1
|
Nami Y, Panahi B, Jalaly HM, Rostampour M, Hejazi MA. Probiotic Characterization of LAB isolated from Sourdough and Different Traditional Dairy Products Using Biochemical, Molecular and Computational Approaches. Probiotics Antimicrob Proteins 2025; 17:1014-1037. [PMID: 38446395 DOI: 10.1007/s12602-024-10234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
The aim of this study was to identify and isolate lactic acid bacteria (LAB) from indigenous sourdough and dairy samples in Iran, and to assess their probiotic properties in vitro. A total of 560 potential LAB isolates were examined, and 87 demonstrated high survival rates in artificial gastrointestinal fluids without hemolytic activity. The selected isolates exhibited significant auto-aggregation (18.35 to 79.42%) and co-aggregation abilities (20.16 to 71.26%). Additionally, the isolates displayed varying degrees of cell surface hydrophobicity (12.32 to 76.24%). Results indicated that 19 LAB isolates had cholesterol assimilation rates exceeding 30%. Moreover, forty strains tested negative for all twelve assessed pathogenic genes and exhibited good adhesion to human intestinal epithelial cells (13.47 to 49.12%). Furthermore, 24 isolates formed strong biofilms, 29 formed moderate biofilms, and 23 formed weak biofilms. Except for isolates ABRIIFBI-8, ABRIIFBI-16, ABRIIFBI-23, ABRIIFBI-43, ABRIIFBI-56, and ABRIIFBI-62, most isolates were capable of producing exopolysaccharides. Consequently, LAB strains naturally occurring in sourdough and traditional dairy samples were suggested as potential probiotic candidates for incorporation into functional foods.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, 29 Bahman Boulevard, P. O. Box 5156915598, Tabriz, Iran.
| | - Bahman Panahi
- Department of Genomics, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, Tabriz, Iran
| | - Hossein Mohammadzadeh Jalaly
- Department of Genomics, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, Tabriz, Iran
| | - Mohaddeseh Rostampour
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, 29 Bahman Boulevard, P. O. Box 5156915598, Tabriz, Iran
| | - Mohammad Amin Hejazi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran, 29 Bahman Boulevard, P. O. Box 5156915598, Tabriz, Iran
| |
Collapse
|
2
|
Zhou Q, Zhao C, Li X, Wang H, Huang Q, Sun Y, Zhou Y. Discovery of lactic acid bacteria with high nucleoside degradation and low purine production in tomato sour soup. Int J Food Microbiol 2025; 434:111139. [PMID: 40054042 DOI: 10.1016/j.ijfoodmicro.2025.111139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/09/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Tomato sour soup (TSS) is a traditional fermented food in the southwest of Guizhou province, China. In a previous study, we found that the purine nucleoside compound content in TSS was decreased after fermentation. In this study, we screened the nucleoside-degrading lactic acid bacteria in TSS and explored possible mechanisms for the degradation of purine nucleoside compound. Lp. plantarum ST-11 was chosen because of its strong guanosine and inosine degradation, low guanine and hypoxanthine production, safety, and probiotic characteristics. The whole genome sequence had 3,344,042 bp, and approximately 110 genes were related to nucleotide metabolism. Guanosine administration induced the downregulation of 26 metabolites and upregulation of 75 metabolites, which related to energy substances, purines, and pyrimidines et al. Thus, Lp. plantarum ST-11, with high nucleoside degradation and low purine production, was screened from TSS, as a potential probiotic to prevent hyperuricemia.
Collapse
Affiliation(s)
- Qingli Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Chaoya Zhao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Xiefei Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Huiqun Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Qun Huang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China
| | - Yong Sun
- Beijing Academy of Food Sciences, Beijing 100068, China
| | - Yan Zhou
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
3
|
Liu X, Mao B, Tang X, Zhang Q, Zhao J, Chen W, Cui S. Bacterial viability retention in probiotic foods: a review. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 40215221 DOI: 10.1080/10408398.2025.2488228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Probiotics offer substantial health benefits, leading to their increased consumption in various food products. The viability of probiotics is a critical factor that influences the nutritional and therapeutic efficacy of these foods. However, as probiotics often lose viability during production and oral administration, effective preservation and encapsulation technologies are needed to overcome this challenge. This review elucidates the diverse sources and incorporation strategies of probiotics, while systematically analyzing the effects of water transformation (ice front velocity, glass transition temperature, and collapse temperature), processing conditions (food matrix, temperature, and dissolved oxygen), and gastrointestinal challenges (gastric fluid, digestive enzymes, and bile salts) on probiotic viability. Effective strategies to strengthen probiotic viability encompass three primary domains: fermentation processes, production techniques, and encapsulation methods. Specifically, these include meticulous fermentation control (nitrogen sources, lipids, and carbon sources), pre-stress treatments (pre-cooling, heat shock, NaCl stress, and acid stress), optimized lyoprotectant selection (carbohydrates, proteins, and polyols), synergistic freeze-drying technologies (infrared technology, spray drying, and microwave), bulk encapsulation approaches (polysaccharide or protein-based microencapsulation), and single-cell encapsulation methods (self-assembly and surface functionalization). Despite these advancements, targeting specific probiotics and food matrices remains challenging, necessitating further research to enhance probiotic viability.
Collapse
Affiliation(s)
- Xuewu Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Maternal-Infant Microbiota and Health, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Wu D, Li H, Wang X, Chen R, Gong D, Long D, Huang X, Tang Z, Zhang Y. Screening and Whole-Genome Analysis of Probiotic Lactic Acid Bacteria with Potential Antioxidants from Yak Milk and Dairy Products in the Qinghai-Tibet Plateau. Antioxidants (Basel) 2025; 14:173. [PMID: 40002360 PMCID: PMC11851503 DOI: 10.3390/antiox14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to isolate lactic acid bacteria (LAB) with strong antioxidant activity and potential probiotic properties from yak milk and dairy products in the Qinghai-Tibet Plateau. Initial screening of the isolates was performed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and a hydrogen peroxide tolerance test. Subsequently, the antioxidant capacity of the isolates was assessed through five distinct assays: 2,2'-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, a DPPH scavenging assay, and a reducing activity assay. The strains with the stronger antioxidant potential were then further evaluated for their probiotic properties. Whole-genome sequencing was conducted on Lactobacillus plantarum QL01. Among 1205 isolates, 9 strains exhibited potential antioxidant capabilities. Following probiotic property evaluation, QL01 was identified as a safe candidate due to its strong growth, strong adhesion ability, and resilience to acidic, bile, and simulated gastrointestinal conditions. Genome analysis revealed that most of QL01's genes were involved in carbohydrate metabolism. Further examination of antibiotic resistance and virulence factors confirmed its safety, meanwhile genes linked to adhesion and stress responses underscored its probiotic potential. In conclusion, QL01, a strong antioxidant strain, was successfully isolated, and its probiotic potential was confirmed through comprehensive in vitro and genomic analyses.
Collapse
Affiliation(s)
- Diyan Wu
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Haichuan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Xuan Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Runtong Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Zhenchuang Tang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| |
Collapse
|
5
|
Lou H, Wang J, Wang Y, Gao Y, Wang W. Protective effects of potential probiotics Lacticaseibacillus rhamnosus SN21-1 and Lactiplantibacillus plantarum SN21-2 against Salmonella typhimurium infection in broilers. Poult Sci 2024; 103:104207. [PMID: 39278111 PMCID: PMC11418103 DOI: 10.1016/j.psj.2024.104207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/17/2024] Open
Abstract
This study aimed to explore the probiotic characteristics of Lacticaseibacillus rhamnosus SN21-1 and Lactiplantibacillus plantarum SN21-2 by genotype and phenotype analysis, assess their safety in vitro and in vivo, and investigate the effects of L. rhamnosus SN21-1 and L. plantarum SN21-2 on Salmonella typhimurium-infected broilers in an in vivo experiment. L. rhamnosus SN21-1 and L. plantarum SN21-2 showed antimicrobial activity against pathogens, including S. Typhimurium, resistance to simulated gastrointestinal digestive fluid, and adhesion to HT-29 cells. In addition, L. rhamnosus SN21-1 and L. plantarum SN21-2 showed no resistance to most common antimicrobial agents and no haemolysis in vitro. Whole-genome sequence analyses of L. rhamnosus SN21-1 and L. plantarum SN21-2 provided basic genomic information, functional genes underlying the probiotic characteristics, and evidence of safety. Furthermore, feeding with L. rhamnosus SN21-1 or L. plantarum SN21-2 for 28 d had no significant effect on the growth or blood biochemical parameters of the broilers, and hematoxylin-eosin staining revealed no liver, spleen, heart, or kidney damage. Additionally, L. rhamnosus SN21-1 or L. plantarum SN21-2 did not translocate to the blood, liver, spleen, heart, or kidney of the broilers. Moreover, L. rhamnosus SN21-1 and L. plantarum SN21-2 significantly reduced S. Typhimurium counts in the faeces and caecal contents of S. Typhimurium-infected broilers and reduced small intestinal bleeding in S. Typhimurium-infected broilers. Consequently, L. rhamnosus SN21-1 and L. plantarum SN21-2 have excellent probiotic characteristics and are safe for use as anti-S. typhimurium probiotics in broilers.
Collapse
Affiliation(s)
- Haibo Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongdong Gao
- Agriculture Technology Extension Service Center of Shanghai, Shanghai 201103, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Layadi I, Laiche AT, Tlili ML, Messaoudi M, Ghemam Amara D, Mezghani‐Khemakhem M, Naccache C, Sawicka B, Atanassova M, Zahnit W, Ahmad SF. Effect of Juniperus communis extract on probiotic properties of Bacillus safensis isolated from camel milk in the region of El Oued (Algeria). Food Sci Nutr 2024; 12:6509-6520. [PMID: 39554354 PMCID: PMC11561853 DOI: 10.1002/fsn3.4262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 11/19/2024] Open
Abstract
The current study focuses on the effect of Juniperus communis extract on the probiotic properties of lactic acid bacteria isolated from camel milk in the region of El Oued (Algeria). Chromatographic analysis by HPLC was carried out to detect the most important compounds extracted from the plant. The total phenolic and flavonoid contents were determined using the colorimetric procedures Folin-Ciocalteu and aluminum chloride. The probiotic properties were studied and evaluated in vivo with Juniperus communis extracts after isolating strains from camel's milk and identifying them using 16S rRNA gene sequencing. Chromatographic profiles of the phenolic compounds revealed that Juniperus communis extract is rich in quercetin. After conducting chemical analyses of polyphenols and flavonoids, the results demonstrated a high content of phenolic compounds in Juniperus communis extracts (polyphenols: 103.80 ± 0.30 mg GAE/g E. flavonoids: 15.85 ± 0.80 mg QE/g E). Sequencing and phylogenetic analysis showed that the isolates belong to Bacillus pumilus and Bacillus safensis strains. The combination of Juniperus communis and Bacillus safensis restored the healthy intestine wall structure and returned the blood biochemical parameters to normal values. It was found that the mixture enhanced anti-inflammatory effectiveness by reducing erythrocyte sedimentation rate and C-reactive protein values. Juniperus communis has a high polyphenol and flavonoid content which can have a considerable impact on Bacillus safensis probiotic properties.
Collapse
Affiliation(s)
- Ikram Layadi
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of the Sciences of Nature and LifeUniversity of El OuedEl OuedAlgeria
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | - Ammar Touhami Laiche
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, Faculty of the Sciences of Nature and LifeUniversity of El OuedEl OuedAlgeria
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | - Mohammed Laid Tlili
- Laboratory of Biogeochemistry of Desert Environments LaboratoryUniversity of OuarglaOuarglaAlgeria
- Department of Cellular and Molecular Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
| | | | - Djilani Ghemam Amara
- Department of Biology, Faculty of Sciences of Nature and LifeUniversity of El‐OuedEl OuedAlgeria
- Laboratory of Biology, Environment and Health, Department of Biology, Faculty of Life and Natural SciencesUniversity of El OuedEl OuedAlgeria
| | - Maha Mezghani‐Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Department of Biology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Chahnez Naccache
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Department of Biology, Faculty of Sciences of TunisUniversity of Tunis El ManarTunisTunisia
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities ScienceUniversity of Life Sciences in LublinLublinPoland
| | - Maria Atanassova
- Scientific Consulting, Chemical EngineeringUniversity of Chemical Technology and MetallurgySofiaBulgaria
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter SciencesUniversity of OuarglaOuarglaAlgeria
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
7
|
de Vasconcelos Medeiros GKV, Martins ACS, Vasconcelos MG, Garcia EF, Rodrigues NPA, de Albuquerque TMR, Viera VB, da Conceição ML, de Souza EL, de Oliveira MEG. Cereus jamacaru DC. (mandacaru) fruit as a source of lactic acid bacteria with in vitro probiotic-related characteristics and its protective effects on Pediococcus pentosaceus during lyophilization and refrigeration storage. Int J Food Microbiol 2024; 417:110695. [PMID: 38636163 DOI: 10.1016/j.ijfoodmicro.2024.110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 04/20/2024]
Abstract
This study isolated and identified autochthonous lactic acid bacteria (LAB) from mandacaru fruit and evaluated their potential probiotic and technological aptitudes in vitro, as well as the protective effects of freeze-dried mandacaru fruit on the most promising LAB isolate during lyophilization and refrigeration storage. Initially, 212 colonies were isolated from mandacaru fruit, and 34 were preliminarily identified as LAB. Thirteen isolates identified by 16S-rRNA sequencing as Pediococcus pentosaceus were negative for DNase, gelatinase, hemolytic, and biogenic amine production. The selected isolates showed proteolytic activity, diacetyl and exopolysaccharide production, and good tolerance to different NaCl concentrations while having low cellular hydrophobicity and antagonistic activity against pathogens. The survival of isolates sharply decreased after 3 h of exposure to pH 2 and had a good tolerance to 1 % bile salt. A principal component analysis selected P. pentosaceus 57 as the most promising isolate based on the examined technological and probiotic-related physiological properties. This isolate was lyophilized with mandacaru fruit and stored under refrigeration for 90 days. P. pentosaceus 57 lyophilized with mandacaru fruit had high viable cell counts (9.69 ± 0.03 log CFU/mL) and >50 % of physiologically active cells at 90 days of refrigeration storage. The results indicate that mandacaru fruit is a source of P. pentosaceus with aptitudes to be explored as potential probiotic and technological characteristics of interest for the food industry, besides being a good candidate for use in lyophilization processes and refrigeration storage of LAB due to its cryoprotective effects.
Collapse
Affiliation(s)
| | - Ana Cristina Silveira Martins
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Mateus Gomes Vasconcelos
- Laboratory of Bromatology, Department of Nutrition, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Estefânia Fernandes Garcia
- Department of Gastronomy, Center for Technology and Regional Development, Federal University of Paraíba, João Pessoa 58058-600, Brazil
| | - Noádia Priscila Araújo Rodrigues
- Department of Gastronomy, Center for Technology and Regional Development, Federal University of Paraíba, João Pessoa 58058-600, Brazil
| | | | - Vanessa Bordin Viera
- Laboratory of Bromatology, Center of Education and Health, Federal University of Campina Grande, Cuité 58175-000, Brazil
| | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - Maria Elieidy Gomes de Oliveira
- Laboratory of Bromatology, Department of Nutrition, Center of Health Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil.
| |
Collapse
|
8
|
Han J, McClements DJ, Liu X, Liu F. Oral delivery of probiotics using single-cell encapsulation. Compr Rev Food Sci Food Saf 2024; 23:e13322. [PMID: 38597567 DOI: 10.1111/1541-4337.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Adequate intake of live probiotics is beneficial to human health and wellbeing because they can help treat or prevent a variety of health conditions. However, the viability of probiotics is reduced by the harsh environments they experience during passage through the human gastrointestinal tract (GIT). Consequently, the oral delivery of viable probiotics is a significant challenge. Probiotic encapsulation provides a potential solution to this problem. However, the production methods used to create conventional encapsulation technologies often damage probiotics. Moreover, the delivery systems produced often do not have the required physicochemical attributes or robustness for food applications. Single-cell encapsulation is based on forming a protective coating around a single probiotic cell. These coatings may be biofilms or biopolymer layers designed to protect the probiotic from the harsh gastrointestinal environment, enhance their colonization, and introduce additional beneficial functions. This article reviews the factors affecting the oral delivery of probiotics, analyses the shortcomings of existing encapsulation technologies, and highlights the potential advantages of single-cell encapsulation. It also reviews the various approaches available for single-cell encapsulation of probiotics, including their implementation and the characteristics of the delivery systems they produce. In addition, the mechanisms by which single-cell encapsulation can improve the oral bioavailability and health benefits of probiotics are described. Moreover, the benefits, limitations, and safety issues of probiotic single-cell encapsulation technology for applications in food and beverages are analyzed. Finally, future directions and potential challenges to the widespread adoption of single-cell encapsulation of probiotics are highlighted.
Collapse
Affiliation(s)
- Jiaqi Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
9
|
Jiang Y, Wu J, Tian L, Liu Y, Zhao F, He Z, Mao Y, Jia J, Guan T. The therapeutic effects of fermented milk with lactic acid bacteria from traditional Daqu on hypertensive mice. J Dairy Sci 2024; 107:742-758. [PMID: 37709033 DOI: 10.3168/jds.2023-23858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/26/2023] [Indexed: 09/16/2023]
Abstract
Lactic acid bacteria (LAB), a type of microorganism widely used in functional foods, has gained notable research attention in recent years. Certain strains possess the proteolytic ability to release potentially antihypertensive peptides from dairy proteins, which prompted us to explore the LAB strains from an understudied and unique ingredient, Daqu. We screened for 67 strains of LAB strains from traditional Daqu using the calcium dissolution ring method. Sixteen strains exhibiting angiotensin-converting enzyme inhibition (ACE-I) activity exceeding 50% were chosen for 16S rDNA sequencing and safety assessment. It is noteworthy that Enterococcus faecium CP640 and Lacticaseibacillus rhamnosus CP658 exhibited significant ACE-I activity, which was the result of strain fermentation in reconstituted skim milk. These 2 strains did not exhibit hemolytic activity or antibiotic resistance. They also did not produce biogenic amines and showed high survival rates in the gastrointestinal tract. Additionally, Enterococcus faecium CP640 and Lacticaseibacillus rhamnosus CP658 fermented milk exhibited a notable reduction in blood pressure levels in spontaneously hypertensive rats (SHR) compared with negative controls in SHR. Importantly, no adverse effect was observed in normal Wistar-Kyoto rats. Through the analysis of physiological, serum, and urine-related indicators, it was observed that Enterococcus faecium CP640 and Lacticaseibacillus rhamnosus CP658 have the potential to promote weight gain in SHR, alleviate excessive heart rate, improve renal function indicators, and effectively regulate blood sugar and uric acid levels in SHR. These 2 strains showed optimal properties in lowering blood pressure and have the potential to be used in functional dairy products in the future.
Collapse
Affiliation(s)
- Yuhang Jiang
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China
| | - Jiang Wu
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Lei Tian
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ying Liu
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Fan Zhao
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zongjun He
- Sichuan Tujiu of Liquor Co. Ltd., Nanchong, 637000, China
| | - Yichen Mao
- Xinjiang Kaiduhe of Liquor Co. Ltd., Hejing, 841302, China
| | - Jian Jia
- Sichuan Jiashite of Environmental Testing Co. Ltd., Chengdu, 611730, China
| | - Tongwei Guan
- College of Food and Bioengineering, Xihua University, Chengdu, 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
10
|
Ahmmed MK, Bhowmik S, Ahmmed F, Giteru SG, Islam SS, Hachem M, Hussain MA, Kanwugu ON, Agyei D, Defoirdt T. Utilisation of probiotics for disease management in giant freshwater prawn (Macrobrachium rosenbergii): Administration methods, antagonistic effects and immune response. JOURNAL OF FISH DISEASES 2023; 46:1321-1336. [PMID: 37658593 DOI: 10.1111/jfd.13850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii) is a high-yielding prawn variety well-received worldwide due to its ability to adapt to freshwater culture systems. Macrobrachium rosenbergii is an alternative to shrimp typically obtained from marine and brackish aquaculture systems. However, the use of intensive culture systems can lead to disease outbreaks, particularly in larval and post-larval stages, caused by pathogenic agents such as viruses, bacteria, fungi, yeasts and protozoans. White tail disease (viral), white spot syndrome (viral) and bacterial necrosis are examples of economically significant diseases. Given the increasing antibiotic resistance of disease-causing microorganisms, probiotics have emerged as promising alternatives for disease control. Probiotics are live active microbes that are introduced into a target host in an adequate number or dose to promote its health. In the present paper, we first discuss the diseases that occur in M. rosenbergii production, followed by an in-depth discussion on probiotics. We elaborate on the common methods of probiotics administration and explain the beneficial health effects of probiotics as immunity enhancers. Moreover, we discuss the antagonistic effects of probiotics on pathogenic microorganisms. Altogether, this paper provides a comprehensive overview of disease control in M. rosenbergii aquaculture through the use of probiotics, which could enhance the sustainability of prawn culture.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Ahmmed
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Stephen G Giteru
- Department of Food Science, University of Otago, Dunedin, New Zealand
- Alliance Group Limited, Invercargill, New Zealand
| | - Shikder Saiful Islam
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna, Bangladesh
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston, Tasmania, Australia
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Md Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet, Bangladesh
- ARC Centre of Excellence in Synthetic Biology and School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Osman N Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russia
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Ruiz-Ramírez Y, Valadez-Blanco R, Calderón-García C, Chikindas ML, Ponce-Alquicira E. Probiotic and functional potential of lactic acid bacteria isolated from pulque and evaluation of their safety for food applications. Front Microbiol 2023; 14:1241581. [PMID: 37779722 PMCID: PMC10536145 DOI: 10.3389/fmicb.2023.1241581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Pulque is a traditional Mexican non-distilled alcoholic beverage to which several beneficial functions are attributed, mainly associated with gastrointestinal health, which can be explained by the presence of probiotic bacteria in its microbiota. Therefore, the objective of this work was to evaluate the safety, probiotic activity, and functional characteristics of seven strains of lactic acid bacteria (LAB) isolated from pulque using the probiotic strain Lactobacillus acidophilus NCFM as control. The LAB isolates were identified by 16S rRNA sequencing and MALDI Biotyper® MS as belonging to three different Lactobacillaceae genera and species: Lactiplantibacillus plantarum, Levilactobacillus brevis and Lacticaseibacillus paracasei. Most strains showed resistance to gastric juice, intestinal juice and lysozyme (10 mg/L). In addition, all strains exhibited bile salt hydrolase (BSH) activity and antibacterial activity against the pathogenic strain Listeria monocytogenes. Additionally, cell surface characteristics of LAB were evaluated, with most strains showing good hydrophobicity, auto-aggregation, and co-aggregation towards enteropathogenic Escherichia coli and L. monocytogenes. In terms of safety, most of the strains were sensitive to the tested antibiotics and only the Lact. paracasei UTMB4 strain amplified a gene related to antibiotic resistance (mecA). The strains Lact. plantarum RVG2 and Lact. plantarum UTMB1 presented γ-hemolytic activity, and the presence of the virulence-related gene agg was identified only in UTMB1 strain. Regarding functional characterization, the tested bacteria showed good β-galactosidase activity, antioxidant activity and cholesterol reduction Based on principal component analysis (PCA) and heat mapping, and considering the strain Lact. acidophilus NCFM as the probiotic reference, the strains Lacticaseibacillus paracasei UTMB4, Lactiplantibacillus plantarum RVG4 and Levilactobacillus brevis UTMB2 were selected as the most promising probiotic strains. The results of this study highlighted the probiotic, functional and safety traits of LAB strains isolated from pulque thus supporting the health benefits attributed to this ancestral beverage.
Collapse
Affiliation(s)
- Yesica Ruiz-Ramírez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | | | | | - Michael Leonidas Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| |
Collapse
|
12
|
Haghshenas B, Kiani A, Mansoori S, Mohammadi-Noori E, Nami Y. Probiotic properties and antimicrobial evaluation of silymarin-enriched Lactobacillus bacteria isolated from traditional curd. Sci Rep 2023; 13:10916. [PMID: 37407617 DOI: 10.1038/s41598-023-37350-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Nowadays, the increasing use of medicinal plants in the treatment and prevention of diseases has attracted the attention of researchers. The aim of this work was to investigate the probiotic properties and antibacterial and antifungal activity of silymarin-enriched Lactobacillus bacteria against several important pathogenic bacteria and also Aspergillus flavus as one of the harmful molds in the food and health industries. For this purpose, 52 g-positive and catalase-negative bacteria were isolated from 60 traditional curd samples from Ilam province. Five of the 52 bacterial strains had more than 90% viability in high bile salt and acidic conditions and were selected for further investigation. The five strains with positive results showed good hydrophobicity (≥ 50.30%), auto-aggregation (≥ 53.70%), coaggregation (≥ 28.20%), and high cholesterol removal ability (from 09.20 to 67.20%) and therefore can be considered potential probiotics. The tested strains displayed acceptable antibacterial and antifungal activity against all 12 pathogenic bacteria and A. flavus. Also, the results of the simultaneous antifungal activity of probiotic strains and silymarin showed that the combination of silymarin and probiotics has a significantly better (P < 0.05) antifungal effect than the control group or the probiotic groups alone. Interestingly, in addition to the Limosilactobacillus fermentum C3 strain, the Limosilactobacillus fermentum C18 and Lactiplantibacillus pentosus C20 strains also had significant inhibitory effects against A. flavus when used with silymarin extract in methanol. Meanwhile, silymarin extract in DMSO and PEG increased the antagonistic activity of all five potential probiotic strains.
Collapse
Affiliation(s)
- Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Saeideh Mansoori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran.
| |
Collapse
|
13
|
Wei B, Peng Z, Xiao M, Huang T, Zheng W, Xie M, Xiong T. Limosilactobacillus fermentum NCU003089 and Lactiplantibacillus plantarum NCU001261, two probiotics with inhibition of Escherichia coli and Cronobacter sakazakii translocation in vitro. Microb Pathog 2023:106216. [PMID: 37391100 DOI: 10.1016/j.micpath.2023.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
The subject of this study was to screen lactic acid bacteria (LAB) with pathogen translocation inhibition and investigate the potential inhibition mechanism of it. Pathogens colonized in the intestine could cross the intestinal barrier to access blood circulation, causing severe complications. This study aimed to screen LAB with favorable inhibitory effects on the translocation of enterinvasive Escherichia coli CMCC44305 (E. coli) and Cronobacter sakazakii CMCC45401 (C. sakazakii), which were two common intestinal opportunistic pathogens. After an elaborate screening procedure including adhesion, antibacterial, and translocation assay, Limosilactobacillus fermentum NCU003089 (L. fermentum NCU3089) and Lactiplantibacillus plantarum NCU0011261 (L. plantarum NCU1261) were found to inhibit 58.38% and 66.85% of pathogen translocation, respectively. Subsequently, LAB pre-treatment suppressed the decline in TEER of Caco-2 monolayers caused by pathogens. Meanwhile, L. fermentum NCU3089 significantly inhibited claudin-1, ZO-1, and JAM-1 degradation caused by E. coli, and L. plantarum NCU1261 markedly reduced claudin-1 degradation caused by C. sakazakii. Also, the two LAB strains significantly decreased TNF-α level. In addition, L. fermentum NCU3089 but not L. plantarum NCU1261 tolerated well in the gastrointestinal fluids, and they were both sensitive or intermediate to nine common clinical antibiotics without hemolytic activity. In short, the two LAB strains could inhibit pathogen translocation by competing for adhesion sites, secreting antibacterial substances, reducing inflammatory cytokines levels, and maintaining intestinal barrier integrity. This study provided a feasible solution to prevent pathogen infection and translocation, and the two LAB strains were safe and had potential in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Benliang Wei
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Zhen Peng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
| | - Muyan Xiao
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Huang
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Wendi Zheng
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.
| |
Collapse
|
14
|
Liang D, Wu F, Zhou D, Tan B, Chen T. Commercial probiotic products in public health: current status and potential limitations. Crit Rev Food Sci Nutr 2023; 64:6455-6476. [PMID: 36688290 DOI: 10.1080/10408398.2023.2169858] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Consumption of commercial probiotics for health improvement and disease treatment has increased in popularity among the public in recent years. The local shops and pharmacies are brimming with various probiotic products such as probiotic food, dietary supplement and pharmaceuticals that herald a range of health benefits, from nutraceutical benefits to pharmaceutical effects. However, although the probiotic market is expanding rapidly, there is increasing evidence challenging it. Emerging insights from microbiome research and public health demonstrate several potential limitations of the natural properties, regulatory frameworks, and market consequences of commercial probiotics. In this review, we highlight the potential safety and performance issues of the natural properties of commercial probiotics, from the genetic level to trait characteristics and probiotic properties and further to the probiotic-host interaction. Besides, the diverse regulatory frameworks and confusing probiotic guidelines worldwide have led to product consequences such as pathogenic contamination, overstated claims, inaccurate labeling and counterfeit trademarks for probiotic products. Here, we propose a plethora of available methods and strategies related to strain selection and modification, safety and efficacy assessment, and some recommendations for regulatory agencies to address these limitations to guarantee sustainability and progress in the probiotic industry and improve long-term public health and development.
Collapse
Affiliation(s)
- Dingfa Liang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- Queen Mary School, Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Dexi Zhou
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Buzhen Tan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
- National Engineering Research Centre for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Zhou Y, Gong W, Xu C, Zhu Z, Peng Y, Xie C. Probiotic assessment and antioxidant characterization of Lactobacillus plantarum GXL94 isolated from fermented chili. Front Microbiol 2022; 13:997940. [PMID: 36466645 PMCID: PMC9712218 DOI: 10.3389/fmicb.2022.997940] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/25/2022] [Indexed: 10/03/2023] Open
Abstract
Oxidative stress is caused by an imbalance between prooxidants and antioxidants, which is the cause of various chronic human diseases. Lactic acid bacteria (LAB) have been considered as an effective antioxidant to alleviate oxidative stress in the host. To obtain bacterium resources with good antioxidant properties, in the present study, 113 LAB strains were isolated from 24 spontaneously fermented chili samples and screened by tolerance to hydrogen peroxide (H2O2). Among them, Lactobacillus plantarum GXL94 showed the best antioxidant characteristics and the in vitro antioxidant activities of this strain was evaluated extensively. The results showed that L. plantarum GXL94 can tolerate hydrogen peroxide up to 22 mM, and it could normally grow in MRS with 5 mM H2O2. Its fermentate (fermented supernatant, intact cell and cell-free extract) also had strong reducing capacities and various free radical scavenging capacities. Meanwhile, eight antioxidant-related genes were found to up-regulate with varying degrees under H2O2 challenge. Furthermore, we evaluated the probiotic properties by using in vitro assessment. It was showed that GXL94 could maintain a high survival rate at pH 2.5% or 2% bile salt or 8.0% NaCl, live through simulated gastrointestinal tract (GIT) to colonizing the GIT of host, and also show higher abilities of auto-aggregation and hydrophobicity. Additionally, the usual antibiotic susceptible profile and non-hemolytic activity indicated the safety of the strain. In conclusion, this study demonstrated that L. plantarum GXL94 could be a potential probiotic candidate for producing functional foods with antioxidant properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
16
|
Fan S, Xue T, Bai B, Bo T, Zhang J. Probiotic Properties Including the Antioxidant and Hypoglycemic Ability of Lactic Acid Bacteria from Fermented Grains of Chinese Baijiu. Foods 2022; 11:foods11213476. [PMID: 36360089 PMCID: PMC9657167 DOI: 10.3390/foods11213476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, lactic acid bacteria (LAB) strains were isolated from fermented grains of traditional Chinese Baijiu, and their probiotic properties were characterized. Eleven out of 29 LAB strains showed good tolerance to the gastrointestinal tract and bile salts. The surface characteristics (auto-aggregation, co-aggregation, hydrophobicity), safety (hemolytic and antibiotic sensitivity), antibacterial activity against three foodborne pathogens, and antioxidant and hypoglycemic properties of the 11 LAB strains were investigated. Principal component analysis (PCA) was used to comprehensively evaluate LAB strains and their probiotic properties. It was found that Weissella cibaria (OP288150), Pediococcus acidilactici (OP288151), Pediococcus pentosaceus (OP288154), Pediococcus pentosaceus (OP288156) and Levilactobacillus brevis (OP288158) showed high probiotic properties, with potential for commercial development. The results also demonstrated that fermented grains of Chinese Baijiu can be used as a source of high-quality probiotics.
Collapse
Affiliation(s)
- Sanhong Fan
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
| | - Tengda Xue
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Baoqing Bai
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
| | - Jinhua Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Research and Utilization of Characteristic Plant Resources, Shanxi University, Taiyuan 030006, China
- Correspondence:
| |
Collapse
|
17
|
Antimicrobial, anti-biofilm, antioxidant and cytotoxic effects of bacteriocin by Lactococcus lactis strain CH3 isolated from fermented dairy products-An in vitro and in silico approach. Int J Biol Macromol 2022; 220:291-306. [PMID: 35981676 DOI: 10.1016/j.ijbiomac.2022.08.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
Abstract
The current study aimed to screen bacteriocin producing LAB from different dairy products and evaluation of their biological properties. Initially, 12 (4-chess, 4-curd, and 4-yohurt) LAB species were isolated and only 4 isolates alone were selected based on their clear yellow halo zone around the colonies in the selective medium. The selected 4 isolates were identified based on their morphological and biochemical characteristics. Among them, the strain CH3 have showed better antimicrobial effects on selected human pathogens. The isolated strain CH3 were further identified as Lactococcus lactis strain CH3 (MZ636710) by SEM imaging and 16 s rRNA molecular sequencing. Bacteriocin was extracted from L. lactis strain CH3 and partially purified using 60 % ammonium sulphate and then completely purified by G-50 column chromatography. The purified bacteriocin showed a specific activity of 5859.37 AU/mg in 24.7 % of recovery and 10.9-fold purification. The molecular weight of bacteriocin was 3.5 kDa as observed in SDS-PAGE. The bacteriocin showed sensitivity to proteolytic enzymes and resistance to high temperature, wide range of pH, organic solvents and detergents. FT-IR spectral studies of bacteriocin detected the existence of OH/NH-stretching, CH, and COC and CO bonds. NMR spectrum showed one doublet and 4 various singlet peaks at different ppm, indicating the occurrence of six amino acids in the structure of purified bacteriocin. The purified bacteriocin have shown stronger antimicrobial and anti-biofilm activity against selected human pathogens at 100 μg/mL. SEM showed the evidence of structural deformation and loss of membrane integrity of bacterial cells treated with bacteriocin. Bacteriocin exhibited greater DPPH radical scavenging potential with an EC50 value of 12.5 μg/mL. Bacteriocin have not shown significant toxicity on normal human dermal fibroblast (NHDF) cells (83.2 % at 100 μg/ mL). Furthermore, in silico studies using molecular modeling and docking were performed to know the proteins involved in antimicrobial action. The results suggests that bacteriocin could be an alternative to combat AMR pathogens and more suitable for food and dairy industries to preserve food without contamination.
Collapse
|
18
|
Delcarlo SB, Merly M, Gliemmo MF, Vallejo M, Schelegueda LI, Campos CA. Essential oil in vapor phase in combination with Enterococcus mundtii STw38 to improve refrigerated hake fillets shelf-life. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Chaudhari K, Mohan M, Saudagar P, Sable C, Shinde S, Bedade D. In vitro and in vivo evaluation of probiotic potential and safety assessment of Bacillus coagulans SKB LAB-19 (MCC 0554) in humans and animal healthcare. Regul Toxicol Pharmacol 2022; 133:105218. [PMID: 35793725 DOI: 10.1016/j.yrtph.2022.105218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Bacillus coagulans is Gram positive, spore forming and high lactic acid producing bacteria; however, probiotic and safety assessment of the isolated strain need to be investigated for commercial applications. Current study aimed to screen SKB LAB-19 for potential probiotic characteristics viz. enzyme production, antimicrobial properties, pH/bile salt tolerance, temperature stability, antidiarrheal activity in Swiss albino mice and Wistar rats; and acute oral toxicity in mice. The results showed that, SKB LAB-19 produces eight potential enzymes, effective against E. coli and C. perfringensis, tolerant to bile salt (0.3%)/gastric pH (2.5), stable at 40-90 °C and nontoxic to cells. SKB LAB-19 was found to be safe and displayed promising results to reverse E. coli and castor oil induced diarrhoea. Histopathological studies showed repair to damaged mucosal epithelium cells and improves integrity of the goblet cells of colon. SKB LAB-19 showed immunomodulatory effects with increased immunoglobulins in blood and augmented weight of spleen and thymus. In addition, SKB LAB-19 showed significant in-vitro antioxidant activity (82.93%), reducing capacity and ascorbate auto-oxidation inhibition effect (94.62%). These preliminary results suggested that, SKB LAB-19 was found to be safe and has the potential to be used as effective probiotic and anti-diarrhoeal agent in humans and animal healthcare.
Collapse
Affiliation(s)
- Khushal Chaudhari
- Department of Pharmacology, MGV's Pharmacy College, Panchavati, Nasik, 422003, Maharashtra, India
| | - Mahalaxmi Mohan
- Department of Pharmacology, MGV's Pharmacy College, Panchavati, Nasik, 422003, Maharashtra, India
| | - Parag Saudagar
- S K Biobiz Pvt. Ltd. Hall I-2, Sancheti Warehousing Complex, 10th Mile, Mumbai Agra Road, Jaulke, Tal. Dindori, Nasik, 422206, Maharashtra, India
| | - Chetna Sable
- S K Biobiz Pvt. Ltd. Hall I-2, Sancheti Warehousing Complex, 10th Mile, Mumbai Agra Road, Jaulke, Tal. Dindori, Nasik, 422206, Maharashtra, India
| | - Sominath Shinde
- S K Biobiz Pvt. Ltd. Hall I-2, Sancheti Warehousing Complex, 10th Mile, Mumbai Agra Road, Jaulke, Tal. Dindori, Nasik, 422206, Maharashtra, India
| | - Dattatray Bedade
- S K Biobiz Pvt. Ltd. Hall I-2, Sancheti Warehousing Complex, 10th Mile, Mumbai Agra Road, Jaulke, Tal. Dindori, Nasik, 422206, Maharashtra, India.
| |
Collapse
|
20
|
Wu C, Dai C, Tong L, Lv H, Zhou X. Evaluation of the Probiotic Potential of Lactobacillus delbrueckii ssp. indicus WDS-7 Isolated from Chinese Traditional Fermented Buffalo Milk In Vitro. Pol J Microbiol 2022; 71:91-105. [PMID: 35635173 PMCID: PMC9152907 DOI: 10.33073/pjm-2022-012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/19/2022] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from Chinese traditional fermented buffalo milk. Out of 22 isolates, 11 were putatively identified as LAB preliminarily. A total of six LAB strains displayed strong adhesion to HT-29 cells and all these strains showed preferable tolerance to artificially simulated gastrointestinal juices. WDS-4, WDS-7, and WDS-18 exhibited excellent antioxidant capacities, including DPPH radical, ABTS+ radical, and superoxide anion scavenging activities. Compared with the other two LAB strains, WDS-7 had a stronger inhibition effect on four pathogens. Based on the 16S rRNA gene sequencing and phylogenetic analysis, WDS-7 was identified as Lactobacillus delbrueckii ssp. indicus and selected to assess the potential and safety of probiotics further. The results revealed that WDS-7 strain had a strong capacity for acid production and good thermal stability. WDS-7 strain also possessed bile salt hydrolase (BSH) activity. Compared to LGG, WDS-7 was a greater biofilm producer on the plastic surface and exhibited a better EPS production ability (1.94 mg/ml as a glucose equivalent). WDS-7 was proved to be sensitive in the majority of tested antibiotics and absence of hemolytic activity. Moreover, no production of biogenic amines and β-glucuronidase was observed in WDS-7. The findings of this work indicated that L. delbrueckii ssp. indicus WDS-7 fulfilled the probiotic criteria in vitro and could be exploited for further evaluation in vivo.
Collapse
Affiliation(s)
- Changjun Wu
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Lin Tong
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Han Lv
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| | - Xiuhong Zhou
- Anhui Academy of Medical Sciences , Hefei , Anhui Province , China
| |
Collapse
|
21
|
Kamarinou CS, Papadopoulou OS, Doulgeraki AI, Tassou CC, Galanis A, Chorianopoulos NG, Argyri AA. Mapping the Key Technological and Functional Characteristics of Indigenous Lactic Acid Bacteria Isolated from Greek Traditional Dairy Products. Microorganisms 2022; 10:246. [PMID: 35208701 PMCID: PMC8875946 DOI: 10.3390/microorganisms10020246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the current study was to isolate indigenous lactic acid bacteria (LAB) from traditional Greek cheeses and assess their biochemical, technological, and functional characteristics, so as to develop novel cultures with multi-functional properties. Hence, 109 LAB isolates were recovered from traditional fresh cheeses and were evaluated in vitro for their gas production; proteolytic, lipolytic, and haemolytic activity; exopolysaccharide production (EPS); enzymatic potential; and ability to grow at 6.5% NaCl and at different pH, temperature, and anaerobic conditions. Consequently, 48 selected isolates were further evaluated for their survival under simulated gastrointestinal tract conditions, partial bile salt hydrolase activity, antibiotic resistance, and antimicrobial activity against pathogens. These isolates were also incorporated as co-cultures in yogurt production to examine their sensory characteristics and their survival in the product. Some prominent isolates that showed favorable technological and functional characteristics (good survival rates at low pH and bile salts, ability to produce β-galactosidase, and EPS) and attributed desirable sensory characteristics to yogurt were Lactococcuslactis (SRX2, SRX3, SRX5, and SMX16), Lactobacillus paracasei SRX10, and Lactiplantibacillusplantarum (FRX7, FB1), while Leuconostoc mesenteroides FMX3 and L. lactis SMX2 showed an anti-listerial activity in vitro. The results of the present study are promising for the production of novel dairy functional products with an enhanced quality and safety.
Collapse
Affiliation(s)
- Christina S. Kamarinou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Olga S. Papadopoulou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| | - Agapi I. Doulgeraki
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Nikos G. Chorianopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| | - Anthoula A. Argyri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece; (C.S.K.); (O.S.P.); (A.I.D.); (C.C.T.)
| |
Collapse
|
22
|
INAYAH I, WIBOWO MS, JULIANTI E, SUCIATI T. Characterization of Lactobacillus zeae as probiotic and starter culture for tamarillo fermented product. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.54021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Istiyati INAYAH
- Institut Teknologi Bandung, Indonesia; Pasundan University, Indonesia
| | | | | | | |
Collapse
|
23
|
Potential Use of Lactic Acid Bacteria with Pathogen Inhibitory Capacity as a Biopreservative Agent for Chorizo. Processes (Basel) 2021. [DOI: 10.3390/pr9091582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The biopreservation of meat products is of great interest due to the demand for products with low or minimal chemical additives. Lactic acid bacteria (LAB) have been used as protective cultures for many centuries. The objective of this work was to characterize 10 native LAB isolated from meat masses with biopreservative potential for meat products. The isolates were subjected to viability tests with different concentrations of NaCl, nitrite, and nitrate salts, pHs, and temperature conditions. Antibiotic resistance and type of lactic acid isomer were tested. In addition, the isolates were tested against seven pathogens, and inhibitory substances were identified by diffusion in agar wells. Finally, two isolates, Lb. plantarum (SB17) and Lb. sakei (SB3) were tested as protective cultures of chorizo in a model. As a result, the viability at different concentrations of NaCl and nitrate and nitrate salts were obtained. pH and temperature exerted a negative effect on the growth of some of the isolates. Pathogens were inhibited mainly by the presence of organic acids; P. aurius was the most susceptible, and S. typhimurium and S. marcescens were the most resistant. The strains SB17 and SB3 had similar effects on chorizo, and time exerted a deleterious effect on microbiological quality and pH. The results indicated that the 10 isolates show promising characteristics for the preservation of cooked meat products, with the strain Lb. plantarum (SB17) being the most promising.
Collapse
|
24
|
Potential probiotic lactic acid bacteria isolated from fermented gilaburu and shalgam beverages. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Ayyash MM, Abdalla AK, AlKalbani NS, Baig MA, Turner MS, Liu SQ, Shah NP. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J Dairy Sci 2021; 104:8363-8379. [PMID: 33934857 DOI: 10.3168/jds.2021-20398] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.
Collapse
Affiliation(s)
- Mutamed M Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates.
| | - Abdelmoneim K Abdalla
- Food Science Department, College of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Nadia S AlKalbani
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohd Affan Baig
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2 117542, Singapore
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
26
|
Rodríguez-Sánchez S, Fernández-Pacheco P, Seseña S, Pintado C, Palop ML. Selection of probiotic Lactobacillus strains with antimicrobial activity to be used as biocontrol agents in food industry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Hossain MI, Kim K, Rahaman Mizan MF, Toushik SH, Ashrafudoulla M, Roy PK, Nahar S, Jahid IK, Choi C, Park SH, Ha SD. Comprehensive molecular, probiotic, and quorum-sensing characterization of anti-listerial lactic acid bacteria, and application as bioprotective in a food (milk) model. J Dairy Sci 2021; 104:6516-6534. [PMID: 33741164 DOI: 10.3168/jds.2020-19034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Listeria monocytogenes is a major foodborne pathogen that adversely affects the food industry. In this study, 6 anti-listerial lactic acid bacteria (LAB) isolates were screened. These anti-listerial LAB isolates were identified via 16S rRNA gene sequencing and analyzed via repetitive extragenic palindromic-PCR. Probiotic assessment of these isolates, comprising an evaluation of the antibiotic susceptibility, tolerance to lysozyme, simulated gastric and intestinal juices, and gut conditions (low pH, bile salts, and 0.4% phenol), was carried out. Most of the isolates were resistant to streptomycin, vancomycin, gentamycin, kanamycin, and ciprofloxacin. All of the isolates were negative for virulence genes, including agg, ccf, cylA, cylB, cylLL, cylLS, cylM, esp, and gelE, and hemolytic activity. Furthermore, autoinducer-2 (a quorum-sensing molecule) was detected and quantified via HPLC with fluorescence detection after derivatization with 2,3-diaminonaphthalene. Metabolites profiles of the Lactobacillus sakei D.7 and Lactobacillus plantarum I.60 were observed and presented various organic acids linked with antibacterial activity. Moreover, freeze-dried cell-free supernatants from Lb. sakei (55 mg/mL) and Lb. plantarum (40 mg/mL) showed different minimum effective concentration (MEC) against L. monocytogenes in the food model (whole milk). In summary, these anti-listerial LAB isolates do not pose a risk to consumer health, are eco-friendly, and may be promising candidates for future use as bioprotective cultures and new probiotics to control contamination by L. monocytogenes in the food and dairy industries.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Kyeongjun Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Md Furkanur Rahaman Mizan
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Sazzad Hossen Toushik
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Md Ashrafudoulla
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Pantu Kumar Roy
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Shamsun Nahar
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, Chung-Ang University, Anseong, 17546, South Korea
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis 97331
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Brain Korea 21 Plus, Chung-Ang University, Anseong, 17546, South Korea.
| |
Collapse
|
28
|
Beldarrain-Iznaga T, Villalobos-Carvajal R, Sevillano-Armesto E, Leiva-Vega J. Functional properties of Lactobacillus casei C24 improved by microencapsulation using multilayer double emulsion. Food Res Int 2021; 141:110136. [PMID: 33642003 DOI: 10.1016/j.foodres.2021.110136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
To provide their health effect, probiotics need to maintain their viability, adhere to the intestinal epithelium, and colonize it without losing their probiotic properties. In the present study, Lactobacillus casei was encapsulated in a double emulsion and then coated with alginate and chitosan using the layer-by-layer electrostatic deposition technique. The survival rate and functional properties of L. casei (cholesterol assimilation, surface hydrophobicity, auto-aggregation, and co-aggregation) were evaluated after the freeze-drying process and during the transit through the simulated gastrointestinal tract. Reservoir type multilayer microcapsules with a small particle size (6.2-12.2 μm) were obtained. Freeze-dried microcapsules maintained the initial cell count (9.4 log UFC/g) without affecting its functional properties. The resistance of L. casei cells to the conditions of salivary, gastric, and intestinal digestion was noticeably improved when increasing the number of layers in the microcapsules, especially when they were coated with alginate and chitosan. The alginate-chitosan layers provided additional protection to L. casei cell membranes, substantially preserving the cholesterol assimilation ability, surface hydrophobicity, auto-aggregation, and co-aggregation of L. casei after simulated in vitro digestion. This encapsulation method not only guarantees the presence of the probiotic in the gastrointestinal tract, but it does not lose its probiotic properties and ensures that it exerts its probiotic effect.
Collapse
Affiliation(s)
- Tatiana Beldarrain-Iznaga
- Universidad del Bío-Bío, Food Engineering Department, Avenida Andrés Bello 720, PO Box 447, Chillán, Chile; Universidad del Bío-Bío, Biopolymer Research Group, Food Engineering Department, Avenida Andrés Bello 720, PO Box 447, Chillán, Chile.
| | - Ricardo Villalobos-Carvajal
- Universidad del Bío-Bío, Food Engineering Department, Avenida Andrés Bello 720, PO Box 447, Chillán, Chile; Universidad del Bío-Bío, Biopolymer Research Group, Food Engineering Department, Avenida Andrés Bello 720, PO Box 447, Chillán, Chile.
| | - Eva Sevillano-Armesto
- Microbiology Department, Food Industry Research Institute, Guatao Road, km 3 ½, Havana, Cuba.
| | - Javier Leiva-Vega
- Universidad del Bío-Bío, Food Engineering Department, Avenida Andrés Bello 720, PO Box 447, Chillán, Chile; Universidad del Bío-Bío, Biopolymer Research Group, Food Engineering Department, Avenida Andrés Bello 720, PO Box 447, Chillán, Chile.
| |
Collapse
|
29
|
Sharma A, Lavania M, Singh R, Lal B. Identification and probiotic potential of lactic acid bacteria from camel milk. Saudi J Biol Sci 2020; 28:1622-1632. [PMID: 33732048 PMCID: PMC7938203 DOI: 10.1016/j.sjbs.2020.11.062] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/14/2020] [Indexed: 01/16/2023] Open
Abstract
In the present study, a total of 80 presumed lactic acid bacteria (LAB) were isolated from camel milk. Selected LAB were identified as Lactococcus lactis (cam 12), Enterococcus lactis (cam 14) and Lactobacillus plantarum (cam 15) and their potential were tested by tolerance & de-conjugation of bile salts, antimicrobial activity, surface hydrophobicity and adhesion potential) along with this of probiotics were evaluated for curd formation and assessed for sensory properties and syneresis. Selected LABs showed antimicrobial activity against wide range of pathogenic bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus cereus and Escherchiaia. coli). LAB (cam 12, cam 14 and cam15) were highly sceptible to chloramphenicol, vancomycin, and tetracyclin. In vitro adhesion studies with Caco-2 cells demonstrated strong adhesion activity with hydrophobicity (99%) was observed. Acute oral toxicity of E. lactis and L. plantarum showed non-toxic, non-virulent and safe for industrial application. The study provides potential LAB which may act as a substitute of functional food, synthetic feed and industrial curd formulation with in the shortest span (240 min at 28–32 °C).
Collapse
Affiliation(s)
- Anjali Sharma
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| | - Meeta Lavania
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| | - Raghvendar Singh
- Department of Biochemistry, National Research Centre on Camel, Jorbeer, Bikaner, India
| | - Banwari Lal
- Microbial Biotechnology, Environmental and Industrial Biotechnology Division, The Energy and Resources Institute (TERI), New Delhi, India
| |
Collapse
|
30
|
Rezaei M, Noori N, Shariatifar N, Gandomi H, Akhondzadeh Basti A, Mousavi Khaneghah A. Isolation of lactic acid probiotic strains from Iranian camel milk: Technological and antioxidant properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Oussaief O, Jrad Z, Sbissi I, Nasri W, Khorchani T, El‐Hatmi H. Technological and probiotic potential of autochthonous lactic acid bacteria from spontaneously fermented dromedary milk. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Olfa Oussaief
- Livestock and Wildlife Laboratory Arid Lands Institute of Medenine University of Gabes Medenine Tunisia
| | - Zeineb Jrad
- Livestock and Wildlife Laboratory Arid Lands Institute of Medenine University of Gabes Medenine Tunisia
| | - Imed Sbissi
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms Arid Lands Institute of Medenine University of Gabes Medenine Tunisia
| | - Waâd Nasri
- Livestock and Wildlife Laboratory Arid Lands Institute of Medenine University of Gabes Medenine Tunisia
| | - Touhami Khorchani
- Livestock and Wildlife Laboratory Arid Lands Institute of Medenine University of Gabes Medenine Tunisia
- Central Laboratory Arid Lands Institute of Medenine University of Gabes Medenine Tunisia
| | - Halima El‐Hatmi
- Livestock and Wildlife Laboratory Arid Lands Institute of Medenine University of Gabes Medenine Tunisia
- Department of Food, High Institute of Applied Biology of Medenine University of Gabes Medenine Tunisia
| |
Collapse
|
32
|
Huang J, Zhang W, Hu Z, Liu Z, Du T, Dai Y, Xiong T. Isolation, characterization and selection of potential probiotic lactic acid bacteria from feces of wild boar, native pig and commercial pig. Livest Sci 2020; 237:104036. [DOI: 10.1016/j.livsci.2020.104036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Lim P, Loke C, Ho Y, Tan H. Cholesterol homeostasis associated with probiotic supplementation
in vivo. J Appl Microbiol 2020; 129:1374-1388. [DOI: 10.1111/jam.14678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Affiliation(s)
- P.S. Lim
- Faculty of Applied Sciences Tunku Abdul Rahman University College Kuala Lumpur Malaysia
| | - C.F. Loke
- Faculty of Applied Sciences Tunku Abdul Rahman University College Kuala Lumpur Malaysia
| | - Y.W. Ho
- Institute of Biosience Universiti Putra Malaysia Selangor Malaysia
| | - H.Y. Tan
- Faculty of Applied Sciences Tunku Abdul Rahman University College Kuala Lumpur Malaysia
| |
Collapse
|
34
|
El-Deeb WM, Fayez M, Elsohaby I, Ghoneim I, Al-Marri T, Kandeel M, ElGioushy M. Isolation and characterization of vaginal Lactobacillus spp. in dromedary camels ( Camelus dromedarius): in vitro evaluation of probiotic potential of selected isolates. PeerJ 2020; 8:e8500. [PMID: 32071813 PMCID: PMC7007732 DOI: 10.7717/peerj.8500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/01/2020] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus spp. is one of the beneficial lactic acid producing microbiota in the vagina, which is important for a healthy vaginal environment. However, little is known about vaginal Lactobacillus in dromedary camels (Camelus dromedarius). Therefore, this study aimed to isolate vaginal lactic acid bacteria (LAB) in dromedary camels and to study the probiotic potential of selected isolates. A total of 75 vaginal swabs were collected from pluriparous, non-pregnant, non-lactating dromedary camels. The LAB were isolated using deMan, Rogosa and Sharpe broth and agar media. Suspected LAB isolates were subjected to catalase testing and Gram staining and examined for indole production, nitrate reduction, hemolytic activity, cell surface hydrophobicity, auto- and coaggregation, antibacterial activity and characterized by 16S rRNA amplification and sequencing. Eighteen LABs were isolated from the 75 vaginal swabs. Among the 18 LAB isolates, six were Lactobacillus plantarum, eight were Lactobacillus fermentum, and four were Lactobacillus rhamnosus. None of the LAB isolates was hemolytic and only four LAB were H2O2 producing. The percentage of hydrophobicity ranged from 0% to 49.6%, 0% to 44.3% and 0% to 41.6% for hexadecane, xylene and toluene, respectively. All isolates showed higher (P < 0.05) autoaggregation after 24 h of incubation compared to 4 h. Furthermore, all LAB showed higher coaggregation (P < 0.05) and antimicrobial activity toward Staphylococcus aureus than to Escherichia coli. All LAB isolates were vancomycin resistant and sensitive to streptomycin, erythromycin, kanamycin and chloramphenicol. Only, three LAB isolates were resistant to tetracycline. The dromedary camel vaginal LAB isolates exhibited varying degrees of in vitro probiotic properties tested in this study and showed promising activity against the most common bacterial causes of endometritis in dromedary camels. Further investigation of the in vivo effect of these isolates is warranted.
Collapse
Affiliation(s)
- Wael M. El-Deeb
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Veterinary Medicine, Infectious Diseases and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud Fayez
- Ministry of Agriculture, Al-Ahsa Veterinary Diagnostic Laboratory, Al-Ahsa, Saudi Arabia
- Veterinary Serum and Vaccine Research institute, Ministry of Agriculture, Cairo, Egypt
| | - Ibrahim Elsohaby
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia Governorate, Egypt
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Ibrahim Ghoneim
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Theeb Al-Marri
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Elsheikh, Egypt
| | - Magdy ElGioushy
- Department of Animal Medicine, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| |
Collapse
|
35
|
Application of unsupervised clustering algorithm and heat-map analysis for selection of lactic acid bacteria isolated from dairy samples based on desired probiotic properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Hossain MI, Mizan MFR, Ashrafudoulla M, Nahar S, Joo HJ, Jahid IK, Park SH, Kim KS, Ha SD. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108864] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Zhang Y, Ma Y, Zhang R, Zhang B, Zhai X, Li W, Xu L, Jiang Q, Duan J, Hou B. Metagenomic Resolution of Functional Diversity in Copper Surface-Associated Marine Biofilms. Front Microbiol 2019; 10:2863. [PMID: 31921043 PMCID: PMC6917582 DOI: 10.3389/fmicb.2019.02863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/26/2019] [Indexed: 01/16/2023] Open
Abstract
We used metagenomic sequencing combined with morphological and chemical analyses to investigate microbial taxa and functions related to copper-resistance and microbiologically influenced corrosion in mature copper-associated biofilms in coastal seawater for 44 months. Facultative anaerobic microbes such as Woeseia sp. were found to be the dominant groups on the copper surface. Genes related to stress response and possible heavy metal transport systems, especially RNA polymerase sigma factors (rpoE) and putative ATP-binding cassette (ABC) transport system permease protein (ABC.CD.P) were observed to be highly enriched in copper-associated biofilms, while genes encoding DNA-methyltransferase and RNA polymerase subunit were highly enriched in aluminum-associated biofilms and seawater planktonic cells, respectively. Moreover, copper-associated biofilms harbored abundant copper-resistance genes including cus, cop and pco, as well as abundant genes related to extracellular polymeric substances, indicating the presence of diverse copper-resistance patterns. The proportion of dsr in copper-associated biofilms, key genes related to sulfide production, was as low as that in aluminum biofilm and seawater, which ruled out the possibility of microbial sulfide-induced copper-corrosion under field conditions. These results may fill knowledge gaps about the in situ microbial functions of marine biofilms and their effects on toxic-metal corrosion.
Collapse
Affiliation(s)
- Yimeng Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yan Ma
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources, Hanover, Germany
| | - Binbin Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Wangqiang Li
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Liting Xu
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Quantong Jiang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
38
|
Abstract
Abstract
Purpose
Lactic acid bacteria (LAB) are traditionally employed in the food industry. LAB strains from goat milk may also present probiotic potential, and it is fundamental to study the safety and functionality aspects which are desirable for their use in food. The objective of this study was to verify the probiotic potential of lactic bacteria isolated from goat milk.
Methods
The presence of safety-related virulence factors (hemolytic activity, gelatinase production, coagulase, and sensitivity to antibiotics) as well as functionality (exopolysaccharide (EPS) production, proteolytic activity, autoaggregation, gas production, survival in the gastrointestinal tract, and antimicrobial activity against bacteria that impair oral health) were determined.
Result
The selected LAB strains are safe against the evaluated parameters and have characteristics of possible probiotic candidates. Especially L. plantarum (DF60Mi) and Lactococcus lactis (DF04Mi) have potential to be added to foods because they have better resistance to simulated gastrointestinal conditions. In addition, they are isolated with already proven antimicrobial activity against Listeria monocytogenes, an important food-borne pathogen. DF60Mi was able to produce EPS (exopolysaccharides). LS2 and DF4Mi strains, both Lactococcus lactis subsp. lactis, demonstrated antimicrobial activity against S. mutans ATCC 25175, a recurrent microorganism in oral pathologies, mainly caries.
Conclusion
This study provides subsidies for future exploration of the potentialities of these LAB strains for both the development of new functional foods and for application in oral health.
Collapse
|
39
|
AlKalbani NS, Turner MS, Ayyash MM. Isolation, identification, and potential probiotic characterization of isolated lactic acid bacteria and in vitro investigation of the cytotoxicity, antioxidant, and antidiabetic activities in fermented sausage. Microb Cell Fact 2019; 18:188. [PMID: 31690323 PMCID: PMC6833168 DOI: 10.1186/s12934-019-1239-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Probiotic bacteria can provide health benefits when delivered in functional foods. This study involved isolation of lactic acid bacteria (LAB) from traditionally dried and salted anchovy fish and characterization of their survival in simulated gastrointestinal digestion. Promising strains were used to prepare fermented fish sausages which were then evaluated for cytotoxicity activity against two cancer cell-lines, antidiabetic activity as determined by α-amylase and α-glucosidase inhibition, and antioxidant and proteolytic activities in vitro, as compared to non-fermented control sausages. RESULTS Out of 85 LAB obtained, 13 isolates with high tolerance to simulated gastrointestinal digestion were obtained, which were identified as Enterococcus spp. Four E. faecium strains, one E. faecalis, and one E. durans were used separately to make fermented fish sausages. The α-amylase and α-glucosidase inhibition from fish sausages fermented by Enterococcus spp. ranged from 29.2 to 68.7% and 23.9 to 41.4%, respectively, during 21 days of storage. The cytotoxicity activities against Caco2 and MCF-7 cells of fish sausages fermented with Enterococcus spp. ranged from 18.0 to 24% and 13.9 to 27.9%, respectively. Cytotoxicity activities correlated positively with proteolysis and antioxidant activities, α-amylase and α-glucosidase inhibition activities, but negatively with the pH in fermented fish sausages. Strains also exhibited antimicrobial activity against foodborne pathogens and presented no significant concerns with regards to antibiotic resistance or virulence gene content. CONCLUSIONS Fish sausages fermented by potential probiotic isolates of Enterococcus spp. from dried fish had valuable health-promoting benefits compared with non-fermented control sausages.
Collapse
Affiliation(s)
- Nadia S AlKalbani
- Department Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland (UQ), Brisbane, Australia
| | - Mutamed M Ayyash
- Department Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, UAE.
| |
Collapse
|
40
|
Kazancıgil E, Demirci T, Öztürk-Negiş Hİ, Akın N. Isolation, technological characterization and in vitro probiotic evaluation of Lactococcus strains from traditional Turkish skin bag Tulum cheeses. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01512-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
41
|
Jung J, Kim S, Lee JY, Yoon S, You S, Kim SH. Multifunctional properties of Lactobacillus plantarum strains WiKim83 and WiKim87 as a starter culture for fermented food. Food Sci Nutr 2019; 7:2505-2516. [PMID: 31428338 PMCID: PMC6694436 DOI: 10.1002/fsn3.1075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/04/2023] Open
Abstract
This study aimed to evaluate the safety (hemolysis and enzyme activity), probiotic properties (gastrointestinal tract tolerance, adhesion, hydrophobicity, and auto-aggregation), and functional characteristics (antimicrobial, antioxidant, and β-galactosidase activities) of lactic acid bacteria (LAB), isolated from kimchi, in order to select a multifunctional LAB strain for starter culture in fermented food. The five isolated strains included Lactobacillus plantarum WiKim83, L. plantarum WiKim84, Pediococcus pentosaceus WiKim85, P. pentosaceus WiKim86, and L. plantarum WiKim87, as identified by 16S rRNA gene sequence analysis; they were confirmed to be nonhemolytic and not able to produce β-glucuronidase, a carcinogenic enzyme. Probiotic properties of the five LAB strains were evaluated relative to those of commercial Lactobacillus rhamnosus GG, and results revealed probiotic potential of three strains (L. plantarum WiKim83, L. plantarum WiKim84, and L. plantarum WiKim87) to be superior. L. plantarum WiKim84 showed high antimicrobial activity against pathogens, and L. plantarum WiKim83 exhibited the highest antioxidant and β-galactosidase activities. Based on the probiotic and functional properties, the main characteristics of each strain were highlighted and two of them, L. plantarum WiKim83 and L. plantarum WiKim87, were selected as the most potent by principal component analysis. These strains showed antimicrobial, β-galactosidase, and antioxidant activities, which recommend their suitability as starter culture in various fermented foods.
Collapse
Affiliation(s)
- Ji‐Hye Jung
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - Su‐Ji Kim
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - Jae Yong Lee
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - So‐Ra Yoon
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - Su‐Yeon You
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| | - Sung Hyun Kim
- Hygienic Safety and Analysis CenterWorld Institute of KimchiGwangjuKorea
| |
Collapse
|
42
|
Hypocholesterolaemic activity of a novel autochthonous potential probiotic Lactobacillus plantarum YS5 isolated from yogurt. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Xu Y, Tian Y, Cao Y, Li J, Guo H, Su Y, Tian Y, Wang C, Wang T, Zhang L. Probiotic Properties of Lactobacillus paracasei subsp. paracasei L1 and Its Growth Performance-Promotion in Chicken by Improving the Intestinal Microflora. Front Physiol 2019; 10:937. [PMID: 31404251 PMCID: PMC6670285 DOI: 10.3389/fphys.2019.00937] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus paracasei subsp. paracasei L1 was previously isolated from sweet potato sour liquid. This bacterial species specifically binds onto starch granular surfaces, triggering the enzymatic hydrolysis of raw starch. We investigated the functional and safety properties of strain L1 in vitro to establish its probiotic potential, and analyzed its effect on growth performance and intestinal microflora of chicken in feeding experiments. The optimal growth conditions of strain L1 included low pH and high concentrations of bile salts and NaCl. Its 1-, 2-, and 24-h autoaggregation values were 15.8 ± 1.2%, 20.4 ± 2.3%, and 47.2 ± 0.8%, respectively, with the surface hydrophobicity value at 560 nm of 38.1 ± 2.7%. Further, its adhesion rate to Caco-2 cells was 22.37 ± 1.44%. Strain L1 was resistant to erythromycin and azithromycin, but sensitive to other antibiotics tested. For the feeding experiments, 240 chickens with similar weights were randomly divided into a control (C) group and strain L1 (L) group and fed for 8 weeks. Strain L1 promoted the weight gain of chickens in L group. A significant increase in the population size of the two phyla and 23 genera in the small intestine was observed in the presence of strain L1 (P < 0.05), with 0 phyla and 4 genera showing significant increase in the cecum (P < 0.05). In the small intestine, the abundance of six functional genes at Kyoto Encyclopedia of Genes and Genomes (KEGG) level 2 and 49 genes at KEGG level 3 was significantly increased in group L (P < 0.05), with lesser changes noted in the cecum. An increase in the metabolic pathway functions, including enzyme families and the digestive system, was observed in the intestinal microbiota in the L group compared to the C group. However, the other metabolic pathway functions, including metabolism of fatty acid biosynthesis, as well as metabolism of glycerolipids and propanoate, increased in the cecal microbiota of the L group relative to the C group. These changes are most likely related to the changes in the gut microbiota composition. Collectively, strain L1 supplementation may promote growth performance and improve the intestinal microflora in chicken although further studies are needed to confirm this.
Collapse
Affiliation(s)
- Yunhe Xu
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yuan Tian
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yunfang Cao
- Tianwang Animal Health Supervision Institute, Jinzhou Economic and Technological Development Zone, Jinzhou, China
| | - Jianguo Li
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Haonan Guo
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yuhong Su
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Yumin Tian
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Cheng Wang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Tianqi Wang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Lili Zhang
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
44
|
Characterization and antioxidant ability of potential probiotic lactic acid bacteria in ogi liquor and lemon juice-ogi liquor. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
45
|
Kalhoro MS, Visessanguan W, Nguyen LT, Anal AK. Probiotic potential of
Lactobacillus paraplantarum
BT‐11 isolated from raw buffalo (
Bubalus bubalis
) milk and characterization of bacteriocin‐like inhibitory substance produced. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Muhammad Saleem Kalhoro
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources Asian Institute of Technology Pathumthani Thailand
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC) National Science and Technology Development Agency (NSTDA) Pathumthani Thailand
| | - Loc Thai Nguyen
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources Asian Institute of Technology Pathumthani Thailand
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources Asian Institute of Technology Pathumthani Thailand
| |
Collapse
|
46
|
Ayala DI, Cook PW, Franco JG, Bugarel M, Kottapalli KR, Loneragan GH, Brashears MM, Nightingale KK. A Systematic Approach to Identify and Characterize the Effectiveness and Safety of Novel Probiotic Strains to Control Foodborne Pathogens. Front Microbiol 2019; 10:1108. [PMID: 31156609 PMCID: PMC6533568 DOI: 10.3389/fmicb.2019.01108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
A total of 44 lactic acid bacteria (LAB) strains originally isolated from cattle feces and different food sources were screened for their potential probiotic features. The antimicrobial activity of all isolates was tested by well-diffusion assay and competitive exclusion on broth against Salmonella Montevideo, Escherichia coli O157:H7 and Listeria monocytogenes strain N1-002. Thirty-eight LAB strains showed antagonistic effect against at least one of the pathogens tested in this study. Improved inhibitory effect was observed against L. monocytogenes with zones of inhibition up to 24 mm when LAB overnight cultures were used, and up to 21 mm when cell-free filtrates were used. For E. coli O157:H7 and Salmonella maximum inhibitions of 12 and 11.5 mm were observed, respectively. On broth, 43 strains reduced L. monocytogenes up to 9.06 log10 CFU/ml, 41 reduced E. coli O157:H7 up to 0.84 log10 CFU/ml, and 32 reduced Salmonella up to 0.94 log10 CFU/ml 24 h after co-inoculation. Twenty-eight LAB isolates that exhibited the highest inhibitory effect among pathogens were further analyzed to determine their antimicrobial resistance profile, adhesion potential, and cytotoxicity to Caco-2 cells. All LAB strains tested were susceptible to ampicillin, linezolid, and penicillin. Twenty-six were able to adhere to Caco-2 cells, five were classified as highly adhesive with > 40 bacterial cells/Caco-2 cells. Low cytotoxicity percentages were observed for the candidate LAB strains with values ranging from -5 to 8%. Genotypic identification by whole genome sequencing confirmed all as members of the LAB group; Enterococcus was the genus most frequently isolated with 21 isolates, followed by Pediococcus with 4, and Lactobacillus with 3. In this study, a systematic approach was used for the improved identification of novel LAB strains able to exert antagonistic effect against important foodborne pathogens. Our findings suggest that the selected panel of LAB probiotic strains can be used as biocontrol cultures to inhibit and/or reduce the growth of L. monocytogenes, Salmonella, and E. coli O157:H7 in different matrices, and environments.
Collapse
Affiliation(s)
- Diana I Ayala
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Peter W Cook
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States.,Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Jorge G Franco
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Marie Bugarel
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Kameswara R Kottapalli
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Guy H Loneragan
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mindy M Brashears
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| | - Kendra K Nightingale
- International Center for Food Industry Excellence, Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
47
|
Nami Y, Vaseghi Bakhshayesh R, Mohammadzadeh Jalaly H, Lotfi H, Eslami S, Hejazi MA. Probiotic Properties of Enterococcus Isolated From Artisanal Dairy Products. Front Microbiol 2019; 10:300. [PMID: 30863379 PMCID: PMC6400110 DOI: 10.3389/fmicb.2019.00300] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
The present study focused on probiotic characterization and safety evaluation of Enterococcus isolates from different artisanal dairy products. All the isolates exhibited inhibitory activity against several food spoilage bacteria and food-borne pathogens, including Shigella flexneri, Staphylococcus aureus, Listeria monocytogenes, Yersinia enterocolitica, Klebsiella pneumoniae, Escherichia coli, and Bacillus subtilis. The PCR results indicated the presence of at least one enterocin structural gene in all the tested strains. The Enterococcus isolates were further evaluated regarding their safety properties and functional features. The isolates were susceptible to vancomycin, gentamycin, and chloramphenicol. The results of PCR amplification revealed that all the tested isolates harbored none of the tested virulence genes except E. faecalis (ES9), which showed the presence of esp gene. The Enterococcus isolates showed cholesterol lowering properties. The selected isolates showed a high tolerance to low pH, and toward bile salts. They also demonstrated hydrophobicity activity, auto-aggregation, and adhesion ability to the human intestinal Caco-2 cell line. These properties may contribute the bacteria colonizing the gut. This study revealed that the Enterococcus isolates, especially E. durans ES11, ES20 and ES32, might be excellent candidates for production of functional foods to promote health benefits.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Reza Vaseghi Bakhshayesh
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Hossein Mohammadzadeh Jalaly
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Hajie Lotfi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Solat Eslami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Amin Hejazi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
48
|
Nami Y, Haghshenas B, Vaseghi Bakhshayesh R, Mohammadzadeh Jalaly H, Lotfi H, Eslami S, Hejazi MA. Novel autochthonous lactobacilli with probiotic aptitudes as a main starter culture for probiotic fermented milk. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Vasiee A, Alizadeh Behbahani B, Tabatabaei Yazdi F, Mortazavi SA, Noorbakhsh H. Diversity and Probiotic Potential of Lactic Acid Bacteria Isolated from Horreh, a Traditional Iranian Fermented Food. Probiotics Antimicrob Proteins 2018; 10:258-268. [PMID: 28527125 DOI: 10.1007/s12602-017-9282-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the probiotic potential of lactic acid bacteria (LAB) strains isolated from Horreh. Some probiotic properties, e.g., resistance to acid, bile tolerance, antibacterial activity, and antibiotic susceptibility, were investigated. A total of 140 Gram-positive and catalase-negative isolates from Horreh were subjected to identification and grouping by cultural methods and the 16S rRNA sequencing. The new isolates were identified to be Lactobacillus (fermentum, plantarum, and brevis) Weissella cibaria, Enterococcus (faecium and faecalis), Leuconostoc (citreum and mesenteroides subsp. mesenteroides) and Pediococcus pentosaceus. Probiotic potential study of LAB isolates showed that Lb. plantarum and Leu. mesenteroides subsp. mesenteroides isolates were able to grow at pH 2.5 and 3.5. Lactobacillus plantarum (isolate A44) showed the highest cell hydrophobicity (84.5%). According to antibacterial activity tests, Listeria innocua and Staphylococcus aureus were the most sensitive indicators against the selected LAB strains, while Escherichia coli and Bacillus cereus were the most resistant. In addition, all the isolated LAB species were resistant to vancomycin. The results of the present study suggested that the Lactobacillus fermentum and plantarum isolated from Horreh, characterized in this study, have potential use for industrial purposes as probiotics.
Collapse
Affiliation(s)
- Alireza Vasiee
- Department of Food Science and Technology, Ferdowsi University of Mashhad, P.O. Box: 91775-1163, Mashhad, Iran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and Technology, Ferdowsi University of Mashhad, P.O. Box: 91775-1163, Mashhad, Iran
| | - Farideh Tabatabaei Yazdi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, P.O. Box: 91775-1163, Mashhad, Iran.
| | - Seyed Ali Mortazavi
- Department of Food Science and Technology, Ferdowsi University of Mashhad, P.O. Box: 91775-1163, Mashhad, Iran
| | - Hamid Noorbakhsh
- Department of Food Science and Technology, Ferdowsi University of Mashhad, P.O. Box: 91775-1163, Mashhad, Iran
| |
Collapse
|
50
|
Oh A, Daliri EBM, Oh DH. Screening for potential probiotic bacteria from Korean fermented soybean paste: In vitro and Caenorhabditis elegans model testing. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|