1
|
Liu Y, Wang F, Mei Z, Shen Q, Liao K, Zhang S, Wang H, Ma S, Wang L. Advances in cellulose-based self-powered ammonia sensors. Carbohydr Polym 2025; 351:123074. [PMID: 39779004 DOI: 10.1016/j.carbpol.2024.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Ammonia sensors are widely used across applications in food monitoring, environmental surveillance, and medical research, where high safety standards are essential. Cellulose-based materials are particularly well-suited to meet these stringent requirements, with significant potential for innovation due to their biodegradability and biocompatibility. Of the various cellulose-based ammonia sensors available, self-powered sensors, especially those based on triboelectric nanogenerators (TENGs), stand out for their unique advantages, including the absence of an external power supply, environmental sustainability, and ease of integration. This review offers a detailed overview of the integration of cellulose-based materials with ammonia-sensitive components, highlighting their ease of processing and modification. It further classifies and compares cellulose-based ammonia sensors based on their sensing mechanisms, emphasizing TENG-based sensors specifically. The review concludes with a summary of current applications and explores optimization strategies. Finally, it discusses future opportunities and challenges for cellulose-based self-powered ammonia sensors and provides valuable insights into ongoing innovation and potential.
Collapse
Affiliation(s)
- Yuefan Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhixuan Mei
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Qianru Shen
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Kaixin Liao
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shenzhuo Zhang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Siqueira MFF, Massaut KB, Thiel PR, Pires JB, Zavareze EDR, Gandra EA, da Silva WP, Fiorentini ÂM. Development and characterization of active cellulose acetate films with antifungal properties of Thymus vulgaris essential oil for cheese applications : Antifungal potential film with Thymus vulgaris essential oil against cheese fungi. Braz J Microbiol 2025:10.1007/s42770-025-01636-7. [PMID: 39954046 DOI: 10.1007/s42770-025-01636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025] Open
Abstract
The aim of this study was to evaluate the antifungal activity of Thymus vulgaris essential oil (TEO) against fungal isolates from cheese and its potential as an active component in cellulose acetate films for application on cheese, and to perform the characterization of the films. The cheese rind isolates were identified as Penicillium crustosum QCP1 and Aspergillus flavus QCA2. TEO exhibited significant in vitro inhibitory activity against all isolates, with inhibition zones exceeding 40.0 mm and minimum inhibitory concentrations (MICs) of 1.0 µL mL⁻¹ and 0.8 µL mL⁻¹ for P. crustosum QCP1 and A. flavus QCA2, respectively. Incorporating TEO into cellulose acetate films altered the film's physical properties, particularly morphology and elongation. The control film, composed solely of acetate, showed the lowest values for most properties evaluated, except for tensile strength (MPa) (38.89 ± 5.29). For water permeability and water vapor permeability, no significant differences were observed between the control film and the active film containing TEO at tenfold MFC concentrations for each isolate. In in vitro tests with the active film, P. crustosum QCP1 demonstrated higher sensitivity; however, the active film effectively inhibited the growth of both fungal isolates on cheese slices for 30 days. It was concluded that TEO has antifungal potential against isolates in more than one type of methodology and, when added to cellulose acetate film, was effective in controlling fungal mycelial growth, both in vitro and in situ, extending shelf life by up to 2 times, indicating a promising application as active packaging in cheeses.
Collapse
Affiliation(s)
| | - Khadija Bezerra Massaut
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Patrícia Radatz Thiel
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Juliani Buchveitz Pires
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Eliezer Avila Gandra
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Wladimir Padilha da Silva
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Zou Y, Wang S, Liu T, Zhang Q, Zhang Y, Jiang C. Development and evaluation of pH-sensitive Euryale ferox starch-based films containing nano-SiO 2 and Chinese rose (Rosa chinensis) extract for freshness monitoring of chicken breast meat. Int J Biol Macromol 2025; 290:138959. [PMID: 39706441 DOI: 10.1016/j.ijbiomac.2024.138959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
In this study, smart films of EFS, EFS-SiO2 and EFS-SiO2-CRE were successfully developed by using Euryale ferox starch (EFS), nano-SiO2 and Chinese rose extract (CRE). The Chinese rose flower had a high content of anthocyanins (1.73 mg/g) and CRE exhibited different colors in varying pH buffers (2-13). The addition of nano-SiO2 decreased tensile strength (TS) (41.08 to 16.75 MPa) and elongation at break (EAB) (6.71 to 2.69 %) of the EFS film. Incorporation with CRE could significantly increase water vapor permeability (4.47 to 5.35 10-11 g m-1 s-1 Pa-1), TS (16.75 to 26.19 MPa) and EAB (2.69 to 4.62 %) of the EFS-SiO2 film. Incorporation of nano-SiO2 and CRE significantly enhanced the thermal stability and light barrier performance of the EFS film. The EFS-SiO2-CRE films showed excellent pH and ammonia sensitivities with different colors varying from red to blue. The EFS-SiO2-CRE-III film displayed strong antioxidant activity with a maximum DPPH scavenging rate of 96.54 ± 0.44 %. When employed for monitoring freshness of chicken breast meat, the EFS-SiO2-CRE-III film showed the most significant visible color changes at 24 h when the TVB-N content was 21.7 mg/100 g. Findings supported the application of this strategy in fabrication of the EFS-SiO2-CRE-III film for smart packaging.
Collapse
Affiliation(s)
- Yufei Zou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Siyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Tingting Liu
- The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223002, Jiangsu, PR China
| | - Qian Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs of the People Republic of China, Beijing 100193, PR China
| | - Changxing Jiang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, PR China.
| |
Collapse
|
4
|
Forghani S, Almasi H. Characterization and performance evaluation of colorimetric pH-sensitive indicator based on Ҡ-carrageenan/quince seed mucilage hydrogel as freshness/spoilage monitoring of rainbow trout fillet. Food Chem 2024; 457:140072. [PMID: 38905838 DOI: 10.1016/j.foodchem.2024.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
The aim of research was to fabricate a novel indicator by using κ-carrageenan and quince seed mucilage (QSM) hydrogels and red cabbage anthocyanin. The porosity of the hydrogel was controlled using different ratios of κ-carrageenan(C):QSM(Q) (C90:Q10, C70:Q30, and C50:Q50). The hardness of hydrogels decreased from 28.6 ± 0.3 N for C90Q10 to 11.0 ± 1.0 N for C50Q50 sample. However, according to field emission scanning electron microscopy (FE-SEM) analysis, the C50R50 sample had the best morphology with smooth surface and uniform interconnected porous network. Hydrogen bonding interactions among anthocyanins, QSM, and κ-carrageenan were confirmed by Fourier transforms infrared (FT-IR) spectroscopy. The indicator showed a color variation from red to yellow over the pH range of 2-12. Also, the indicator exhibited high sensitivity to ammonia vapors (SRGB = 115%) and good color stability. The C50QRA indicator was used for monitoring rainbow trout fillet spoilage and revealed a visually-detectable color change from red to green upon detecting total volatile basic nitrogen (TVB-N) content produced throughout storage at 4 °C. Generally, the halochromic hydrogel developed in this research can be suggested as a more sensitive and accurate freshness indicator than conventional indicator solid supports.
Collapse
Affiliation(s)
- Samira Forghani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, P.O. Box 57561-51818, Iran.
| |
Collapse
|
5
|
Shi S, Ren Y, Zhang H, Pan N, Xu X, Xia X. Sodium alginate-based indicator film with enhanced physicochemical properties induced by cellulose nanocrystals and monitor the freshness of chilled meat. Int J Biol Macromol 2024; 278:134631. [PMID: 39128766 DOI: 10.1016/j.ijbiomac.2024.134631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Intelligent indicator films with colorimetric pH indicator properties were developed, incorporating black soybean seed coat anthocyanin (BA), cellulose nanocrystals (CNC), and sodium alginate (SA) to monitor meat freshness. The effect of different CNC additions on the microstructure, water barrier properties of the films, and BA release kinetics were comprehensively investigated. The results showed that with the increasement of CNC addition, the mechanical properties of SA/BA/CNC films were improved, the water contact angle significantly increased from 51.6° to 69°. Moreover, water solubility, vapor adsorption, and permeability significantly decreased, indicating enhanced water barrier properties. The release kinetic results showed that BA was released rapidly within 72 h and slowly thereafter, and its release process was described by Fick's model. Films with 7 % and 10 % CNC had lower BA diffusion coefficients. Their diffusions were formulated as linear regression equations (y = nx + a), where R2 was >0.80 and n was <0.50. Structural characterization showed that CNC immobilized BA mainly through hydrogen bonding, forming compact network microstructures with SA and BA. Meat freshness monitoring results showed that the film containing 7 % CNC showed visible color changes with increasing total volatile basic nitrogen and pH, along with low BA release, high water barrier and mechanical properties. Therefore, CNC has great potential for improving the physicochemical properties of indicator films, and the intelligent colorimetric indicator film could be applied to various food product.
Collapse
Affiliation(s)
- Shuo Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanming Ren
- Heilongjiang Technical Appraisal Station of Agricultural Products, Veterinary Drug and Feed, Harbin, Heilongjiang 150036, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaowei Xu
- Heilongjiang Technical Appraisal Station of Agricultural Products, Veterinary Drug and Feed, Harbin, Heilongjiang 150036, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Silva RRA, de Freitas PAV, de Oliveira TV, Teixeira SC, Rigolon TCB, Stringheta PC, Otoni CG, Soares NDFF. Fraud-proof methylcellulose-based fish freshness indicator: Reversibility in halochromic sensing of basic volatiles is tailored by ionic strength. Int J Biol Macromol 2024; 277:134486. [PMID: 39102913 DOI: 10.1016/j.ijbiomac.2024.134486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Food from animal sources (e.g., fish) represents the food group most likely to disseminate diseases to humans. To prevent food contamination and foodborne illnesses, intelligent packaging has been developed to monitor fish freshness by real-time tracking their physicochemical attributes and informing consumers about their conservation state. In this context, we investigated the influence of ionic strength (IS) provided by CaCl2 on the chromatic response of anthocyanin açai extracts incorporated into methylcellulose (MC) within hydrocolloid-based colorimetric sensors for monitoring the freshness of Lambari fish. The color sensitivity of the sensors was modulated by IS in the presence of NH3 volatile and/or TVB-N. Increasing IS led to a plasticizing effect in the MC matrix, which influenced the chromatic properties of anthocyanin in the presence of NH3 and/or TVB-N. The perception of distinct colors by untrained eyes improved from 10 min with the control sensor to 2.5 min for sensors with IS >50 mM. Adjusting the IS to 500 mM with LiCl, CaCl2, or MgCl2 resulted in gray-green, blue, or moss-green colors, respectively, diverging from the control sensor's color (pink and gray) after 10 min of ammonia exposure, confirming salt-induced copigmentation. Color irreversibility in the sensors was achieved when the IS exceeded 250 mM. Through principal component analysis, we statistically validate the efficacy of the sensor in assessing the freshness of Lambari fish. The sensor maintained its color-change capability even after 60 d of storage and was able to classify Lambari fish freshness according to Brazilian and European standards. This study elucidates the interrelation between the structures and properties of natural compounds such as MC, anthocyanin, and CaCl2, providing a method to control the chromatic properties of sensors intended to monitor food quality, safety, and shelf-life.
Collapse
Affiliation(s)
- R R A Silva
- Department of Food Technology, Federal University of Viçosa, Viçosa, Brazil.
| | - P A V de Freitas
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universidad Politécnica de Valencia, Valencia, Spain
| | - T V de Oliveira
- Department of Food Technology, Federal University of Viçosa, Viçosa, Brazil
| | - S C Teixeira
- Department of Food Technology, Federal University of Viçosa, Viçosa, Brazil
| | - T C B Rigolon
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universidad Politécnica de Valencia, Valencia, Spain
| | - P C Stringheta
- Instituto de Ingeniería de Alimentos para el Desarrollo, Universidad Politécnica de Valencia, Valencia, Spain
| | - C G Otoni
- Graduate Program in Materials Science and Engineering (PPGCEM), Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil.
| | - N de F F Soares
- Department of Food Technology, Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
7
|
Li W, Zhao M, Xia X, Zhu Y. Improving Structural, Physical, and Sensitive Properties of Sodium Alginate-Purple Sweet Potato Peel Extracts Indicator Films by Varying Drying Temperature. Foods 2024; 13:2477. [PMID: 39200404 PMCID: PMC11353624 DOI: 10.3390/foods13162477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Sodium alginate (SA)-purple sweet potato peel extracts (PPE) from industrial waste indicator films were developed at different drying temperatures (25, 30, 35, 40, 45, 50, and 55 °C). The effects of drying temperatures on the film's structural, physical, and sensitive properties were investigated. On the structural properties, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction indicated that compactness, intermolecular interactions, and crystallinity of indicator films were improved at a lower drying temperature. On the physical properties, with the drying temperature increasing, elongation at the break increased significantly (p < 0.05); ΔE and water-vapor permeability decreased significantly (p < 0.05); and thickness and tensile strength initially increased significantly (90.46 → 98.46, 62.99 → 95.73) and subsequently decreased significantly (98.46 → 71.93, 95.73 → 55.44) (p < 0.05), with the maximum values obtained at 30 °C. On sensitivity, the corresponding colors of the films became lighter as the drying temperature increased, and the films exhibited relatively excellent pH and NH3 sensitivity, with easily discernible color changes at lower temperatures. The results of this paper revealed that the overall film characteristics are improved at lower drying temperatures, which will provide valuable references for selecting the drying temperature for preparing indicator films as a guide for industrialized production.
Collapse
Affiliation(s)
- Wenxin Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (W.L.); (M.Z.)
| | - Mengna Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (W.L.); (M.Z.)
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (W.L.); (M.Z.)
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
8
|
Song A, Wu Y, Li H, Li C. Development of xanthan gum intelligent oil-in-water ink and its application in pork freshness preservation. Int J Biol Macromol 2024; 275:133576. [PMID: 38950802 DOI: 10.1016/j.ijbiomac.2024.133576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
To optimize the stability of oil-based inks and ensure their wide application in freshness indication, new natural indicator inks were prepared using a stable oil-in-water structure. This study selected natural Lycium ruthenicum anthocyanin as the dye and glucose as the pigment carrier. Soybean oil was introduced as a linker and xanthan gum as a thickener, and an oil-in-water ink with the function of freshness indication was successfully developed. In ensuring the safety of ink labels for use on food packaging, particular attention is paid to the origin and properties of the materials used. All ingredients are of food-grade or bio-friendly provenance, thereby ensuring the safety of the product when in direct contact with food. We measured the viscosity, particle size and fineness of the ink for micro characterization and evaluated its macro printing performance by its printing effect on A4 paper. According to the experimental results, when the water-oil ratio of the ink is 10:5, the average particle size of the emulsion system is 822.83 nm, and the fineness reaches 5 μm. These values are relatively low, which indicates that the stability of the ink system is high at this time, and the ink shows excellent rheological and printing characteristics. With this water-to-oil ratio, the ink can show the best results when printed on A4 paper, clearly displaying image details. In addition, in fresh pork applications, inks with a 10: 5 water-to-oil ratio provide an accurate and highly sensitive indication of the freshness of pork. When the freshness of the pork changes, the ink color responds promptly. This high sensitivity makes the ink ideal for use as a food freshness indication tool, providing consumers with an intuitive and reliable reference for pork freshness. As a further innovation, combining this ink-printed label with a WeChat app not only allows consumers to know the freshness of the food in real-time but also tracks the supply chain information of the food, providing a more comprehensive application prospect for freshness-indicating products.
Collapse
Affiliation(s)
- Anning Song
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Yanglin Wu
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Hao Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China
| | - Chunwei Li
- College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
9
|
Zhan S, Yi F, Hou F, Song L, Chen X, Jiang H, Han X, Sun X, Liu Z. Development of pH-freshness smart label based on gellan gum film incorporated with red cabbage anthocyanins extract and its application in postharvest mushroom. Colloids Surf B Biointerfaces 2024; 236:113830. [PMID: 38422667 DOI: 10.1016/j.colsurfb.2024.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Novel colorimetric films based on gellan gum (GG) containing red cabbage anthocyanins extract (RCAE) were prepared as pH-freshness smart labels for real-time visual detection of mushroom freshness. The GG/RCAE films had excellent pH and ammonia sensitivity. The GG/RCAE-0.2-0.3 films had the highest sensitivity to acetic acid. The SEM micrographs, AFM images, FT-IR and XRD spectra demonstrated that RCAE were successfully combined into the film-forming substrate. The incorporation of RCAE resulted in the increase of thermal stability, opacity and surface hydrophobicity of films. Meanwhile, the GG/RCAE-0.2 film exhibited stronger tensile strength and excellent color stability at 4℃. The color changes of GG/RCAE-0.2 film were visually easier to distinguish during the storage of mushroom. The results showed the GG/RCAE films could be used as pH-freshness smart labels to detect the freshness of fruits and vegetables.
Collapse
Affiliation(s)
- Shouqing Zhan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Fangxuan Yi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Fanyun Hou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Lisha Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xiuxiu Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Hai Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xiangbo Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Zhanli Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255049, PR China.
| |
Collapse
|
10
|
Shi S, Wu X, Wang Y, Li W, Zhang H, Lou X, Xia X, Liang W. Sodium-alginate-based indicator film containing a hydrophobic nanosilica layer for monitoring fish freshness. Int J Biol Macromol 2024; 265:130714. [PMID: 38462116 DOI: 10.1016/j.ijbiomac.2024.130714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/13/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
In this study, hydrophobic sodium alginate/anthocyanin/cellulose nanocrystal indicator films were fabricated by incorporating nanosilica (NS) as a waterproofing layer. The concentrations and formation methods (spraying (S), coating (C), and impregnation (I)) of the NS layer (denoted as NSS, NSC, NSI, respectively) were optimized. The results indicated that the optimum concentration of the NS layer was 5 % at a water contact angle (WCA) 110.5°. Further, Fourier transform infrared spectra showed the presence of SiOSi and SiCH3 groups in the NSS, NSC, and NSI films, and X-ray diffraction spectra indicated that original structures of these films were disordered. Moreover, the surface morphology, mechanical properties, and light transmission were affected by the NS layer, and the optimal layer was found to be NSI. After 10 days of storage at 100 % humidity, the NSI film exhibited low water vapor adsorption (37.22 g) and permeability (0.1484 g/m·s·Pa·10-11) and a high WCA (110.2°). In addition, the NSI film exhibited a visible color shift with an increasing pH of the buffer solution. A monitoring test of fish freshness showed that the NSI film displayed a distinctive color change corresponding to fish spoilage during 14 days of storage. This indicates that NSI has high potential in indicator film applications.
Collapse
Affiliation(s)
- Shuo Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xiaodan Wu
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Ying Wang
- Heilongjiang North Fish Fishing Industry Group Co., LTD, Daqing, Heilongjiang 163000, China
| | - Wenxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinjiang Lou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Weiwei Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Food Engineering, Harbin University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
11
|
Nadi M, Razavi SMA, Shahrampour D. Fabrication of green colorimetric smart packaging based on basil seed gum/chitosan/red cabbage anthocyanin for real-time monitoring of fish freshness. Food Sci Nutr 2023; 11:6360-6375. [PMID: 37823104 PMCID: PMC10563753 DOI: 10.1002/fsn3.3574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023] Open
Abstract
Novel green intelligent films based on basil seed gum (BSG)/chitosan containing red cabbage extract (RCA) (0, 2.5, 5, and 10, % (v/v)) as a colorimetric indicator for food freshness detection were fabricated by casting method. The physicochemical, barrier, mechanical, and antioxidant characteristics, as well as sensitivity to pH and ammonia gas of smart edible packaging films, were investigated. The interaction of anthocyanin extract as a natural dye with biopolymers in films characterized by FTIR spectroscopy and SEM images revealed their suitable compatibility. The film with maximum anthocyanin content (10% (v/v)) appeared robust color changes against various pH and ammonia gas levels. The color of indicator films when exposed to alkaline, neutral and acidic buffers are indicated with green, blue, and red colors, respectively. The DPPH radical scavenging activity of smart BSG/chitosan films improved from 23% to 90.32% with increasing RCA content from 2.5 to 10% (v/v). Generally, the incorporation of RCA in film structure enhanced their solubility, WVP, ΔE, turbidity, and flexibility, and reduced tensile strength. The observations successfully confirmed the efficacy of pH-sensitive indicator smart film based on BSG/chitosan for evaluation of fish spoilage during storage.
Collapse
Affiliation(s)
- Maryam Nadi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Dina Shahrampour
- Department of Food Safety and Quality ControlResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
12
|
Sadi A, Ferfera-Harrar H. Cross-linked CMC/Gelatin bio-nanocomposite films with organoclay, red cabbage anthocyanins and pistacia leaves extract as active intelligent food packaging: colorimetric pH indication, antimicrobial/antioxidant properties, and shrimp spoilage tests. Int J Biol Macromol 2023; 242:124964. [PMID: 37247593 DOI: 10.1016/j.ijbiomac.2023.124964] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Multifunctional food packaging films were produced from crosslinked carboxymethyl cellulose/gelatin (CMC/Ge) bio-nanocomposites incorporated with Ge-montmorillonite (OM) nanofiller, anthocyanins (ATH) from red cabbage as colorimetric pH-indicator, and pistacia leaves extract (PE) as active agent. The influence of additives on the structural, physical, and functional properties of the films was investigated. The results showed that ATH and PE caused color alteration and reduced transparency. However, they improved the UV light barrier ability by 98 %, with less impact from OM, despite its well-dispersed state in the matrix. Increasing PE content in the bio-nanocomposite films caused an increase in compactness and surface roughness, reduction in moisture content (15.10-12.33 %), swelling index (354.55-264.58 %), surface wettability (contact angle 80.1-92.49°), water vapor permeability (7.37-5.69 × 1010 g m-1s-1Pa-1), and nano-indentation mechanical parameters, without affecting the thermal stability. ATH-included films demonstrated color pH-sensitivity with improved ATH color stability through the ATH-Al3+ chelates formation. PE-added films exhibited effective antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, reaching 93 % of inhibition, and antimicrobial properties with biocidal effects for PE-rich film. The shrimp spoilage test showed that the T-1.5PE film offered the strongest active intelligent response. The CMC/Ge-based bio-nanocomposite films endowed with antioxidant/antimicrobial properties and colorimetric pH-sensitivity have promising potential for food packaging application.
Collapse
Affiliation(s)
- Amina Sadi
- Materials Polymer Laboratory, Department of Macromolecular Chemistry, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria
| | - Hafida Ferfera-Harrar
- Materials Polymer Laboratory, Department of Macromolecular Chemistry, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria.
| |
Collapse
|
13
|
Oun AA, Roy S, Shin GH, Yoo S, Kim JT. pH-sensitive smart indicators based on cellulose and different natural pigments for tracing kimchi ripening stages. Int J Biol Macromol 2023:124905. [PMID: 37224902 DOI: 10.1016/j.ijbiomac.2023.124905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
Five natural pigments including water-soluble [butterfly pea (BP), red cabbage (RC), and aronia (AR)] and alcohol-soluble [shikonin (SK) and alizarin (ALZ)] were extracted, characterized, and loaded onto cellulose for preparing pH-sensitive indicators. The indicators were tested their color response efficiency, gas sensitivity, response to lactic acid, color release, and antioxidant activity. Cellulose-water soluble indicators showed more obvious color changes than alcohol-soluble indicators in lactic acid solution and pH solutions (1-13). All cellulose-pigment indicators exhibited prominent sensitivity to ammonia compared to acidic vapor. Antioxidant activity and release behavior of the indicators were influenced by pigment type and simulants. Kimchi packaging test was carried out using original and alkalized indicators. The alkalized indicators were more effective in showing visible color changes during kimchi storage than the original indicators, and cellulose-ALZ displayed the most distinct color change from violet (fresh kimchi, pH 5.6, acidity 0.45 %) to gray (optimum fermented kimchi, pH 4.7, acidity 0.72 %), and to yellow (over fermented kimchi, pH 3.8, acidity 1.38 %) which followed by BP, AR, RC, SK respectively. The findings of the study suggest that the alkalization method could be used to show noticeable color changes in a narrow pH range for application with acidic foods.
Collapse
Affiliation(s)
- Ahmed A Oun
- Nanotechnology and Advanced Materials Central Lab, Regional Center for Food & Feed, Agricultural Research Center, Giza, Egypt; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India; Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gye Hwa Shin
- Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Republic of Korea
| | - SeungRan Yoo
- Hygienic Safety·Packaging Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
14
|
Dikmetas DN, Uysal E, Karbancioglu-Guler F, Gurmen S. The production of pH indicator Ca and Cu alginate ((1,4)- β -d-mannuronic acid and α -l-guluronic acid) cryogels containing anthocyanin obtained via red cabbage extraction for monitoring chicken fillet freshness. Int J Biol Macromol 2023; 231:123304. [PMID: 36681229 DOI: 10.1016/j.ijbiomac.2023.123304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/01/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
In recent days, intelligent food packaging has gained attention due to consumers' needs and monitoring of the freshness of food. Biopolymers are used to produce matrix parts and dye chemicals, because of their unique properties, such as biodegradability and biocompatibility. In this study, alginate molecules and anthocyanins were used to produce to monitor chicken fillet freshness via pH response characteristics. Anthocyanins' color and UV characteristics at different pHs were investigated. The obtained anthocyanin solution showed visible color response at different pH level. In the red cabbage extract, the anthocyanin concentration was as 0.65 ± 0.03 mg/g. Alginate and extracted anthocyanins from red cabbage were mixed at the solution phase, then metal alginate hydrogels were synthesized via crosslinking Ca2+ and Cu2+ with alginate molecules. Due to the porous structure of the cryogels, hydrogels were freeze dried at -80 °C for 24 h at vacuum atmosphere. The obtained cryogel indicated significant color changes from pH 4 to pH 10, and at a basic environment, the color change was observed with the naked eye. The porosity amounts and sizes of the produced cryogels were examined, the average pore amount of cryogels was found to be 85.46 ± 4.36 %, and the average pore size 97.98 ± 26.20 μm. Furthermore, it was seen that the color change was not directly related to the porosity, but the interaction of anthocyanin and metal alginate matrix effected color changes degree of cryogels. Due to the electronegativity of Cu2+ ions, and the use of a low amount of anthocyanin was found to be more suitable for color change. The color was changed to blue-purple while total volatile basic nitrogen content increased to 46.67 mg/100 g from 14.00 mg/100 g. As a result, prepared cryogels should be a better candidates for use as a freshness indicator and intelligent packaging.
Collapse
Affiliation(s)
| | - Emircan Uysal
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Türkiye
| | | | - Sebahattin Gurmen
- Department of Metallurgical and Materials Engineering, Istanbul Technical University, Türkiye
| |
Collapse
|
15
|
Shi S, Xu X, Feng J, Ren Y, Bai X, Xia X. Preparation of NH3- and H2S-sensitive intelligent pH indicator film from sodium alginate/black soybean seed coat anthocyanins and its use in monitoring meat freshness. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
16
|
Development and characterization of locust bean gum-Viola anthocyanin-graphene oxide ternary nanocomposite as an efficient pH indicator for food packaging application. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Cui Y, Zhang R, Cheng M, Guo Y, Wang X. Sustained release and antioxidant activity of active potato starch packaging films encapsulating thymol with MCM-41. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Novel Features of Cellulose-Based Films as Sustainable Alternatives for Food Packaging. Polymers (Basel) 2022; 14:polym14224968. [PMID: 36433095 PMCID: PMC9699531 DOI: 10.3390/polym14224968] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Packaging plays an important role in food quality and safety, especially regarding waste and spoilage reduction. The main drawback is that the packaging industry is among the ones that is highly dependent on plastic usage. New alternatives to conventional plastic packaging such as biopolymers-based type are mandatory. Examples are cellulose films and its derivatives. These are among the most used options in the food packaging due to their unique characteristics, such as biocompatibility, environmental sustainability, low price, mechanical properties, and biodegradability. Emerging concepts such as active and intelligent packaging provides new solutions for an extending shelf-life, and it fights some limitations of cellulose films and improves the properties of the packaging. This article reviews the available cellulose polymers and derivatives that are used as sustainable alternatives for food packaging regarding their properties, characteristics, and functionalization towards active properties enhancement. In this way, several types of films that are prepared with cellulose and their derivatives, incorporating antimicrobial and antioxidant compounds, are herein described, and discussed.
Collapse
|
19
|
Anthocyanins of Açaí Applied as a Colorimetric Indicator of Milk Spoilage: A Study Using Agar-Agar and Cellulose Acetate as Solid Support to Be Applied in Packaging. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Food that is still fit for consumption is wasted in the domestic environment every day, so food packaging technologies are being developed that will monitor the quality of the products in real time. Highly perishable milk is currently one of the products that suffers most from this waste, due to its short shelf life. Active use-by date (AUBD) indicators have been shown to discriminate between fresh and spoiled milk. Colorimetric indicators undergo characteristic changes in their chemical structure, causing abrupt color changes. Among the polymeric materials studied that may function as solid support are cellulose acetate (CA) and agar-agar (AA). The AA colorimetric indicator proved to be more suitable as a solid support due to its ability to maintain the color change properties of the anthocyanin and its high colorimetric performance. The technique was shown to be capable of indicating, in real time, changes in milk quality.
Collapse
|
20
|
Applications of natural polysaccharide-based pH-sensitive films in food packaging: Current research and future trends. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Pressurized liquid extraction coupled in-line with SPE and on-line with HPLC (PLE-SPExHPLC) for the recovery and purification of anthocyanins from SC-CO2 semi-defatted Açaí (Euterpe oleracea). Food Res Int 2022; 160:111711. [DOI: 10.1016/j.foodres.2022.111711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022]
|
22
|
He J, Ye S, Correia P, Fernandes I, Zhang R, Wu M, Freitas V, Mateus N, Oliveira H. Dietary polyglycosylated anthocyanins, the smart option? A comprehensive review on their health benefits and technological applications. Compr Rev Food Sci Food Saf 2022; 21:3096-3128. [PMID: 35534086 DOI: 10.1111/1541-4337.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023]
Abstract
Over the years, anthocyanins have emerged as one of the most enthralling groups of natural phenolic compounds and more than 700 distinct structures have already been identified, illustrating the exceptional variety spread in nature. The interest raised around anthocyanins goes way beyond their visually appealing colors and their acknowledged structural and biological properties have fueled intensive research toward their application in different contexts. However, the high susceptibility of monoglycosylated anthocyanins to degradation under certain external conditions might compromise their application. In that regard, polyglycosylated anthocyanins (PGA) might offer an alternative to overcome this issue, owing to their peculiar structure and consequent less predisposition to degradation. The most recent scientific and technological findings concerning PGA and their food sources are thoroughly described and discussed in this comprehensive review. Different issues, including their physical-chemical characteristics, consumption, bioavailability, and biological relevance in the context of different pathologies, are covered in detail, along with the most relevant prospective technological applications. Due to their complex structure and acyl groups, most of the PGA exhibit an overall higher stability than the monoglycosylated ones. Their versatility allows them to act in a wide range of pathologies, either by acting directly in molecular pathways or by modulating the disease environment attributing an added value to their food sources. Their recent usage for technological applications has also been particularly successful in different industry fields including food and smart packaging or in solar energy production systems. Altogether, this review aims to put into perspective the current state and future research on PGA and their food sources.
Collapse
Affiliation(s)
- Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Shuxin Ye
- Yun-Hong Group Co. Ltd, Wuhan, China
| | - Patrícia Correia
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
| | - Victor Freitas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Nuno Mateus
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Ionic Strength of Methylcellulose-Based Films: An Alternative for Modulating Mechanical Performance and Hydrophobicity for Potential Food Packaging Application. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The growing environmental concern with the inappropriate disposal of conventional plastics has driven the development of eco-friendly food packaging. However, the intrinsic characteristics of polymers of a renewable origin, e.g., poor mechanical properties, continue to render their practical application difficult. For this, the present work studied the influence of ionic strength (IS) from 0 to 500 mM to modulate the physicochemical properties of methylcellulose (MC). Moreover, for protection against biological risks, Nisin-Z was incorporated into MC’s polymeric matrices, providing an active function. The incorporation of salts (LiCl and MgCl2) promoted an increase in the equilibrium moisture content in the polymer matrix, which in turn acted as a plasticizing agent. In this way, films with a hydrophobic surface (98°), high true strain (85%), and low stiffness (1.6 mPa) can be manufactured by addition of salts, modulating the IS to 500 mM. Furthermore, films with an IS of 500 mM, established with LiCl, catalyzed antibacterial activity against E. coli, conferring synergism and extending protection against biological hazards. Therefore, we demonstrated that the IS control of MC dispersion presents a new alternative to achieve films with the synergism of antibacterial activity against Gram-negative bacteria in addition to flexibility, elasticity, and hydrophobicity required in various applications in food packaging.
Collapse
|
24
|
Cheng M, Yan X, Cui Y, Han M, Wang X, Wang J, Zhang R. An eco-friendly film of pH-responsive indicators for smart packaging. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Teixeira SC, de Oliveira TV, Assis Silva RR, Ribeiro ARC, Stringheta PC, Rigolon TCB, Pinto MRMR, de Fátima Ferreira Soares N. Colorimetric indicators of açaí anthocyanin extract in the biodegradable polymer matrix to indicate fresh shrimp. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Application of Red Cabbage Anthocyanins as pH-Sensitive Pigments in Smart Food Packaging and Sensors. Polymers (Basel) 2022; 14:polym14081629. [PMID: 35458378 PMCID: PMC9025686 DOI: 10.3390/polym14081629] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/06/2023] Open
Abstract
Anthocyanins are excellent antioxidant/antimicrobial agents as well as pH-sensitive indicators that provide new prospects to foster innovative smart packaging systems due to their ability to improve food shelf life and detect physicochemical and biological changes in packaged food. Compared with anthocyanins from other natural sources, red cabbage anthocyanins (RCAs) are of great interest in food packaging because they represent an acceptable color spectrum over a broad range of pH values. The current review addressed the recent advances in the application of RCAs in smart bio-based food packaging systems and sensors. This review was prepared based on the scientific reports found on Web of Science, Scopus, and Google Scholar from February 2000 to February 2022. The studies showed that the incorporation of RCAs in different biopolymeric films could affect their physical, mechanical, thermal, and structural properties. Moreover, the use of RCAs as colorimetric pH-responsive agents can reliably monitor the qualitative properties of the packaged food products in a real-time assessment. Therefore, the development of smart biodegradable films using RCAs is a promising approach to the prospect of food packaging.
Collapse
|
27
|
Cheng M, Yan X, Cui Y, Han M, Wang Y, Wang J, Zhang R, Wang X. Characterization and Release Kinetics Study of Active Packaging Films Based on Modified Starch and Red Cabbage Anthocyanin Extract. Polymers (Basel) 2022; 14:polym14061214. [PMID: 35335543 PMCID: PMC8950823 DOI: 10.3390/polym14061214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Active packaging films were prepared by adding red cabbage anthocyanin extract (RCAE) into acetylated distarch phosphate (ADSP). This paper investigated the influence of the interaction relationship between RCAE and the film matrix on the structure, barrier, antioxidant and release properties of active films. Sixteen principal compounds in RCAE were identified as anthocyanins based on mass spectroscopic analysis. Micromorphological observations indicated that the RCAE distribution uniformity in the films decreased as the RCAE content increased. When the concentration of RCAE was not higher than 20%, the moisture absorption and oxygen permeability of films decreased. The stability of RCAE in the films was enhanced by the electrostatic interaction between RCAE and ADSP with the formation of hydrogen bonds, which facilitated the sustainability of the antioxidant properties of films. The release kinetics of RCAE proved that the release rate of RCAE in active films was the fastest in distilled water, and Fickian’s law was appropriate for portraying the release behavior. Moreover, the cytocompatibilty assay showed that the test films were biocompatible with a viability of >95% on HepG2 cells. Thus, this study has established the suitability of the films for applications in active and food packaging.
Collapse
|
28
|
Development and Investigation of Zein and Cellulose Acetate Polymer Blends Incorporated with Garlic Essential Oil and β-Cyclodextrin for Potential Food Packaging Application. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The obtainment of new materials with distinct properties by mixing two or more polymers is a potential strategy in sustainable packaging research. In the present work, a blend of cellulose acetate (CA) and zein (60:40 wt/wt CA:zein) was manufactured by adding glycerol or tributyrin as plasticizers (30% wt/wt), and garlic essential oil (GEO), complexed (IC) or not with β-cyclodextrin (βCD), to produce active packaging. Blends plasticized with tributyrin exhibited a more homogeneous surface than those containing glycerol, which showed major defects. The blends underperformed compared with the CA films regarding mechanical properties and water vapor permeability. The presence of IC also impaired the films’ performance. However, the blends were more flexible than zein brittle films. The films added with GEO presented in vitro activity against Listeria innocua and Staphylococcus aureus. The IC addition into films, however, did not ensure antibacterial action, albeit that IC, when tested alone, showed activity against both bacteria. These findings suggest that the mixture of CA and plasticizers could increase the range of application of zein as a sustainable packaging component, while essential oils act as a natural bioactive to produce active packaging.
Collapse
|
29
|
From traditional paper to nanocomposite films: Analysis of global research into cellulose for food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Effect of dual-modified cassava starches on intelligent packaging films containing red cabbage extracts. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107225] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Singh R, Kaur J, Bansal R, Sharanagat VS, Singh L, Kumar Y, Patel A. Development and characterization of elephant foot yam starch based pH‐sensitive intelligent biodegradable packaging. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rashmi Singh
- Department of Food Engineering NIFTEM Haryana India
| | - Jasjot Kaur
- Department of Food Engineering NIFTEM Haryana India
| | | | | | - Lochan Singh
- Contract Research Organization NIFTEM Haryana India
| | - Yogesh Kumar
- Department of Food Engineering and Technology SLIET Punjab India
| | - Ajay Patel
- Centre for Rural Development and Technology Indian Institute of Technology New Delhi India
| |
Collapse
|
32
|
Ghareaghajlou N, Hallaj-Nezhadi S, Ghasempour Z. Red cabbage anthocyanins: Stability, extraction, biological activities and applications in food systems. Food Chem 2021; 365:130482. [PMID: 34243124 DOI: 10.1016/j.foodchem.2021.130482] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
Red cabbage anthocyanins are of great interest as natural food colorants in the food industry; as they represent the color over a broad range of pH-values compared to anthocyanins from other natural sources. It is important to select an appropriate technique with high recovery of anthocyanins from red cabbage, among which extraction with organic solvents is the most applied extraction method. Currently, novel extraction techniques are employed as an alternative to the solvent extraction method, providing advantages such as higher anthocyanin recovery in a shorter time, lower solvent utilization, and minimum quality degradation. However, the incorporation of extracted anthocyanins into foodstuffs and pharmacological products is limited due to their low bioavailability and relative instability toward environmental adverse conditions, such as pH, temperature, enzymes, light, oxygen and ascorbic acid. In addition to increased structural stability of anthocyanins through glycosylation and acylation, their stability could be improved by copigmentation and encapsulation.
Collapse
Affiliation(s)
- Nazila Ghareaghajlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Hallaj-Nezhadi
- Drug Applied Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Ghasempour
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Huang J, Liu J, Chen M, Yao Q, Hu Y. Immobilization of roselle anthocyanins into polyvinyl alcohol/hydroxypropyl methylcellulose film matrix: Study on the interaction behavior and mechanism for better shrimp freshness monitoring. Int J Biol Macromol 2021; 184:666-677. [PMID: 34146561 DOI: 10.1016/j.ijbiomac.2021.06.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022]
Abstract
The roselle anthocyanin extracts (RAE) were immobilized into polyvinyl alcohol (PVA)/hydroxypropyl methylcellulose (HPMC) film matrix, their interaction behavior and mechanism was fully understood for better shrimp freshness monitoring. Structural characterizations revealed RAE was firmly immobilized PVA/HPMC matrix by hydrogen bonds. With increasing RAE contents, dramatic increases of film thickness (from 15.90 ± 0.14 to 23.20 ± 3.35 μm), tensile strength (from 45.66 ± 1.07 to 56.98 ± 0.24 MPa), light barrier and active properties (increased by 83.18% for antioxidant and 146.91%, 59.18% for antibacterial activity against E. coli and S. aureus) were observed, while hydrophobic properties decreased significantly. Owing to great ammonia-sensitive ability, the PVA/HPMC/RAE (PHR) films were applied on shrimp freshness qualitative monitoring and greater visible color variations were identified with increasing RAE contents. Furthermore, mathematical models were established for quantitative monitoring. In conclusion, with the increasing RAE contents, the tighter interaction between RAE and PVA/HPMC matrix contributed to the better functional properties and freshness monitoring effects of PHR films.
Collapse
Affiliation(s)
- Jiayin Huang
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jialin Liu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Meiyu Chen
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
34
|
A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100641] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Singh S, Nwabor OF, Syukri DM, Voravuthikunchai SP. Chitosan-poly(vinyl alcohol) intelligent films fortified with anthocyanins isolated from Clitoria ternatea and Carissa carandas for monitoring beverage freshness. Int J Biol Macromol 2021; 182:1015-1025. [PMID: 33839180 DOI: 10.1016/j.ijbiomac.2021.04.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022]
Abstract
Biodegradable chitosan-poly(vinyl alcohol) films containing natural anthocyanin-rich extracts were prepared using solvent casting method and employed as intelligent indicators for monitoring beverages freshness. The surface and cross-sectional scanning electron micrograph indicated a compact structure for the intelligent films, whereas the atomic force micrograph indicated a 16.22 and 20.31 nm increase in surface roughness for Clitoria ternatea and Carissa carandas extract incorporated films, respectively. Moreover, the test films demonstrated enhanced radical scavenging efficacy. The extracts and anthocyanin incorporated films presented excellent colorimetric changes at pH 2 to 8. In addition, the C. ternatea test films showed changes in color for juice stored at 25 °C after 72 h. Photo-degradability results indicated stability of test films stored in dark at 4 °C and 25 °C, whereas leaching study indicated the release of ≤2.0% anthocyanin after 24 h. The cytocompatibilty assay showed that the test and control films were biocompatible with a viability of >80% on HaCat cells. The results demonstrated that the incorporation of anthocyanins-rich extracts into chitosan-poly(vinyl alcohol) did not significantly interfere with the films properties (p > 0.05). The natural anthocyanin incorporated films demonstrated good pH sensing property that could be further explored for monitoring of beverages freshness.
Collapse
Affiliation(s)
- Sudarshan Singh
- Natural Product Research Center of Excellence, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Ozioma Forstinus Nwabor
- Natural Product Research Center of Excellence, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand; Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Dwi Marlina Syukri
- Natural Product Research Center of Excellence, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Natural Product Research Center of Excellence, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand.
| |
Collapse
|
36
|
Zhang C, Sun G, Li J, Wang L. A green strategy for maintaining intelligent response and improving antioxidant properties of κ-carrageenan-based film via cork bark extractive addition. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Effect of pH on the intelligent film-forming solutions produced with red cabbage extract and hydroxypropylmethylcellulose. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|