. In vitro anticholinergic and antiglycaemic properties of frost-hardy Actinidia fruit extracts and their polyphenol profile, L-ascorbic acid content and antioxidant capacity. Food Res Int 2023; 173:113324. [PMID: 37803635 DOI: 10.1016/j.foodres.2023.113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 10/08/2023]
Abstract
The aim of this study was to investigate the inhibitory effects of Actinidia arguta ('Weiki', 'Skarlet September Kiwi') and Actinidia kolomikta ('Lande') fruit extracts against advanced glycation end-products (AGEs) formation and acetylcholinesterase (AChE) activity. The extracts were also tested regarding polyphenol profile and Lascorbic acid content (UHPLC-DAD-MS), and antioxidant capacity (DPPH, ABTS). 'Scarlet September Kiwi' showed the strongest anti-AGEs activity studied with BSAGLU (IC50 = 2.68) and BSA-MGO (IC50 = 18.06) models. The highest anti-AChE activity was found for the 'Lande' extract (IC50 = 4.56). 'Lande' showed the highest L-ascorbic acid content (8271.96 µg/g dw), ABTS (312.42 µmol TE/g dw) and DPPH (282.01 µmol TE/g dw) values. 'Scarlet September Kiwi' revealed the highest individual phenolics concentration (2321.43 µg/g dw). The contents of (+)-catechin and L-ascorbic acid were significantly correlated with anti-AChE activity. This research sheds new light on the bioactivity of Actinidia arguta and Actinidia kolomikta fruit elucidating the role of (+)-catechin and L-ascorbic acid in prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Tomasz Sawicki
- Department of Human Nutrition, Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, Ul. Słoneczna 45F, 10-719 Olsztyn, Poland.
| | - Wioletta Błaszczak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Piotr Latocha
- Institute of Horticulture Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland.
| |
Collapse
|
3
|
Wronkowska M, Bączek N, Honke J, Topolska J, Wiczkowski W, Zieliński H. Wheat Roll Enhanced by Buckwheat Hull, a New Functional Food: Focus on the Retention of Bioactive Compounds. Molecules 2023; 28:molecules28114565. [PMID: 37299040 DOI: 10.3390/molecules28114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023] Open
Abstract
Wheat roll enhanced by buckwheat hull was used as a model for determining the retention of bioactive compounds during technological steps. The research included analysis of the formation of Maillard reaction products (MRPs) and retention of bioactive compounds such as tocopherols, glutathione, or antioxidant capacity. About a 30% decrease in the content of available lysine in the roll was observed compared to the value obtained for fermented dough. Free FIC, FAST index, and browning index were highest for the final products. The increase of analyzed tocopherols (α-, β-,γ-, and δ-T) was noticed during the technological steps, with the highest values found for the roll with 3% of buckwheat hull. A significant reduction in GSH and GSSG content occurred during the baking process. The observed increase in the value of the antioxidant capacity after the baking process may be the result of the formation of new antioxidant compounds.
Collapse
Affiliation(s)
- Małgorzata Wronkowska
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Natalia Bączek
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Honke
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Joanna Topolska
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Henryk Zieliński
- Department of Chemistry and Biodynamics of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
4
|
Sofi SA, Ahmed N, Farooq A, Rafiq S, Zargar SM, Kamran F, Dar TA, Mir SA, Dar BN, Mousavi Khaneghah A. Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview. Food Sci Nutr 2023; 11:2256-2276. [PMID: 37181307 PMCID: PMC10171551 DOI: 10.1002/fsn3.3166] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
In the present era, food scientists are concerned about exploiting functional crops with nutraceutical properties. Buckwheat is one of the functional pseudocereals with nutraceutical components used in the treatment of health-related diseases, malnutrition, and celiac diseases. As a preferred diet as a gluten-free product for celiac diseases, buckwheat is a good source of nutrients, bioactive components, phytochemicals, and antioxidants. The general characteristics and better nutritional profile of buckwheat than other cereal family crops were highlighted by previous investigations. In buckwheats, bioactive components like peptides, flavonoids, phenolic acids, d-fagomine, fagopyritols, and fagopyrins are posing significant health benefits. This study highlights the current knowledge about buckwheat and its characteristics, nutritional constituents, bioactive components, and their potential for developing gluten-free products to target celiac people (1.4% of the world population) and other health-related diseases.
Collapse
Affiliation(s)
- Sajad Ahmad Sofi
- Department of Food TechnologyIslamic University of Science & TechnologyAwantiporaJammu and KashmirIndia
| | - Naseer Ahmed
- Department of Food TechnologyDKSG Akal College of AgricultureEternal UniversityBaru SahibHimachal PradeshIndia
| | - Asmat Farooq
- Division of BiochemistrySher‐e‐Kashmir University of Agricultural Sciences and Technology of JammuChathaJammu and KashmirIndia
- Proteomics Laboratory, Division of Plant BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of KashmirShalimarJammu and KashmirIndia
| | - Shafiya Rafiq
- School of Science, Parramatta CampusWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant BiotechnologySher‐e‐Kashmir University of Agricultural Sciences and Technology of KashmirShalimarJammu and KashmirIndia
| | - Fozia Kamran
- School of Science, Parramatta CampusWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Tanveer Ali Dar
- Department of Clinical BiochemistryUniversity of KashmirHazratbal, SrinagarIndia
| | - Shabir Ahmad Mir
- Department of Food Science & TechnologyGovt. College for WomanSrinagarIndia
| | - B. N. Dar
- Department of Food TechnologyIslamic University of Science & TechnologyAwantiporaJammu and KashmirIndia
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product TechnologyProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research InstituteWarsawPoland
| |
Collapse
|
5
|
Dewi AS, Arumia M, Samodro DA, Fajarningsih ND, Patantis G, Nursid M, Batubara I, Fawzya YN. Characterization and Bioactivities of Sequentially-Prepared Sea Cucumber Ethanolic Extracts and Protein Hydrolysates. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2023. [DOI: 10.1080/10498850.2022.2163862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ariyanti S. Dewi
- Research Centre for Marine and Fisheries Product Processing and Biotechnology, Ministry of Marine Affairs and Fisheries, Central Jakarta, Indonesia
- Research Center for Marine and Land Bioindustry, National Agency for Research and Innovation, Mataram, Indonesia
| | - Mei Arumia
- Department of Marine Science, Faculty of Fisheries and Marine Sciences, University of JenderalSoedirman, Purwokerto, Indonesia
| | - Dohan A. Samodro
- Department of Marine Science, Faculty of Fisheries and Marine Sciences, University of JenderalSoedirman, Purwokerto, Indonesia
| | - Nurrahmi D. Fajarningsih
- Research Centre for Marine and Fisheries Product Processing and Biotechnology, Ministry of Marine Affairs and Fisheries, Central Jakarta, Indonesia
- Research Center for Marine and Land Bioindustry, National Agency for Research and Innovation, Mataram, Indonesia
| | - Gintung Patantis
- Research Centre for Marine and Fisheries Product Processing and Biotechnology, Ministry of Marine Affairs and Fisheries, Central Jakarta, Indonesia
- Research Center for Marine and Land Bioindustry, National Agency for Research and Innovation, Mataram, Indonesia
| | - Muhammad Nursid
- Research Centre for Marine and Fisheries Product Processing and Biotechnology, Ministry of Marine Affairs and Fisheries, Central Jakarta, Indonesia
- Research Center for Marine and Land Bioindustry, National Agency for Research and Innovation, Mataram, Indonesia
| | - Irmanida Batubara
- Tropical Biopharmaca Research Centre, Bogor Agricultural University, Bogor, Indonesia
| | - Yusro N. Fawzya
- Research Centre for Marine and Fisheries Product Processing and Biotechnology, Ministry of Marine Affairs and Fisheries, Central Jakarta, Indonesia
| |
Collapse
|
6
|
Jia W, Ma R, Zhang R, Fan Z, Shi L. Synthetic-free compounds as the potential glycation inhibitors performed in in vitro chemical models: Molecular mechanisms and structure requirements. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Dedvisitsakul P, Watla-iad K. Antioxidant activity and antidiabetic activities of Northern Thai indigenous edible plant extracts and their phytochemical constituents. Heliyon 2022; 8:e10740. [PMID: 36185148 PMCID: PMC9519484 DOI: 10.1016/j.heliyon.2022.e10740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/25/2022] [Accepted: 09/15/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus is the most common non-infective disease characterized by hyperglycemia (high level of blood glucose). Formation of advanced glycation end products (AGEs) in long termed-hyperglycemia and oxidative stress are the key factors to accelerate diabetic complications. To screen potential candidates for treating diabetes, total phenolic content, total flavonoid content, antioxidant activity from crude extracts of some Thai edible plants were primarily assessed, and the inhibiting potential of diabetes and its complications provided from some of these plants were evaluated in terms of their inhibitory activities of α-amylase, α-glycosidase, and AGEs formation. The highest amounts of phenolic and flavonoid compounds were found in the ethanolic extract of Caesalpinia mimosoides (S20, 12.63 ± 1.70 mg GAE/g DW) and Glochidion hirsutum (S8, 3.02 ± 0.25 mg CE/g DW), respectively. The highest antioxidant activity was found in Schinus terebinthifolius Raddi (S26, 217.94 ± 32.30 μg AAE/g DW) whereas the highest inhibitory activities of α-amylase and α-glycosidase were obtained from Basella alba L. (S11, IC50 = 0.21 ± 0.01 mg/ml) and S. terebinthifolius (S26, IC50 = 0.05 ± 0.02 mg/ml) respectively. The inhibitory effects of AGEs formation were studied in vitro using two model systems: BSA-glucose and BSA-methylglycoxal (MGO). The extracts of Glochidion hirsutum (Roxb.) Voigt (S8, IC50 = 0.20 ± 0.01 mg/ml) and Polygonum odoratum Lour. (S13, IC50 = 0.03 ± 0.01 mg/ml) exhibited the inhibitory activity of AGEs formation derived from glucose (BSA-glucose system) stronger than aminoguanidine (AG) (0.26 ± 0.00 mg/ml), which is a common AGEs formation inhibitory drug. By BSA-MGO assay, the inhibition of some selected extracts in this study (G. hirsutum, G. sphaerogynum, and S. terebinthifolius with IC50 = 0.11 ± 0.01, 0.11 ± 0.01, and 0.10 ± 0.00 mg/ml, respectively) were slightly less efficient than AG (the IC50 = 0.06 ± 0.00 mg/ml). These results indicated that some selected Thai edible plants in this present study provided potential applications towards the prevention of diabetes and their complications via the inhibitory of α-amylase, α-glycosidase, AGEs formation, and oxidative stress. This fundamental information would be important for alternative drug discovery and nutritional recommendations for diabetic patients.
Collapse
Affiliation(s)
- Plaipol Dedvisitsakul
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Microbial Products and Innovation (MP&I) Research Unit, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kanchana Watla-iad
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Chemical Innovation for Sustainability, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Corresponding author.
| |
Collapse
|
8
|
Jin Y, Tu J, Han X, Zhuo J, Liu G, Han Y, Du H, Wang J, Xiao H. Characteristics of Mulberry Leaf Powder Enriched With γ-Aminobutyric Acid and Its Antioxidant Capacity as a Potential Functional Food Ingredient. Front Nutr 2022; 9:900718. [PMID: 35662930 PMCID: PMC9158535 DOI: 10.3389/fnut.2022.900718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
To improve the functional properties of mulberry leaves, γ-aminobutyric acid (GABA) enrichment treatments were applied. The results showed that the combined treatment of sodium glutamate immersion, cold shock, and anoxic significantly increased the GABA content. HPLC analysis displayed that the quantity of some active phenolics was significantly increased after the treatment. The GABA-enriched mulberry leaf powders were subsequently prepared, and it was found that as the particle size decreased, their water and oil holding capacity and their swelling power decreased, while the angle of repose increased. The dissolution rate of GABA and total phenolics increased as the particle size decreased. Optical observations and SEM results revealed that the fiber structures of the particles were gradually destroyed as the particle size decreased. Further, FTIR analysis showed that the active compounds in the powders were not destroyed. M400 and M140 powder showed the maximum DPPH radical scavenging ability and AGEs inhibition capacity, respectively. Additionally, adding the powders effectively alleviated the staling of bread without any significant effect on taste.
Collapse
Affiliation(s)
- Yingchun Jin
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jie Tu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, Zhenjiang, China
- *Correspondence: Jie Tu,
| | - Xinyao Han
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun Zhuo
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Guanhui Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Yanhui Han,
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Jun Wang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, Zhenjiang, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Hang Xiao,
| |
Collapse
|
9
|
Phytochemicals of six selected herbal plants and their inhibitory activities towards free radicals and glycation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Yaman M, Demirci M, Ede-Cintesun E, Kurt E, Faruk Mızrak Ö. Investigation of formation of well-known AGEs precursors in cookies using an in vitro simulated gastrointestinal digestive system. Food Chem 2022; 373:131451. [PMID: 34717081 DOI: 10.1016/j.foodchem.2021.131451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023]
Abstract
The present study investigated the influence of in vitro stimulated digestion system on the content of glyoxal and methylglyoxal in commercial cookies. Glyoxal and methylglyoxal levels in different cookie samples were analyzed before and after in vitro digestion with High Performance Liquid Chromatography. Initial glyoxal and methylglyoxal values ranged between 42.9 and 126.6 µg/100 g, and between 22.9 and 507.3 µg/100 g, respectively. After in vitro digestion, formation of glyoxal and methylglyoxal values were increased up to 645% and 698%, respectively. The results revealed that in vitro stimulated digestion conditions strongly increased the amount of glyoxal and methylglyoxal in cookies. The amount of fructose was found to be more effective on the formation of both GO and MGO than those of glucose and sucrose. Further studies are needed to extensively investigate glyoxal and methylglyoxal formation under in vitro conditions in such foods.
Collapse
Affiliation(s)
- Mustafa Yaman
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Turkey
| | - Mehmet Demirci
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Turkey
| | - Elif Ede-Cintesun
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Turkey; Institue of Health Sciences, Department of Nutrition and Dietetics, Istanbul Medipol University, Turkey.
| | - Edanur Kurt
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Turkey
| | - Ömer Faruk Mızrak
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Turkey
| |
Collapse
|
11
|
Mazumder K, Biswas B, Al Mamun A, Billah H, Abid A, Sarkar KK, Saha B, Azom S, Kerr PG. Investigations of AGEs' inhibitory and nephroprotective potential of ursolic acid towards reduction of diabetic complications. J Nat Med 2022; 76:490-503. [PMID: 35032247 DOI: 10.1007/s11418-021-01602-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023]
Abstract
In diabetes, interactions between AGEs (advanced glycation end products) and RAGEs (receptors of AGEs) are responsible for chronic complications and the current work reports the potential of ursolic acid as a RAGE inhibitor. The three-dimensional crystal structure of RAGE was first docked with target molecules by 'AutodockVina' using GROMOS 96 4381 parameters. Druggability and pharmacokinetic properties were calculated from the SwissADME server. In vitro bovine serum albumin (BSA)-glucose fluorescence and BSA-methylglyoxal fluorescence assays were also performed. Finally, alloxan-induced diabetic mice were administered ursolic acid and metformin standards (at 1, 50, 100 mg/kg) for 50 days. Blood glucose levels, several blood parameters, blood lipid profiles, supernatants of homogenized kidney and plasma of mice were examined. In the computational study, ursolic acid showed greater binding affinity (-7.5 kcal/mol) for RAGE with an ADMET profiles and lead-likeness compared to metformin as a standard antidiabetic. In the in vitro fluorescence assays, the IC50 value for ursolic acid was much less than that of metformin standard. During the in vivo study, significant reduction in the levels of blood glucose, HbA1C (glycated hemoglobin), creatinine, uric acid, BUN (blood urea nitrogen), AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALP (alkaline phosphatase) were observed in the ursolic acid and metformin-treated mice. Substantial inhibition of AGEs' formation in the plasma and kidney were also detected. Finally, the histopathological examinations of the kidney revealed reversal of cellular necrosis. Hence, ursolic acid is proved to be a potent AGE inhibitory agent in managing the diabetic complications.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- School of Dentistry and BioMedical Sciences, Charles Sturt University, Booroma St, Wagga Wagga, NSW, Australia.
- School of Optometry and Vision Science, UNSW Medicine University of New South Wales (UNSW), Sydney, NSW, Australia.
| | - Biswajit Biswas
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Hasan Billah
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Ahsan Abid
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Kishore Kumar Sarkar
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Bisti Saha
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Shorrowar Azom
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Philip G Kerr
- School of Dentistry and BioMedical Sciences, Charles Sturt University, Booroma St, Wagga Wagga, NSW, Australia
| |
Collapse
|
12
|
Kahraman G, Harsa S, Casiraghi MC, Lucisano M, Cappa C. Impact of Raw, Roasted and Dehulled Chickpea Flours on Technological and Nutritional Characteristics of Gluten-Free Bread. Foods 2022; 11:foods11020199. [PMID: 35053930 PMCID: PMC8774402 DOI: 10.3390/foods11020199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 01/16/2023] Open
Abstract
The main objective of this study was to develop a healthy rice-based gluten-free bread by using raw, roasted, or dehulled chickpea flours. All breads containing chickpea flours showed a darker crust and were characterized by an alveolar (porosity 41.5–51.4%) and soft crumb (hardness 5.5-14.1 N). Roasted chickpea flour bread exhibited the highest specific volume, the softest crumb, and the slowest staling rate. Enriching rice-based breads with the chickpea flours resulted in increased protein (from 9.72 to 12.03–13.21 g/100 g dm), ash (from 2.01 to 2.45–2.78 g/100 g dm), fat (from 1.61 to 4.58–5.86 g/100 g), and total phenolic contents (from 49.36 up to 80.52 mg GAE/100 g dm), and in reduced (~10–14% and 13.7–17%, respectively) available starch levels and rapidly digestible starch compared to rice bread. Breads with roasted chickpea flour also showed the highest in vitro protein digestibility. The results of this study indicated that the enrichment of rice-based gluten-free breads with chickpea flours improved the technological and nutritional quality of the breads differently according to the processed chickpea flour used, also allowing recovery of a waste product.
Collapse
Affiliation(s)
- Gokcen Kahraman
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, Izmir 35430, Turkey;
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (M.C.C.); (M.L.); (C.C.)
| | - Sebnem Harsa
- Department of Food Engineering, Faculty of Engineering, Izmir Institute of Technology, Izmir 35430, Turkey;
- Correspondence: ; Tel.: +90-232-750-6903
| | - Maria Cristina Casiraghi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (M.C.C.); (M.L.); (C.C.)
| | - Mara Lucisano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (M.C.C.); (M.L.); (C.C.)
| | - Carola Cappa
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy; (M.C.C.); (M.L.); (C.C.)
| |
Collapse
|
13
|
Comprehensive analysis of the anti-glycation effect of peanut skin extract. Food Chem 2021; 362:130169. [PMID: 34102509 DOI: 10.1016/j.foodchem.2021.130169] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022]
Abstract
Advanced glycation end-products (AGEs) are produced during protein glycation and associated with diabetic complications. Peanut skin is rich in procyanidins, which may be used as an inhibitor of glycation. This study evaluated the potential anti-glycation effect of peanut skin extract (PSE) and dissected the underlying mechanism. PSE could effectively inhibit the formation of AGEs in BSA-Glc and BSA-MGO/GO models, with 44%, 37% and 82% lower IC50 values than the positive control (AG), respectively. The inhibitory effect of PSE on BSA glycation might be ascribed to its binding interaction with BSA, attenuated formation of early glycation products and trapping of reactive dicarbonyl compounds. Notably, PSE showed a remarkably stronger inhibitory effect on Amadori products than AG. Furthermore, three new types of PSE-MGO adducts were formed as identified by UPLC-Q-TOF-MS. These findings suggest that PSE may serve as an inhibitor of glycation and provide new insights into its application.
Collapse
|
14
|
Krupa-Kozak U, Drabińska N, Bączek N, Šimková K, Starowicz M, Jeliński T. Application of Broccoli Leaf Powder in Gluten-Free Bread: An Innovative Approach to Improve Its Bioactive Potential and Technological Quality. Foods 2021; 10:819. [PMID: 33918917 PMCID: PMC8069453 DOI: 10.3390/foods10040819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022] Open
Abstract
In comparison to conventional bread, gluten-free bread (GF) shows many post-baking defects and a lower nutritional and functional value. Although broccoli leaves are perceived as waste products, they are characterised by a high content of nutrients and bioactive compounds. The present study evaluated the nutritional value, technological quality, antioxidant properties, and inhibitory activity against the formation of advanced glycation end-products (AGEs) of GF enriched with broccoli leaf powder (BLP). Compared to the control, gluten-free bread with BLP (GFB) was characterised by a significantly (p < 0.05) higher content of nutrients (proteins and minerals), as well as improved specific volume and bake loss. However, what needs to be emphasised is that BLP significantly (p < 0.05) improved the antioxidant potential and anti-AGE activity of GFB. The obtained results indicate that BLP can be successfully used as a component of gluten-free baked products. In conclusion, the newly developed GFB with improved technological and functional properties is an added-value bakery product that could provide health benefits to subjects on a gluten-free diet.
Collapse
Affiliation(s)
- Urszula Krupa-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland; (N.D.); (N.B.); (K.Š.); (M.S.); (T.J.)
| | | | | | | | | | | |
Collapse
|
15
|
Błaszczak W, Latocha P, Jeż M, Wiczkowski W. The impact of high-pressure processing on the polyphenol profile and anti-glycaemic, anti-hypertensive and anti-cholinergic activities of extracts obtained from kiwiberry (Actinidia arguta) fruits. Food Chem 2020; 343:128421. [PMID: 33268172 DOI: 10.1016/j.foodchem.2020.128421] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/14/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022]
Abstract
This study analysed the impact of high pressure processing (HHP) on the inhibitory effects (IC50) of kiwiberries (cv. 'Weiki'), on the formation of advanced glycation end-products (AGEs) and the activity of angiotenisn-converting enzyme (ACE) and the enzyme acetylcholinesterase (AChE). The polyphenol profile (HPLC-MS/MS) and antioxidant capacity (PCLACW, ABTS, FRAP) were also studied. HHP-treated 'Weiki' (450 MPa/5 min and 650 MPa/5 min) was the most potent inhibitor of AGEs in the BSA-GLU model (6.52 mg/mL on average) relative to other materials (12.09-7.21 mg/mL). Among all samples assayed in the BSA-MGO model (61.97-14.48 mg/mL), HHP-treated 'Weiki' (450 MPa/5 min) showed the highest anti-AGE activity (12.37 mg/mL). Pressurization (450 MPa/5 min) significantly enhanced the anti-ACE (14.09 mg/mL) and anti-AChE (16.95 mg/mL) potentials of the tested extract relative to the other materials (23.75-14.50 mg/mL and 37.88-19.69 mg/mL, respectively). Pressurization increased polyphenol content and antioxidant capacity of the samples analysed.
Collapse
Affiliation(s)
- Wioletta Błaszczak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Piotr Latocha
- Institute of Horticulture Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland.
| | - Maja Jeż
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Wiesław Wiczkowski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
16
|
Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR. Amelioration of hyperglycemia-induced oxidative damage in ARPE-19 cells by myricetin derivatives isolated from Syzygium malaccense. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
17
|
Zieliński H, Szawara-Nowak D, Wronkowska M. Bioaccessibility of anti-AGEs activity, antioxidant capacity and phenolics from water biscuits prepared from fermented buckwheat flours. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Kumari S, Bhinder S, Singh B, Kaur A, Singh N. Effect of buckwheat incorporation on batter fermentation, rheology, phenolic, amino acid composition and textural properties of idli. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Polyphenols and inhibitory effects of crude and purified extracts from tomato varieties on the formation of advanced glycation end products and the activity of angiotensin-converting and acetylcholinesterase enzymes. Food Chem 2020; 314:126181. [PMID: 31954938 DOI: 10.1016/j.foodchem.2020.126181] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
The study analyzed the inhibitory effects (IC50) of crude and purified extracts from Maliniak, Cerise, Black Prince and Lima tomatoes on the formation of advanced glycation end products (AGEs), the activity of angiotensin-converting (ACE) and acetylcholinesterase (AChE) enzymes. Polyphenol composition (LC-MS) and antioxidant capacity (PCL, FRAP) were measured. The purified extracts of Black Prince tomatoes were the most potent inhibitors of AGEs in BSA-GLU (7.20mg/mL) and BSA-MGO (9.53mg/mL) models. The purified extracts of Cerise and Black Prince tomatoes had the highest ACE (0.50-0.44mg/mL) and AChE (7.93-5.83mg/mL) inhibitory activity. Cerise variety showed the highest polyphenol concentrations in crude (488.93μg/g DM) and purified (8394.99μg/g DM) extracts. The highest PCLACW and FRAP values were found for Cerise purified extracts (71.83 and 87.78μmol Trolox/g DM). Caffeic acid, caffeoyl-glucose, linocaffein, glucosyl-coumarate, vanillic acid, rutin and TPI values were significantly correlated with BSA-MGO, anti-ACE, anti-AChE and PCLACW parameters.
Collapse
|
20
|
Starowicz M, Zieliński H. Inhibition of Advanced Glycation End-Product Formation by High Antioxidant-Leveled Spices Commonly Used in European Cuisine. Antioxidants (Basel) 2019; 8:antiox8040100. [PMID: 30991695 PMCID: PMC6523868 DOI: 10.3390/antiox8040100] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 01/13/2023] Open
Abstract
Spices and herbs, as good sources of polyphenols, could be strong inhibitors of advanced glycation end-product (AGE) formation. The aim of this research was to measure the ability of various spices to inhibit AGEs and to study the correlation of AGE inhibition with total phenolic (TP) content and antioxidant capacity. Fourteen spices commonly used in European cuisine were extracted with a 50% ethanol solution, and their water and total phenolic contents and antioxidant capacities were examined. Antioxidant capacity was evaluated using three methods: (1) Measurement of the radical scavenging ability of 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and (2) 2,2-diphenyl-1-picrylhydrazyl (DPPH●); and (3) photochemiluminescence (PCL) assay. Antiglycation properties were studied in vivo using two model systems: Bovine serum albumin-glucose (BSA-glucose) and bovine serum albumin-methylglyoxal (BSA-MGO). The most potent glycation inhibitors, according to the BSA-MGO assay, were star anise (88%), cinnamon (85%), allspice (81%), and cloves (79%), whereas in the BSA-glucose measurement, oregano was noted to be a very effective inhibitor of the glycation process. The ability to inhibit glycation was highly correlated with TP values in the BSA-MGO and BSA-glucose assay (r = 0.84 and 0.76, respectively). Our research showed the high antiglycation ability of cinnamon, cloves, and allspice, and we suggest, for the first time, that anise could also be considered a good glycation inhibitor.
Collapse
Affiliation(s)
- Małgorzata Starowicz
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Henryk Zieliński
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
21
|
Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours. Food Chem 2019; 271:291-297. [DOI: 10.1016/j.foodchem.2018.07.182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/17/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022]
|
22
|
Giménez-Bastida JA, Laparra-Llopis JM, Baczek N, Zielinski H. Buckwheat and buckwheat enriched products exert an anti-inflammatory effect on the myofibroblasts of colon CCD-18Co. Food Funct 2018; 9:3387-3397. [PMID: 29870039 PMCID: PMC6597957 DOI: 10.1039/c8fo00193f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Buckwheat (BW) constitutes a good source of bioactive components that show anti-inflammatory effects in vitro and in vivo. The use of functional foods in the prevention and treatment of inflammatory bowel diseases (IBDs) has aroused increasing interest. This study investigates the effect of in vitro digested BW and BW-enriched products (BW-enriched wheat breads, roasted BW groats -fermented and non-fermented-, and BW sprouts) on colon myofibroblasts, the cells involved in the regulation of inflammatory response in the intestine. The cells were treated with different digested-BW products, alone or together with TNF-α (20 ng mL-1), and the effects on the cell migration, mitochondrial membrane potential and cell cycle, processes altered during intestinal inflammation, were investigated. A significant reduction in TNF-α-induced migration (25.5%, p < 0.05) and attenuation of the TNF-α-altered cell cycle (p < 0.05) was observed in myofibroblasts treated with BW-enriched white wheat bread. These results contribute to extend the beneficial effects derived from BW bioactive compounds, and suggest that BW consumption can exert beneficial effects on IBDs.
Collapse
Affiliation(s)
- J A Giménez-Bastida
- Department of Pharmacology. Vanderbilt University School of Medicine, RRB 514, 23rd Ave. S. at Pierce, Nashville, TN 37232-6602, USA
| | | | | | | |
Collapse
|
23
|
Lee KH, Whang WK. Inhibitory Effects of Bioassay-Guided Isolation of Anti-Glycation Components from Taraxacum coreanum and Simultaneous Quantification. Molecules 2018; 23:molecules23092148. [PMID: 30150550 PMCID: PMC6225126 DOI: 10.3390/molecules23092148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Inhibition of the formation of advanced glycation end products (AGEs) is an attractive strategy in diabetes treatment. Taraxacum coreanum extracts were suggested to have antidiabetic effects. However, studies on the components of T. coreanum are lacking, and there is no report on the inhibitory effects of T. coreanum on the formation of AGEs. Therefore, T. coreanum extracts and fractions were tested for their inhibitory effects on α-glucosidase and AGEs formation in two systems (bovine serum albumin (BSA)⁻glucose and BSA⁻methylglyoxal (MGO)). Bioassay-guided isolation of compounds from T. coreanum led to six flavones (1⁻6) and four hydroxycinnamic acid derivatives (7⁻11). Compound 11 exhibited the highest inhibitory activity against α-glucosidase and AGEs formation and had the highest content in T. coreanum extract. All compounds except compound 9 showed a stronger inhibition than the positive control in the BSA-glucose and BSA-MGO system. In addition, T. coreanum showed a higher content of bioactive compounds and stronger inhibition of AGE formation and α-glucosidase activity than T. officinale. Our study demonstrated the preventive and therapeutic efficacy of T. coreanum and its potential use as a cost-effective phytopharmaceutical in complementary therapy against type-2 diabetes and its complications.
Collapse
Affiliation(s)
- Kang Hee Lee
- Pharmaceutical Botany Laboratory, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea.
| | - Wan Kyunn Whang
- Pharmaceutical Botany Laboratory, College of Pharmacy, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea.
| |
Collapse
|
24
|
Chen G, Madl RL, Smith JS. Cereal bran extracts inhibit the formation of advanced glycation endproducts in a bovine serum albumin/glucose model. Cereal Chem 2018. [DOI: 10.1002/cche.10070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gengjun Chen
- Department of Grain Science & Industry; Kansas State University; Manhattan Kansas
| | - Ronald L. Madl
- Department of Grain Science & Industry; Kansas State University; Manhattan Kansas
| | - J. Scott Smith
- Food Science Institute; Kansas State University; Manhattan Kansas
| |
Collapse
|
25
|
Takács K, Wiczkowski W, Cattaneo S, Szerdahelyi E, Stuknytė M, Casiraghi MC, Nehir El S, De Noni I. Occurrence of targeted nutrients and potentially bioactive compounds during in vitro digestion of wheat spaghetti. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Saleh ASM, Wang P, Wang N, Yang S, Xiao Z. Technologies for enhancement of bioactive components and potential health benefits of cereal and cereal-based foods: Research advances and application challenges. Crit Rev Food Sci Nutr 2018; 59:207-227. [PMID: 28846456 DOI: 10.1080/10408398.2017.1363711] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cereal grains are a major source of human food and their production has steadily been increased during the last several decades to meet the demand of our increasing world population. The modernized society and the expansion of the cereal food industry created a need for highly efficient processing technologies, especially flour production. Earlier scientific research efforts have led to the invention of the modern steel roller mill, and the refined flour of wheat has become a basic component in most of cereal-based foods such as breads and pastries because of the unique functionality of wheat protein. On the other hand, epidemiological studies have found that consumption of whole cereal grains was health beneficial. The health benefit of whole cereal grain is attributed to the combined effects of micronutrients, phytochemicals, and dietary fibre, which are mainly located in the outer bran layer and the germ. However, the removal of bran and germ from cereal grains during polishing and milling results in refined flour and food products with lower bioactive compounds and dietary fibre contents than those from whole grain. Also, the level of bioactive compounds in cereal food is influenced by other food preparation procedures such as baking, cooking, extrusion, and puffing. Therefore, food scientists and nutritionists are searching for strategies and processing technologies to enhance the content and bioavailability of nutrients, bioactive compounds, and dietary fibre of cereal foods. The objective of this article was to review the research advances on technologies for the enhancement of bioactive compounds and dietary fibre contents of cereal and cereal-based foods. Bioactivities or biological effects of enhanced cereal and cereal-based foods are presented. Challenges facing the application of the proposed technologies in the food industry are also discussed.
Collapse
Affiliation(s)
- Ahmed S M Saleh
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,b Department of Food Science and Technology , Faculty of Agriculture, Assiut University , Assiut , Egypt
| | - Peng Wang
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,c College of Food Science , Northeast Agricultural University , Harbin , Heilongjiang , China
| | - Na Wang
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,d College of Food , Shenyang Agricultural University , Shenyang , Liaoning , China
| | - Shu Yang
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,d College of Food , Shenyang Agricultural University , Shenyang , Liaoning , China
| | - Zhigang Xiao
- a College of Grain Science and Technology , Shenyang Normal University , Shenyang , Liaoning , China.,c College of Food Science , Northeast Agricultural University , Harbin , Heilongjiang , China
| |
Collapse
|
27
|
Lin J, Zhou W. Role of quercetin in the physicochemical properties, antioxidant and antiglycation activities of bread. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
28
|
Verardo V, Glicerina V, Cocci E, Frenich AG, Romani S, Caboni MF. Determination of free and bound phenolic compounds and their antioxidant activity in buckwheat bread loaf, crust and crumb. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.08.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Lin J, Gwyneth Tan YX, Leong LP, Zhou W. Steamed bread enriched with quercetin as an antiglycative food product: its quality attributes and antioxidant properties. Food Funct 2018; 9:3398-3407. [DOI: 10.1039/c8fo00818c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Quercetin, a natural antiglycative agent, was incorporated into steamed bread to produce a functional food that has high potential to lower the risk of diabetes.
Collapse
Affiliation(s)
- Jing Lin
- Food Science & Technology Programme
- c/o Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Yuan Xin Gwyneth Tan
- Food Science & Technology Programme
- c/o Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Lai Peng Leong
- Food Science & Technology Programme
- c/o Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| | - Weibiao Zhou
- Food Science & Technology Programme
- c/o Department of Chemistry
- National University of Singapore
- Singapore 117543
- Singapore
| |
Collapse
|
30
|
Zieliński H, Ciesarová Z, Kukurová K, Zielinska D, Szawara-Nowak D, Starowicz M, Wronkowska M. Effect of fermented and unfermented buckwheat flour on functional properties of gluten-free muffins. Journal of Food Science and Technology 2017; 54:1425-1432. [PMID: 28559601 DOI: 10.1007/s13197-017-2561-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/13/2023]
Abstract
Selected functional properties of four types of gluten-free muffins made of unfermented and fermented (by Lactobacillus plantarum) buckwheat flour in comparison with control muffins made using commercial gluten-free corn flour were evaluated in this study. The proximate chemical composition, antioxidant capacity analysed by ABTS, photochemiluminescence and cyclic voltammetry assays, and inhibitory activity against protein glycation in vitro in BSA/Glu systems were investigated. The content of the total phenolic compounds, available lysine, furosine, free and total FIC, browning index and antioxidant capacity of buckwheat-enhanced gluten-free muffins were higher compared to the control samples. Gluten-free muffins made of the fermented buckwheat flour showed a significantly higher antioxidant capacity, an increased activity against AGEs formation and an increased available lysine content, as well as a higher FAST index and browning index as compared to the muffins obtained with unfermented buckwheat flour. The study showed that buckwheat flour fermented by L. plantarum could be used as an ingredient for improving the functional properties of gluten-free muffins.
Collapse
Affiliation(s)
- Henryk Zieliński
- Division of Food Science, Department of Chemistry and Biodynamic of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Zuzana Ciesarová
- National Agriculture and Food Centre, The Food Research Institute, Priemyselná 4, P. O. Box 25, 824 75 Bratislava 26, Slovak Republic
| | - Kristína Kukurová
- National Agriculture and Food Centre, The Food Research Institute, Priemyselná 4, P. O. Box 25, 824 75 Bratislava 26, Slovak Republic
| | - Danuta Zielinska
- Department of Chemistry, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, Plac Lodzki 4, 10-727 Olsztyn, Poland
| | - Dorota Szawara-Nowak
- Division of Food Science, Department of Chemistry and Biodynamic of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Małgorzata Starowicz
- Division of Food Science, Department of Chemistry and Biodynamic of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Małgorzata Wronkowska
- Division of Food Science, Department of Chemistry and Biodynamic of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
31
|
|
32
|
Inhibitory effect of different fennel ( Foeniculum vulgare ) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chem 2016; 213:196-205. [DOI: 10.1016/j.foodchem.2016.06.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/24/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022]
|
33
|
Giménez-Bastida JA, Zielinski H, Piskula M, Zielinska D, Szawara-Nowak D. Buckwheat bioactive compounds, their derived phenolic metabolites and their health benefits. Mol Nutr Food Res 2016; 61. [PMID: 27709826 PMCID: PMC6599964 DOI: 10.1002/mnfr.201600475] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/09/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
SCOPE Buckwheat (BW) consumption has been associated with a broad range of health benefits: antioxidant, anti-inflammatory and anticancer. These beneficial effects have been partially related to the presence of flavonoids. However, some of these compounds (i.e., rutin and quercetin) are metabolized in the gastrointestinal tract generating derived phenolic metabolites. In this study, we investigated the biological activity of rutin (Ru), quercetin (Q) an their derived phenolic metabolites 3,4-dihydroxyphenylacetic acid (3,4-DHPAA), 3-hydroxyphenylacetic acid (3-HPAA), and 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid, HVA). METHODS AND RESULTS Q showed the highest antioxidant and reducing activity, and Ru the maximum chelating activity (85.33%). Antioxidant activity of 3,4-DHPAA was 5-fold higher than that of HVA, whereas their reducing activity was similar. The formation of methylglyoxal (MGO)-BSA and glucose-BSA (advanced glycation end products) was inhibited by Ru (98.5 and 92.7%), Q (95.6 and 89.1%) and 3,4-DHPPA (84.4.6 and 77.5%). Furthermore, Q (10-50 μM) and Ru (1-50 μM) downregulated the release of PGE2 , IL-8 and MCP-1, molecules involved in the inflammatory response, in IL1β-inflamed myofibroblasts of colon CCD-18Co. CONCLUSION This study suggests that BW phytochemicals and their phenolic metabolites may be responsible for the beneficial effects against chronic diseases attributed to BW consumption.
Collapse
Affiliation(s)
- Juan Antonio Giménez-Bastida
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland.,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Henryk Zielinski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland
| | - Mariusz Piskula
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland
| | - Danuta Zielinska
- Department of Chemistry, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dorota Szawara-Nowak
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, Olsztyn, Poland
| |
Collapse
|
34
|
Comparative studies on physicochemical properties of bovine serum albumin-glucose and bovine serum albumin-mannose conjugates formed via Maillard reaction. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Przygodzka M, Zieliński H. Characterization of the quality of novel rye-buckwheat ginger cakes by chemical markers and antioxidant capacity. CHEMICAL PAPERS 2016. [DOI: 10.1515/chempap-2015-0217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThe total phenolics and flavonoids, rutin, early, advanced and finalMaillard reaction products, and antioxidative capacity determined against 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical cation and superoxide anion radicals were used for the characterization of the quality of novel rye-buckwheat ginger cakes enriched with rutin (quercetin rutinoside). The cakes were prepared substituting 30 % of rye flour by light buckwheat flour or flour from roasted buckwheat dehulled grains and employing a dough fermentation-like incubation step. Enrichment of ginger cakes with rutin showed protective effect on lysine blockage, improved antioxidant properties, inhibited the formation of furosine and free fluorescent compounds thus stimulating the Maillard reaction progress towards melanoidin formation. The loss of the nutritional quality of cakes enriched with rutin was related to the formation of fluorescent compounds linked to protein and carboxymethyllysine at an advanced stage of the Maillard reaction. It can be concluded that free fluorescence intermediatory compounds, carboxymethyllysine and browning are the best chemical markers for the characterization of the quality of this novel type of ginger cakes. This study also indicates that rye-buckwheat ginger cakes enriched with rutin can be recommended for wider consumption since daily consumption of 250 g of these cakes may have a prophylactic or therapeutic effect corresponding to typical pharmacological drugs with rutin as the active component.
Collapse
|