1
|
Wijaya GYA, Vornoli A, Giambastiani L, Digiacomo M, Macchia M, Szymczak B, Wójcik M, Pozzo L, Longo V. Solid-State Fermented Cereals: Increased Phenolics and Their Role in Attenuating Liver Diseases. Nutrients 2025; 17:900. [PMID: 40077770 PMCID: PMC11901820 DOI: 10.3390/nu17050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Liver diseases, a leading cause of global mortality, necessitate effective dietary strategies. Fermented cereals, traditionally recognized for benefits in glucose regulation, lipid profiles, and antioxidant activity, hold potential for managing conditions such as type 2 diabetes, hypertension, and obesity. However, their specific impact on liver health requires further investigation. Fermentation, particularly solid-state fermentation (SSF), enhances the bioavailability of beneficial compounds, including phenolics. This review summarizes recent studies on the phenolic content of fermented cereals, highlighting variations based on microbial strains and cereal types. It examines the hepatoprotective effects of these phenolics, drawing on in vivo and in vitro research. Furthermore, the review explores recent findings on the impact of fermented cereals on liver health and related diseases. This work provides a foundation for future research exploring fermented cereals as a dietary intervention for liver disease prevention and management.
Collapse
Affiliation(s)
- Ganesha Yanuar Arief Wijaya
- Doctoral School in Life Sciences, University of Siena, 53100 Siena, Italy;
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
| | - Andrea Vornoli
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Lucia Giambastiani
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, Via Bonanno, 56126 Pisa, Italy; (M.D.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical of Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland;
| | - Marta Wójcik
- Veterinary Oncology Lab., Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Głęboka 30, 20-612 Lublin, Poland;
| | - Luisa Pozzo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| | - Vincenzo Longo
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56121 Pisa, Italy; (A.V.); (L.G.); (V.L.)
| |
Collapse
|
2
|
Chinma CE, Ezeocha VC, Adebo OA, Adebo JA, Sonibare AO, Abbah JN, Danbaba N, Makinde FM, Wilkin J, Bamidele OP. Physicochemical properties, anti-nutritional and bioactive constituents, in vitro digestibility, and techno-functional properties of bioprocessed whole wheat flour. J Food Sci 2024; 89:2202-2217. [PMID: 38389444 DOI: 10.1111/1750-3841.16984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024]
Abstract
This study investigated the impact of bioprocessing techniques (germination, solid-state fermentation, the combination of germination, and solid-state fermentation) on the physicochemical properties, anti-nutritional and bioactive constituents, in vitro digestibility, and techno-functional properties of whole wheat grains were investigated. Bioprocessed whole wheat flour (WWF) samples and the raw flour (control) were prepared using standard procedures. Proximate, anti-nutritional, mineral and amino acid (AA) compositions, protein digestibility, antioxidant activities, starch characteristics, and techno-functional properties were studied using standard methods. The bioprocessing methods increased (p ≤ 0.05) the protein (13.37-16.84 g/100 g), total dietary fiber, mineral constituents, resistant starch (7.19-9.87 g/100 g), slowly digestible starch, phenolic content, antioxidant activities (ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), most AAs, and protein digestibility. Also observed were decreases (p ≤ 0.05) in rapidly digestible starch, phytic acid, tannin, and trypsin inhibitor activity. The adopted bioprocessing techniques modified the thermal, functional, color, and pasting properties of the WWF and resulted in molecular interactions in some functional groups, as revealed by Fourier transform infrared spectroscopy, compared to the raw flour. The combination of germination and fermentation improved the physicochemical (titratable acidity = 4.93%), protein (16.84/100 g) and starch digestibility (resistant starch = 9.87%), antioxidant (FRAP = 78.90 mg/GAE/100 g), and mineral contents (calcium = 195.28 mg/100 g), modified the pasting (peak viscosity = 90.34 RVU), thermal (peak temperature = 64.82°C), and color properties of WWF with reduced anti-nutritional factors. The combination of these processing techniques could serve as a natural and low-cost technique for the modification of whole wheat functionality and subsequently as an improved functional ingredient during food product development.
Collapse
Affiliation(s)
- Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, Gauteng, South Africa
- Africa Center of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Minna, Nigeria
| | - Vanessa Chinelo Ezeocha
- Department of Food Science and Technology, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, Gauteng, South Africa
| | - Janet Adeyinka Adebo
- Food Evolution Research Laboratory, Bunting Campus, School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Johannesburg, South Africa
| | | | - Jessica Nevan Abbah
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
| | - Nahemiah Danbaba
- Food Technology and Value Addition Research Program, National Cereals Research Institute, Badeggi, Bida, Nigeria
| | | | - Jon Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Oluwaseun Peter Bamidele
- Department of Food Science and Technology, University of Venda, Thohoyandou, Limpopo, South Africa
| |
Collapse
|
3
|
Tian H, Ma Z, Yang H, Wang Y, Ren H, Zhao P, Fan W, Tian Y, Wang Y, Wang R. Fermentation of Persimmon Leaves Extract by Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Mol Biotechnol 2023:10.1007/s12033-023-00859-z. [PMID: 37713067 DOI: 10.1007/s12033-023-00859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Persimmon leaves usually as agricultural and forestry waste were fermented by Lactiplantibacillus plantarum and Saccharomyces cerevisiae. Growth and metabolic performances of L. plantarum and S. cerevisiae, as well as the effect of fermentation on the antioxidant abilities of the extract was investigated, including the content of flavonoids, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical clearance rates. Growth of L. plantarum was limited, even though the acid production was sustainable, while S. cerevisiae was more suitable to inhabit in the persimmon leaves extract. A symbiotic relationship was observed between the two microbes, reflected in aspects of growth of S. cerevisiae, pH reduction, and ethanol production. The DPPH radical clearance rates of all groups decreased at the early period, and increased later. The co-culture group reached the second highest value of DPPH radical clearance rate only next to the single group of L. plantarum at 9 h. All groups showed an overall downward trend of the hydroxyl radical clearance rates during the 9 h-fermentation. These findings highlight the promising industrial application of fermentation of the plant-based materials with Lactiplantibacillus and Saccharomyces species to improve the biological properties.
Collapse
Affiliation(s)
- Hui Tian
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Zhuo Ma
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Hui Yang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yan Wang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Haiwei Ren
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China.
| | - Ping Zhao
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Wenguang Fan
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China.
| | - Yaqin Tian
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Yonggang Wang
- School of Life Sciences and Engineering, Lanzhou University of Technology, Lanzhou, 730050, Gansu, People's Republic of China
| | - Ruiyun Wang
- Gansu Qimu Dairy Co., Ltd (Jiuquan Iron and Steel Group), Jiayuguan, 735100, Gansu, People's Republic of China
| |
Collapse
|
4
|
Filipe D, Vieira L, Ferreira M, Oliva-Teles A, Salgado J, Belo I, Peres H. Enrichment of a Plant Feedstuff Mixture's Nutritional Value through Solid-State Fermentation. Animals (Basel) 2023; 13:2883. [PMID: 37760283 PMCID: PMC10525834 DOI: 10.3390/ani13182883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Plant feedstuffs are the main ingredients of animal feed. Owing to food-feed competition, increasing the utilization efficiency of these feedstuffs is important for animal nutrition. This can be achieved via solid-state fermentation (SSF). SSF of a plant feedstuff mixture (PFM) (25% rapeseed meal, soybean meal, rice bran, and sunflower meal) by three fungi (Aspergillus ibericus MUM 03.29, Aspergillus niger CECT 2088, and Aspergillus niger CECT 2915) resulted in an increase in protein content by 5%, irrespective of fungi, a reduction in cellulose content by 9 to 11%, and of hemicellulose content by 21 to 34%, relative to unfermented PFM. Enzyme production was measured: the highest cellulase (123.7 U/g), xylanase (431.8 U/g), and beta-glucosidase (117.9 U/g) activity were achieved with A. niger CECT 2088. Principal component analysis showed a positive correlation between all fermented PFMs and enzyme production, protein content, digestibility, and fiber reduction. Bioprocessing of the PFM by SSF increased its nutritional value and digestibility, making it more appealing for animal feeds.
Collapse
Affiliation(s)
- Diogo Filipe
- Department of Biology, Faculty of Sciences University of Porto, Rua do Campo Alegre 1021 1055, 4169-007 Porto, Portugal; (D.F.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Lúcia Vieira
- Department of Biology, Faculty of Sciences University of Porto, Rua do Campo Alegre 1021 1055, 4169-007 Porto, Portugal; (D.F.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marta Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Aires Oliva-Teles
- Department of Biology, Faculty of Sciences University of Porto, Rua do Campo Alegre 1021 1055, 4169-007 Porto, Portugal; (D.F.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - José Salgado
- Industrial Biotechnology and Environmental Engineering Group “BiotecnIA”, Chemical Engineering Department, University of Vigo (Campus Ourense), As Lagoas s/n, 32004 Ourense, Spain
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, 4710-057 Braga, Portugal
| | - Helena Peres
- Department of Biology, Faculty of Sciences University of Porto, Rua do Campo Alegre 1021 1055, 4169-007 Porto, Portugal; (D.F.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR-UP), Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
5
|
Jin W, Zhao S, Sun H, Pei J, Gao R, Jiang P. Characterization and discrimination of flavor volatiles of different colored wheat grains after cooking based on GC-IMS and chemometrics. Curr Res Food Sci 2023; 7:100583. [PMID: 37691695 PMCID: PMC10484957 DOI: 10.1016/j.crfs.2023.100583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
Changes in flavor volatiles of three colored wheat grains (black, green, and yellow) after cooking were detected via gas chromatography-ion migration spectrometry (GC-IMS) to explore corresponding volatile flavor traits. A total of 52 volatile chemicals were spotted among these cooked wheat grains, including 30 aldehydes (accounting for 73.86-83.78%), 11 ketones (9.53-16.98%), 3 alcohols (0.88-1.21%), 4 furans (4.82-7.44%), 2 esters (0.28-0.42%), and 2 pyrazines (0.18-0.32%). Aldehydes, ketones, and furans were the main volatile compounds in three different cooked wheat. For black-colored wheat, the relative contents of benzene acetaldehyde, benzaldehyde, 2-methyl butanal, and 3-methyl butanal were much higher (p < 0.05). For green-colored wheat, the relative contents of nonanal, 2-pentyl furan, (E)-hept-2-enal, 2-butanone, and acetone were significantly higher (p < 0.05). For yellow-colored wheat, the relative amounts of heptanal, hexanal, and pentanal were much higher (p < 0.05). The overall volatile substances of the three cooked wheat grains might be classified by GC-IMS data coupled with principal component analysis and heatmap clustering analysis. A reliable forecast set was established through orthogonal partial least squares-discriminant analysis (OPLS-DA), and 22 differential volatile compounds were screened out based on variable importance in projection (VIP) being higher than 1.0, as flavor markers for distinguishing the three cooked wheat grains. These results suggest that GC-IMS could be used for characterizing the flavor volatiles of different colored wheat, and the findings could contribute certain information for understand the aroma traits in different colored cooked wheat and related products in the future.
Collapse
Affiliation(s)
- Wengang Jin
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi 723001, China
| | - Shibo Zhao
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
| | - Haiyan Sun
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi 723001, China
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
- Collaborative Innovation Center of Bio-Resource in Qinba Mountain Area, Shaanxi Province Key Laboratory of Bio-resources, Hanzhong, Shaanxi 723001, China
| | - Ruichang Gao
- Qinba State Key Laboratory of Biological Resource and Ecological Environament (Incubation), School of Bioscience and Technology, Shaanxi University of Technology , Hanzhong, Shaanxi 723001, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Pengfei Jiang
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116034, China
| |
Collapse
|
6
|
Lacko-Bartošová M, Lacko-Bartošová L, Kobida Ľ, Kaur A, Moudrý J. Phenolic Acids Profiles and Phenolic Concentrations of Emmer Cultivars in Response to Growing Year under Organic Management. Foods 2023; 12:foods12071480. [PMID: 37048301 PMCID: PMC10094737 DOI: 10.3390/foods12071480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Phenolic compounds, especially phenolic acids (PAs), are believed to be one of the major contributors to the antioxidant activity of cereal grains. This study determined and compared phenolic concentration, radical scavenging activities, individual PA concentrations of emmer cultivars, and breeding lines to common wheat in a three-year controlled field experiment under organic management. It was found that common wheat had the highest ability to scavenge DPPH radicals (51.7%), followed by emmer Farvento (35.4%). DPPH scavenging activity of bound phenolic extracts was higher compared to free ones. Total phenolic concentration was the highest for common wheat (1902.6 µg FAE g−1 DM) compared to the highest level of all emmer cultivars—Farvento (1668.3 µg FAE g−1 DM). The highest PAs concentration was determined for emmer Farvento (431.3 µg g−1 DM) and breeding line PN 4-41 (424.5 µg g−1 DM). Free PAs concentration was the lowest for common wheat (29.5 µg g−1 DM). The dominant free PA was ferulic (66.3%), followed by syringic (11.7%), sinapic (7.4%), p-hydroxybenzoic (5.3%), salicylic (3.8%), p-coumaric (3.6%), and caffeic (2.1%). Bound ferulic acid accounted for 94.0% of total bound PAs, followed by p-coumaric (2.8%), p-hydroxybenzoic (0.8%), syringic (0.8%), caffeic (0.6%), sinapic (0.6%), and salicylic (0.4%). Emmer cultivar Farvento was distinguished by the highest concentration of individual free and bound forms of PAs. Effect of growing year was more evident on the concentration of free PAs compared to bound PAs. Extremely dry and hot weather during maturity stages has a negative impact on analysed free and bound PAs.
Collapse
|
7
|
Espitia-Hernández P, Ruelas-Chacón X, Chávez-González ML, Ascacio-Valdés JA, Flores-Naveda A, Sepúlveda-Torre L. Solid-State Fermentation of Sorghum by Aspergillus oryzae and Aspergillus niger: Effects on Tannin Content, Phenolic Profile, and Antioxidant Activity. Foods 2022; 11:3121. [PMID: 36230197 PMCID: PMC9562625 DOI: 10.3390/foods11193121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Sorghum contains antioxidants such as tannins. However, these are considered antinutritional factors since they are responsible for the low digestibility of proteins and carbohydrates. Nevertheless, these can be extracted by solid-state fermentation (SSF). Therefore, this study aimed to evaluate the effects of SSF from Aspergillus oryzae and Aspergillus niger Aa210 on the tannin contents, phenolic profiles determined by HPLC-MS, and antioxidant activities (ABTS, DPPH, and FRAP) of two genotypes of sorghum. The results showed that with SSF by A. niger Aa210, a higher tannin content was obtained, with yields of 70-84% in hydrolyzable tannins (HT) and 33-49% in condensed tannins (CT), while with SSF by A. oryzae the content of HT decreased by 2-3% and that of CT decreased by 6-23%. The extracts fermented by A. niger at 72 and 84 h exhibited a higher antioxidant activity. In the extracts, 21 polyphenols were identified, such as procyanidins, (+)-catechin, (-)-epicatechin, scutellarein, arbutin, and eriodictyol, among others. Therefore, SSF by A. niger was an efficient process for the release of phenolic compounds that can be used as antioxidants in different food products. It is also possible to improve the bioavailability of nutrients in sorghum through SSF. However, more studies are required.
Collapse
Affiliation(s)
- Pilar Espitia-Hernández
- Bioprocess and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Xóchitl Ruelas-Chacón
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico
| | - Mónica L. Chávez-González
- Bioprocess and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Juan A. Ascacio-Valdés
- Bioprocess and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Antonio Flores-Naveda
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo 25315, Coahuila, Mexico
| | - Leonardo Sepúlveda-Torre
- Bioprocess and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| |
Collapse
|
8
|
Zhang J, Liu M, Zhao Y, Zhu Y, Bai J, Fan S, Zhu L, Song C, Xiao X. Recent Developments in Fermented Cereals on Nutritional Constituents and Potential Health Benefits. Foods 2022; 11:2243. [PMID: 35954011 PMCID: PMC9368413 DOI: 10.3390/foods11152243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022] Open
Abstract
Fermentation is one of the most economical and safe methods to improve the nutritional value, sensory quality and functional characteristics of raw materials, and it is also an important method for cereal processing. This paper reviews the effects of microbial fermentation on cereals, focusing on their nutritional value and health benefits, including the effects of fermentation on the protein, starch, phenolic compounds contents, and other nutrient components of cereals. The bioactive compounds produced by fermented cereals have positive effects on health regulation. Finally, the future market development of fermented cereal products is summarized and prospected.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
- Inspection Quarantine Bureau Inspection and Quarantine Technology Center, Zhenjiang 212000, China
| | - Mengting Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Ci Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| |
Collapse
|
9
|
Bayat E, Moosavi-Nasab M, Fazaeli M, Majdinasab M, Mirzapour-Kouhdasht A, Garcia-Vaquero M. Wheat Germ Fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum: Process Optimization for Enhanced Composition and Antioxidant Properties In Vitro. Foods 2022; 11:foods11081125. [PMID: 35454712 PMCID: PMC9031744 DOI: 10.3390/foods11081125] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Wheat germ, a by-product of the flour milling industry, is currently commercialized mainly for animal feed applications. This study aims to explore and optimize the process of wheat germ fermentation to achieve products with enhanced nutritional composition and biological properties and further characterize the fermented products generated using these optimum conditions. The type of microorganism (Saccharomyces cerevisiae 5022 (yeast) and Lactobacillus plantarum strain 299v (bacteria)), pH (4.5, 6, and 7.5) and fermentation time (24, 48, and 72 h) were optimized using response surface methodology (RSM) aiming to achieve fermented products with high total phenol content (TPC), dimethoxy benzoquinone (DMBQ) and antioxidant activities. Optimum fermentation conditions were achieved using L. plantarum, pH 6, 48 h, generating extracts containing TPC (3.33 mg gallic acid equivalents/g), DMBQ (0.56 mg DMBQ/g), and DPPH radical scavenging (86.49%). These optimally fermented products had higher peptide concentrations (607 μg/mL), gamma-aminobutyric acid (GABA) (19,983.88 mg/kg) contents compared to non-fermented or yeast-fermented products. These findings highlight the influence of fermentation conditions of wheat germ and the promising industrial application of wheat germ fermentation for developing food products with enhanced biological properties promising for their commercialization as functional foods.
Collapse
Affiliation(s)
- Elnaz Bayat
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran; (E.B.); (M.F.); (M.M.)
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran; (E.B.); (M.F.); (M.M.)
- Seafood Processing Research Group, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran
- Correspondence: (M.M.-N.); (M.G.-V.)
| | - Mahboubeh Fazaeli
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran; (E.B.); (M.F.); (M.M.)
| | - Marjan Majdinasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71946-84471, Iran; (E.B.); (M.F.); (M.M.)
| | | | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, D04 HK50 Dublin, Ireland;
- Correspondence: (M.M.-N.); (M.G.-V.)
| |
Collapse
|
10
|
Krakowska-Sieprawska A, Kiełbasa A, Rafińska K, Ligor M, Buszewski B. Modern Methods of Pre-Treatment of Plant Material for the Extraction of Bioactive Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030730. [PMID: 35163995 PMCID: PMC8840492 DOI: 10.3390/molecules27030730] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022]
Abstract
In this review, recent advances in the methods of pre-treatment of plant material for the extraction of secondary metabolites with high biological activity are presented. The correct preparation of the material for extraction is as important as the selection of the extraction method. This step should prevent the degradation of bioactive compounds as well as the development of fungi and bacteria. Currently, the methods of preparation are expected to modify the particles of the plant material in such a way that will contribute to the release of bioactive compounds loosely bonded to cell wall polymers. This review presents a wide range of methods of preparing plant material, including drying, freeze-drying, convection drying, microwave vacuum drying, enzymatic processes, and fermentation. The influence of the particular methods on the structure of plant material particles, the level of preserved bioactive compounds, and the possibility of their release during the extraction were highlighted. The plant material pre-treatment techniques used were discussed with respect to the amount of compounds released during extraction as well their application in various industries interested in products with a high content of biologically active compounds, such as the pharmaceutical, cosmetics, and food industries.
Collapse
Affiliation(s)
- Aneta Krakowska-Sieprawska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (A.K.); (K.R.); (M.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4 St., PL-87100 Torun, Poland
| | - Anna Kiełbasa
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (A.K.); (K.R.); (M.L.)
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (A.K.); (K.R.); (M.L.)
| | - Magdalena Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (A.K.); (K.R.); (M.L.)
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St., PL-87100 Torun, Poland; (A.K.-S.); (A.K.); (K.R.); (M.L.)
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4 St., PL-87100 Torun, Poland
- Correspondence: ; Tel.: +49-56-611-4308; Fax: +49-56-611-4837
| |
Collapse
|
11
|
|
12
|
De Villa R, Roasa J, Mine Y, Tsao R. Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34955050 DOI: 10.1080/10408398.2021.2018989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cereal and legume grains and their processing by-products are rich sources of bioactives such as phenolics with considerable health potential, but these bioactives suffer from low bioaccessibility and bioavailability, resulting in limited use. Several studies have demonstrated that solid-state fermentation (SSF) with food-grade microorganisms is effective in releasing bound phenolic compounds in cereal and legume products. In this review, we discuss the effect of SSF on cereal and legume grains and their by-products by examining the role of specific microorganisms, their hydrolytic enzymes, fermentability of agri-food substrates, and the potential health benefits of SSF-enhanced bioactive compounds. SSF with fungi (Aspergillus spp. and Rhizopus spp.), bacteria (Bacillus subtilis and lactic acid bacteria (LAB) spp.) and yeast (Saccharomyces cerevisiae) significantly increased the bioactive phenolics and antioxidant capacities in cereal and legume grains and by-products, mainly through carbohydrate-cleaving enzymes. Increased bioactive phenolic and peptide contents of SSF-bioprocessed cereal and legume grains have been implicated for improved antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic, and angiotensin-converting-enzyme (ACE) inhibitory effects in fermented agri-food products, but these remain as preliminary results. Future research should focus on the microbial mechanisms, suitability of substrates, and the physiological health benefits of SSF-treated grains and by-products.
Collapse
Affiliation(s)
- Ray De Villa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Joy Roasa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Kasote D, Tiozon RN, Sartagoda KJD, Itagi H, Roy P, Kohli A, Regina A, Sreenivasulu N. Food Processing Technologies to Develop Functional Foods With Enriched Bioactive Phenolic Compounds in Cereals. FRONTIERS IN PLANT SCIENCE 2021; 12:771276. [PMID: 34917106 PMCID: PMC8670417 DOI: 10.3389/fpls.2021.771276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 05/13/2023]
Abstract
Cereal grains and products provide calories globally. The health benefits of cereals attributed to their diverse phenolic constituents have not been systematically explored. Post-harvest processing, such as drying, storing, and milling cereals, can alter the phenolic concentration and influence the antioxidant activity. Furthermore, cooking has been shown to degrade thermo-labile compounds. This review covers several methods for retaining and enhancing the phenolic content of cereals to develop functional foods. These include using bioprocesses such as germination, enzymatic, and fermentation treatments designed to enhance the phenolics in cereals. In addition, physical processes like extrusion, nixtamalization, and parboiling are discussed to improve the bioavailability of phenolics. Recent technologies utilizing ultrasound, micro- or nano-capsule polymers, and infrared utilizing processes are also evaluated for their effectiveness in improving the phenolics content and bio-accessibility. We also present contemporary products made from pigmented cereals that contain phenolics.
Collapse
Affiliation(s)
- Deepak Kasote
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Rhowell N. Tiozon
- International Rice Research Institute, Los Baños, Philippines
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Hameeda Itagi
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Priyabrata Roy
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Ahmed Regina
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
| | - Nese Sreenivasulu
- Centre of Excellence in Rice Value Addition (CERVA), International Rice Research Institute (IRRI)—South Asia Regional Centre (ISARC), Varanasi, India
- International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
14
|
Coniglio R, Díaz G, López C, Restelli M, Grassi E, Albertó E, Zapata P. Solid-state bioprocessing of sugarcane bagasse with Auricularia fuscosuccinea for phenolic compounds extraction. Prep Biochem Biotechnol 2021; 52:701-710. [PMID: 34651556 DOI: 10.1080/10826068.2021.1986722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Sugarcane bagasse is a natural source of phenolic compounds. However, these compounds are bound to lignocellulose components, reducing their ability to function as good antioxidants. These linkages are hydrolyzed by enzymes like β-glucosidases, increasing free phenolics. Auricularia is a food-grade genus capable of producing β-glucosidases. The aim of this work was (I) to determine naturally occurring species of Auricularia and (II) to obtain phenolic compounds through the solid-state bioprocessing of sugarcane bagasse. We have successfully isolated five strains that were assigned to the taxon A. fuscosuccinea. We determined β-glucosidase activity by fluorescence plate assay of the five isolated strains and adjusted an optimal temperature for mycelial growth at 30 °C. A. fuscosuccinea LBM 243 was chosen for solid-state bioprocessing of sugarcane bagasse. β-glucosidase activity (12.2 ± 0.62 U l-1) and protein content (51.58 ± 6.26 mg l-1) were highest on day 20 of culture. The maximum value of total phenolic content (507.5 ± 9.05 mg l-1) was obtained at day 20 and antioxidant capacity (34.44% ± 11.20) was highest at day 10, both in ethanolic extracts. The best performance of ethanol against methanol extraction in this work is highlighted considering ethanol to be a safe, efficient, and low-cost solvent.
Collapse
Affiliation(s)
- Romina Coniglio
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Misiones, Argentina.,CONICET, Buenos Aires, Argentina
| | - Gabriela Díaz
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Misiones, Argentina.,CONICET, Buenos Aires, Argentina
| | - Cinthya López
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Misiones, Argentina.,CONICET, Buenos Aires, Argentina
| | - María Restelli
- Instituto Misionero de Biodiversidad, Puerto Iguazú, Misiones, Argentina
| | - Emanuel Grassi
- Instituto Misionero de Biodiversidad, Puerto Iguazú, Misiones, Argentina
| | - Edgardo Albertó
- Laboratorio de Micología y Cultivo de Hongos Comestibles y Medicinales. Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín-CONICET. Chascomús, Buenos Aires, Argentina
| | - Pedro Zapata
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "María Ebe Reca" (INBIOMIS), Laboratorio de Biotecnología Molecular, Misiones, Argentina.,CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Cano y Postigo LO, Jacobo-Velázquez DA, Guajardo-Flores D, Garcia Amezquita LE, García-Cayuela T. Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100926] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Bangar SP, Sandhu KS, Purewal SS, Kaur M, Kaur P, Siroha AK, Kumari K, Singh M, Kumar M. Fermented barley bran: An improvement in phenolic compounds and antioxidant properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Sneh Punia Bangar
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
- Department of Food, Nutrition and Packaging Sciences Clemson University Clemson SC USA
| | - Kawaljit S. Sandhu
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Sukhvinder S. Purewal
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Maninder Kaur
- Department of Food Science and Technology Guru Nanak Dev University Amritsar India
| | - Pinderpal Kaur
- Department of Food Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda India
| | - Anil K. Siroha
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| | - Komal Kumari
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| | - Mukesh Singh
- Department of Food Science and Technology Chaudhary Devi Lal University Sirsa India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai India
| |
Collapse
|
17
|
Aspergillus oryzae Fermented Rice Bran: A Byproduct with Enhanced Bioactive Compounds and Antioxidant Potential. Foods 2020; 10:foods10010070. [PMID: 33396407 PMCID: PMC7824707 DOI: 10.3390/foods10010070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 11/16/2022] Open
Abstract
Rice bran (RB) is a byproduct of the rice industry (milling). For the fermentation process and to add value to it, RB was sprayed with fungal spores (Aspergillus oryzae MTCC 3107). The impact of fermentation duration on antioxidant properties was studied. Total phenolic content (TPC) determined using the Folin–Ciocalteu method, increased during fermentation until the 4th day. The antioxidant activity analyzed using the 2,2 Diphenyl–1′ picrylhydrazyl (DPPH) assay, total antioxidant activity (TAC), 2,2′-azinobis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) assay, reducing power assay (RPA) and hydroxyl free radical scavenging activity (HFRSA) for fermented rice bran (FRB) were determined and compared to unfermented rice bran (URB). TAC, DPPH, ABTS+ and RPA of FRB increased till 4th day of fermentation, and then decreased. The specific bioactive constituents in extracts (Ethanol 50%) from FRB and URB were identified using high performance liquid chromatography (HPLC). HPLC confirmed a significant (p < 0.05) increase in gallic acid and ascorbic acid. On the 4th day of fermentation, the concentrations of gallic acid and ascorbic acid were 23.3 and 12.7 µg/g, respectively. The outcome of present investigation confirms that antioxidant potential and TPC of rice bran may be augmented using SSF.
Collapse
|
18
|
Dhull SB, Punia S, Kumar R, Kumar M, Nain KB, Jangra K, Chudamani C. Solid state fermentation of fenugreek ( Trigonella foenum- graecum): implications on bioactive compounds, mineral content and in vitro bioavailability. Journal of Food Science and Technology 2020; 58:1927-1936. [PMID: 33897029 DOI: 10.1007/s13197-020-04704-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 12/01/2022]
Abstract
In the present study, solid-state fermentation (SSF) of four fenugreek cultivars viz. HM-57, AFG-2, RMT-1 and RMT-303 were carried out using Aspergillus awamori and its effect on antioxidant properties, phenolic content and bioactive compounds were studied. Macro (Ca, K, and Na) as well as micro (Fe, Zn, and Cu) elements and in vitro bioavailability of the unfermented fenugreek (UFF) and Aspergillus-fermented fenugreek (AFF) samples were assessed with standard methods. On 5th day, total phenolic and condensed tannin contents showed significant (p ≤ 0.05) increase for all cultivars. Further, HPLC analysis confirmed formation of some new bioactive (vanillin, benzoic acid and catechin) compounds. Similarly, extracts from all AFF also showed an increase in the antioxidant potential such as inhibition of DPPH, hydroxyl free radical scavenging, reducing power, and total antioxidant capacity up to 5th day of SSF. Mineral in AFF were found with enhanced values when compared with respective UFF. In vitro bioavailability of Fe, Zn and Ca was also improved during SSF. Results from the present study may be helpful to food industry in developing new health foods and may provide a rational for development of functional ingredient in preparation of novel nutraceuticals.
Collapse
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana India
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana India
| | - Rajesh Kumar
- Department of Biosciences, Zoology Division, Career Point University, Hamirpur, Himachal Pradesh India
| | - Manoj Kumar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Kiran Bala Nain
- Department of Food Science and Technology, University College, Chaudhary Devi Lal University, Sirsa, Haryana India
| | - Kanchan Jangra
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana India
| | - Chanchal Chudamani
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana India
| |
Collapse
|
19
|
Phenolic Acid Profiles and Antioxidant Activity of Major Cereal Crops. Antioxidants (Basel) 2020; 9:antiox9060527. [PMID: 32560111 PMCID: PMC7346127 DOI: 10.3390/antiox9060527] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 11/17/2022] Open
Abstract
Phenolic acids (PAs) are a dominant group of phenolic compounds in cereals, existing mostly bound to compounds of cell wall. In this study, a total of 25 cereal grain samples, including wheat, winter and spring barley, corn, and popcorn, were evaluated for bound PAs and antioxidant activity in a two-year field trial. The PA contents, determined by HPLC, were significantly affected by cereal type. The mean total PA content was highest in popcorn and corn (3298 and 2213 μg/gdm, respectively), followed by winter and spring barley (991 and 908 μg/gdm, respectively) and wheat (604 μg/gdm). Ferulic acid was the most abundant, accounting from 62% to 83% of total PAs (in popcorn and winter and spring barley, respectively). Across cereals, p-coumaric (35-259 μg/gdm) and p-hidroxybenzoic (45-79 μg/gdm) were also dominant, while in corn and popcorn o-coumaric (71 and 89 μg/gdm, respectively) also occurred in higher content. The mean total phenol content ranged from 853 μg GAE/gdm (wheat) to 1403 μg GAE/gdm (winter barley) with DPPH scavenging activity from 14% to 67%, respectively. A significant influence of crop years on the ferulic acid and total PA content was found, while the variability of other PAs was dependent on the cereal type. The results indicated a high health benefit potential of selected cereals.
Collapse
|
20
|
khosravi A, Razavi SH, Fadda AM. Advanced assessments on innovative methods to improve the bioaccessibility of polyphenols in wheat. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Chen Y, Wang Y, Chen J, Tang H, Wang C, Li Z, Xiao Y. Bioprocessing of soybeans (Glycine max L.) by solid-state fermentation with Eurotium cristatum YL-1 improves total phenolic content, isoflavone aglycones, and antioxidant activity. RSC Adv 2020; 10:16928-16941. [PMID: 35496929 PMCID: PMC9053166 DOI: 10.1039/c9ra10344a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
In this study, soybean (Glycine max L.) was bioprocessed with fungal strain Eurotium cristatum YL-1 by using the solid-state fermentation (SSF) technique. The effect of SSF on total phenolic content (TPC), isoflavone compositions, and antioxidant activity of soybean during different fermentation periods was evaluated. Results showed that TPC and isoflavone aglycones were significantly increased, whereas glucoside isoflavones were remarkably reduced during SSF. After 15 days of SSF, the TPC, daidzein, genistein, and total aglycones of soybeans were approximately 1.9-, 10.4-, 8.4-, and 9.4-fold higher, respectively, than those of non-fermented soybeans. During SSF, β-glucosidase activity was very high, whereas α-amylase and protease activities were at moderate levels, and cellulase activity was relatively low. A highly positive correlation was found between TPC and the activities of α-amylase (correlation coefficient R2 = 0.9452), β-glucosidase (R2 = 0.9559), cellulase (R2 = 0.9783), and protease (R2 = 0.6785). Linear analysis validated that the β-glucosidase produced by E. cristatum contributed to the bioconversion of soybean isoflavone glucosides into their aglycone forms. The DPPH radical and ABTS˙+ scavenging activity, reducing power, and ferric reducing antioxidant power of soybeans were considerably enhanced during SSF. Principal component analysis and Pearson's correlation analysis verified that the improvement in TPC and isoflavone aglycone content during SSF was mainly responsible for the improved antioxidant capacity of soybeans. Thus, our results demonstrated that solid-state bioprocessing with E. cristatum is an effective approach for the enhancement of the TPC, isoflavone aglycones, and antioxidant capacity of soybeans. Bioprocessed soybean products might be a healthy food supplement rich in antioxidants compared with non-fermented soybean and thus could be a source of natural antioxidants. Solid-state bioprocessing with Eurotium cristatum is an effective approach for the enhancement of total phenolic content, isoflavone aglycones, and antioxidant activity of soybeans.![]()
Collapse
Affiliation(s)
- Yulian Chen
- Hunan Yancun Ecological Farming Technology Co., Ltd
- Changsha
- China
| | - Yuanliang Wang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
- Hunan Province Key Laboratory of Food Science and Biotechnology
| | - Jiaxu Chen
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Hao Tang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Chuanhua Wang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Zongjun Li
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
- Hunan Province Key Laboratory of Food Science and Biotechnology
| | - Yu Xiao
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| |
Collapse
|
22
|
Abd Razak DL, Jamaluddin A, Abd Rashid NY, Abd Ghani A, Abdul Manan M. Assessment of fermented broken rice extracts for their potential as functional ingredients in cosmeceutical products. ANNALS OF AGRICULTURAL SCIENCES 2019; 64:176-182. [DOI: 10.1016/j.aoas.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
23
|
Acosta-Estrada BA, Villela-Castrejón J, Perez-Carrillo E, Gómez-Sánchez CE, Gutiérrez-Uribe JA. Effects of solid-state fungi fermentation on phenolic content, antioxidant properties and fiber composition of lime cooked maize by-product (nejayote). J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Starzyńska-Janiszewska A, Stodolak B, Socha R, Mickowska B, Wywrocka-Gurgul A. Spelt wheat tempe as a value-added whole-grain food product. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Călinoiu LF, Cătoi AF, Vodnar DC. Solid-State Yeast Fermented Wheat and Oat Bran as A Route for Delivery of Antioxidants. Antioxidants (Basel) 2019; 8:antiox8090372. [PMID: 31487918 PMCID: PMC6770529 DOI: 10.3390/antiox8090372] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/13/2019] [Accepted: 09/01/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of our study was to evaluate the potential of solid-state yeast fermentation (SSYF) in improving the phenolic acid content and composition, and the antioxidant activity of commercial wheat bran (WB) and oat bran (OB). The ultrasound-assisted methanolic extracts were compared for their total phenolic content (TPC), phenolics composition, and in vitro antioxidant activity in order to study the effect of fermentation time on the chemical profile and activity of bioactive compounds. The comparative analysis revealed significant differences (p < 0.05) between days of fermentation (0 through 6). The highest TPCs were obtained on day 3 for WB (0.84 ± 0.05 mg of gallic acid equivalents [GAE]/g dry weight [DW]), and on day 4 for OB (0.45 ± 0.02 mg GAE/g DW). The highest relative percentage increase in the phenolics concentration of WB was also registered on day 3 (ferulic acid +56.6%, vanillic acid +259.3%, dihydroxybenzoic acids +161.2%, apigenin-glucoside +15.3%); for OB, this was observed on day 4 (avenanthramide 2f +48.5%, ferulic acid +21.2%). Enhanced antioxidant activities were significantly correlated with the highest TPCs. Our results suggest that SSYF may be a useful procedure for enrichment of antioxidants in cereal bran, considering the design of different functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
| | - Adriana-Florinela Cătoi
- Department of Pathophysiology, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş street 3-4, 400012 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
26
|
Chen W, Zhu J, Niu H, Song Y, Zhang W, Chen H, Chen W. Composition and Characteristics of Yam Juice Fermented by Lactobacillus plantarum and Streptococcus thermophilus. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2018. [DOI: 10.1515/ijfe-2018-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, Lactobacillus plantarum (LP), alone or in combination with Streptococcus thermophilus, was used to ferment yam juice. Changes in the composition (phenols, organic acids, reducing sugars and volatile substances) and functional characteristics (antioxidative activity and ability to regulate the intestinal flora) of yam juice during fermentation were investigated. The results showed that the total phenolic (TP) content increased from 201.27 to 281.27 and 285.77 μg/mL for LP- and L. plantarum and S. thermophilus (LPST)-fermented yam juice, respectively. The antioxidative activity of yam juice improved significantly after fermentation, highly correlating with its TP content. In addition, LP- or LPST-fermented yam juice had positive effects on members of the human intestinal flora, improving the activity of Bifidobacterium and inhibiting the growth of Escherichia coli. Sensory analysis showed that LPST-fermented yam juice had a highest score. The results of this study showed that fermented yam juice can serve as a healthy beverage for consumers with low immunity or an imbalance of the intestinal flora.
Collapse
|
27
|
López DN, Galante M, Ruggieri G, Piaruchi J, Dib ME, Duran NM, Lombardi J, de Sanctis M, Boeris V, Risso PH, Spelzini D. Peptidase from Aspergillus niger NRRL 3: Optimization of its production by solid-state fermentation, purification and characterization. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Kaur P, Dhull SB, Sandhu KS, Salar RK, Purewal SS. Tulsi (Ocimum tenuiflorum) seeds: in vitro DNA damage protection, bioactive compounds and antioxidant potential. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9768-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Zhang G, Chen W, Chen W, Chen H. Improving the quality of matured coconut ( Cocos nucifera Linn.) water by low alcoholic fermentation with Saccharomyces cerevisiae: antioxidant and volatile profiles. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:964-976. [PMID: 29487438 PMCID: PMC5821652 DOI: 10.1007/s13197-017-3004-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/01/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
Abstract
Matured coconut water (MCW) is a by-product in the coconut milk industry that is usually discarded due to its unpleasant flavor. In this study, low-alcohol coconut water (LACW) was fermented with Saccharomyces cerevisiae to improve the quality of MCW. Volatile components and nonvolatile flavor-related elements were estimated to compare the qualities of the MCW and LACW. Besides measuring the kinetic changes, the levels of fructose, glucose, sucrose and ethanol contents were also determined. The results of the organic acid assays showed that tartaric, pyruvic and succinic acids were the primary organic acids present in LACW and increased significantly with fermentation. The resulting volatile composition assay indicated that esters, alcohols and fatty acids were significantly influenced by fermentation and yeast strains. Moreover, 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric ion reducing antioxidant capacity and ferric reducing antioxidant power values increased significantly throughout the process, correlating with the enhancement of total phenolic content.
Collapse
Affiliation(s)
- Guanfei Zhang
- College of Food Science and Technology, Hainan University, Haikou, 570228 Hainan China
| | - Wenxue Chen
- College of Food Science and Technology, Hainan University, Haikou, 570228 Hainan China
| | - Weijun Chen
- College of Food Science and Technology, Hainan University, Haikou, 570228 Hainan China
| | - Haiming Chen
- College of Food Science and Technology, Hainan University, Haikou, 570228 Hainan China
| |
Collapse
|
30
|
Salar RK, Purewal SS, Sandhu KS. Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential. Food Res Int 2017; 100:204-210. [PMID: 28888442 DOI: 10.1016/j.foodres.2017.08.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
In the present study, pearl millet cultivar PUSA-415 was fermented by solid state fermentation (SSF) process using Aspergillus sojae (MTCC-8779) as starter culture. The fermentation was carried out for the period of ten days. The effect of SSF on phenolic content, condensed tannin content, antioxidant potential and DNA damage protection of pearl millet during different fermentation period was determined. Results showed that SSF and thermal processing significantly affect the bioactive profile and antioxidant potential of bio-transformed pearl millet. Extracts prepared from 6th days fermented pearl millet flour exhibited the highest TPC, antioxidant potential and DNA damage protection activity. Qualitative and quantitative analysis of bioactive compounds were done by HPLC. During SSF, production of enzymes (α-amylase, β-glucosidase and xylanase) as well as specific bioactive compounds (ascorbic acid, gallic acid and p-Coumaric acid) was significantly increased. Thus, bio-transformed Aspergillus sojae fermented pearl millet could be used in preparation of functional foods and novel nutraceuticals in health promotions. Chapatti was formulated from unfermented as well as fermented flour and the effect of thermal processing on bioactive compounds and antioxidant potential was studied. Thermal processing resulted in decrease in TPC of both, AFM and UFM by 4.75-16.27% and increase in CTC by 38.52-67.41%.
Collapse
Affiliation(s)
- Raj Kumar Salar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India.
| | | | - Kawaljit Singh Sandhu
- Department of Food Science & Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| |
Collapse
|
31
|
Salar RK, Purewal SS, Sandhu KS. Bioactive profile, free-radical scavenging potential, DNA damage protection activity, and mycochemicals in Aspergillus awamori (MTCC 548) extracts: a novel report on filamentous fungi. 3 Biotech 2017; 7:164. [PMID: 28660460 PMCID: PMC5489448 DOI: 10.1007/s13205-017-0834-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
Biomass of Aspergillus awamori was investigated for mycochemicals, total phenolic compounds (TPC), condensed tannin content (CTC), free-radical scavenging potential (FRSP), and DNA damage protection activity. FRSP was determined using DPPH, ABTS, FRAP (Ferric reducing antioxidant power), metal chelating activity, and cupric reducing antioxidant capacity) assays. Water (Aq), aqueous ethanol 50% (AqE), and methanol were used as extraction phase at 44.5 °C for 23.8 min. AqE shows the presence of maximum mycochemicals (coumarins, glucose, saponins, flavonoids, and tannin). Further quantitative analysis shows maximum TPC (23.17 mg GAE/g dwb) in AqE and CTC (.89 mg CE/g dwb) in ME. Qualitative and quantitative analysis for identification of specific bioactive compound in AqE was carried out using HPLC. HPLC analysis confirmed the presence of bioactive compounds: p'-Coumaric acid (5.96 mg/g dwb), cinnamic acid (4.31 mg/g dwb), gallic acid (2.27 mg/g dwb), and ascorbic acid (.98 mg/g dwb). All the extracts show significant DNA damage protection activity; however, AqE showed the maximum activity. Pearson correlations were also calculated to find the relationships between bioactive compounds and antioxidant potential.
Collapse
Affiliation(s)
- Raj Kumar Salar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, 125055, India.
| | | | - Kawaljit Singh Sandhu
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, 125055, India
| |
Collapse
|
32
|
Sandhu KS, Punia S. Enhancement of bioactive compounds in barley cultivars by solid substrate fermentation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-017-9513-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Park SY, Jang HL, Lee JH, Choi Y, Kim H, Hwang J, Seo D, Kim S, Nam JS. Changes in the phenolic compounds and antioxidant activities of mustard leaf ( Brassica juncea) kimchi extracts during different fermentation periods. Food Sci Biotechnol 2017; 26:105-112. [PMID: 30263516 PMCID: PMC6049491 DOI: 10.1007/s10068-017-0014-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022] Open
Abstract
This study was conducted to investigate the changes in the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities of 80% methanol and water extracts from mustard leaf kimchi during different fermentation periods. The methanol extract exhibited higher TPC and TFC than the water extract. Both extracts from kimchi fermented for two months showed the highest antioxidant effects against the scavenging activities of 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals and 2,2-azino-bis diammonium salt (ABTS) radicals. Moreover, the methanol extract from kimchi fermented for two months showed the highest nitrite scavenging activity. The highest metal (Fe2+) chelating effect of the methanol extract and water extract was observed after three months and one month, respectively. Caffeic acid showed the highest increase with fermentation. These findings suggest that the antioxidant activities of kimchi depend on the fermentation period. Accordingly, this study provides basic data for improving the antioxidant activity of mustard leaf kimchi through the establishment of their fermentation period.
Collapse
Affiliation(s)
- Seo-Yeon Park
- Food Analysis Research Center, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
| | - Hye-Lim Jang
- Food Analysis Research Center, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
| | - Jong-Hun Lee
- Food Analysis Research Center, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
| | - Youngmin Choi
- Functional Food & Nutrition Division, National Institute of Agricultural Sciences, RDA, Wanju, Jeonbuk, 55365 Korea
| | - Haengran Kim
- Functional Food & Nutrition Division, National Institute of Agricultural Sciences, RDA, Wanju, Jeonbuk, 55365 Korea
| | - Jinbong Hwang
- Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Dongwon Seo
- Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Sanghee Kim
- Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Jin-Sik Nam
- Food Analysis Research Center, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
- Department of Food and Nutrition, Suwon Women’s University, Hwaseong, Gyeonggi, 18333 Korea
| |
Collapse
|