1
|
Li X, Gao Y, Fan S, Yang J, Zhang Y, Yang X, Cai C, Huang M, Bi H. Lipidomic profiling reveals the dynamic changes of hepatic lipidome during the fasting-refeeding transition in mice. J Pharm Biomed Anal 2025; 264:116966. [PMID: 40383105 DOI: 10.1016/j.jpba.2025.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Liver plays a pivotal role in maintaining energy homeostasis during fasting-refeeding transition. We previously reported that fasting-refeeding induces the dynamic changes of liver size. However, the alterations in hepatic lipid profiles during these dynamic changes remain unclear. Therefore, the present study aimed to clarify the effect of fasting and refeeding on hepatic lipid homeostasis in mice using lipidomics analysis and to identify the specific lipids that vary during the fasting-refeeding transition. In this study, C57BL/6 mice were fasted for 24 h and subsequently refed for 1, 3, 6, 12, and 24 h, respectively. Liver and serum samples were collected at each time point for further analysis. The results demonstrated that fasting obviously decreased the liver size accompanying with hepatic lipid accumulation, which were all returned to normal level after refeeding. Lipidomics analysis revealed that a total of 309 lipids were significantly disturbed, over half of them belonged to triacylglycerol (TG). Consistently, fasting significantly altered the expression of genes associated with fatty acid uptake, TG synthesis and metabolism, which were returned to baseline level after refeeding. In conclusion, these findings demonstrated that fasting induced liver shrinkage and the change of lipid profiling, especially TG accumulation in liver, while these effects can be reversed after refeeding.
Collapse
Affiliation(s)
- Xuan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yue Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shicheng Fan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yifei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chenghui Cai
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Korenfeld N, Gorbonos T, Romero Florian MC, Rotaro D, Goldberg D, Radushkevitz-Frishman T, Charni-Natan M, Bar-Shimon M, Cummins CL, Goldstein I. LXR-dependent enhancer activation regulates the temporal organization of the liver's response to refeeding leading to lipogenic gene overshoot. PLoS Biol 2024; 22:e3002735. [PMID: 39241209 PMCID: PMC11379474 DOI: 10.1371/journal.pbio.3002735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/04/2024] [Indexed: 09/08/2024] Open
Abstract
Transitions between the fed and fasted state are common in mammals. The liver orchestrates adaptive responses to feeding/fasting by transcriptionally regulating metabolic pathways of energy usage and storage. Transcriptional and enhancer dynamics following cessation of fasting (refeeding) have not been explored. We examined the transcriptional and chromatin events occurring upon refeeding in mice, including kinetic behavior and molecular drivers. We found that the refeeding response is temporally organized with the early response focused on ramping up protein translation while the later stages of refeeding drive a bifurcated lipid synthesis program. While both the cholesterol biosynthesis and lipogenesis pathways were inhibited during fasting, most cholesterol biosynthesis genes returned to their basal levels upon refeeding while most lipogenesis genes markedly overshoot above pre-fasting levels. Gene knockout, enhancer dynamics, and ChIP-seq analyses revealed that lipogenic gene overshoot is dictated by LXRα. These findings from unbiased analyses unravel the mechanism behind the long-known phenomenon of refeeding fat overshoot.
Collapse
Affiliation(s)
- Noga Korenfeld
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Gorbonos
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria C Romero Florian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Dan Rotaro
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Goldberg
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Talia Radushkevitz-Frishman
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meital Charni-Natan
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Bar-Shimon
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Ido Goldstein
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
3
|
YAP regulates the liver size during the fasting-refeeding transition in mice. Acta Pharm Sin B 2022; 13:1588-1599. [PMID: 37139422 PMCID: PMC10149903 DOI: 10.1016/j.apsb.2022.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 03/09/2023] Open
Abstract
Liver is the central hub regulating energy metabolism during feeding-fasting transition. Evidence suggests that fasting and refeeding induce dynamic changes in liver size, but the underlying mechanisms remain unclear. Yes-associated protein (YAP) is a key regulator of organ size. This study aims to explore the role of YAP in fasting- and refeeding-induced changes in liver size. Here, fasting significantly reduced liver size, which was recovered to the normal level after refeeding. Moreover, hepatocyte size was decreased and hepatocyte proliferation was inhibited after fasting. Conversely, refeeding promoted hepatocyte enlargement and proliferation compared to fasted state. Mechanistically, fasting or refeeding regulated the expression of YAP and its downstream targets, as well as the proliferation-related protein cyclin D1 (CCND1). Furthermore, fasting significantly reduced the liver size in AAV-control mice, which was mitigated in AAV Yap (5SA) mice. Yap overexpression also prevented the effect of fasting on hepatocyte size and proliferation. Besides, the recovery of liver size after refeeding was delayed in AAV Yap shRNA mice. Yap knockdown attenuated refeeding-induced hepatocyte enlargement and proliferation. In summary, this study demonstrated that YAP plays an important role in dynamic changes of liver size during fasting-refeeding transition, which provides new evidence for YAP in regulating liver size under energy stress.
Collapse
|
4
|
Lindholm C, Batakis P, Altimiras J, Lees J. Intermittent fasting induces chronic changes in the hepatic gene expression of Red Jungle Fowl (Gallus gallus). BMC Genomics 2022; 23:304. [PMID: 35421924 PMCID: PMC9009039 DOI: 10.1186/s12864-022-08533-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intermittent fasting (IF), the implementation of fasting periods of at least 12 consecutive hours on a daily to weekly basis, has received a lot of attention in recent years for imparting the life-prolonging and health-promoting effects of caloric restriction with no or only moderate actual restriction of caloric intake. IF is also widely practiced in the rearing of broiler breeders, the parent stock of meat-type chickens, who require strict feed restriction regimens to prevent the serious health problems associated with their intense appetites. Although intermittent fasting has been extensively used in this context to reduce feed competition and its resulting stress, the potential of IF in chickens as an alternative and complementary model to rodents has received less investigation. In both mammals and birds, the liver is a key component of the metabolic response to IF, responding to variations in energy balance. Here we use a microarray analysis to examine the liver transcriptomics of wild-type Red Jungle Fowl chickens fed either ad libitum, chronically restricted to around 70% of ad libitum daily or intermittently fasted (IF) on a 2:1 (2 days fed, 1 day fasted) schedule without actual caloric restriction. As red junglefowl are ancestral to domestic chicken breeds, these data serve as a baseline to which existing and future transcriptomic results from farmed birds such as broiler breeders can be compared. Results We find large effects of feeding regimen on liver transcriptomics, with most of the affected genes relating to energy metabolism. A cluster analysis shows that IF is associated with large and reciprocal changes in genes related to lipid and carbohydrate metabolism, but also chronic changes in genes related to amino acid metabolism (generally down-regulated) and cell cycle progression (generally up-regulated). The overall transcription pattern appears to be one of promoting high proliferative plasticity in response to fluctuations in available energy substrates. A small number of inflammation-related genes also show chronically changed expression profiles, as does one circadian rhythm gene. Conclusions The increase in proliferative potential suggested by the gene expression changes reported here indicates that birds and mammals respond similarly to intermittent fasting practices. Our findings therefore suggest that the health benefits of periodic caloric restriction are ubiquitous and not restricted to mammals alone. Whether a common fundamental mechanism, for example involving leptin, underpins these benefits remains to be elucidated. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08533-5.
Collapse
|
5
|
Marinho TDS, Ornellas F, Aguila MB, Mandarim-de-Lacerda CA. Browning of the subcutaneous adipocytes in diet-induced obese mouse submitted to intermittent fasting. Mol Cell Endocrinol 2020; 513:110872. [PMID: 32454192 DOI: 10.1016/j.mce.2020.110872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE We studied subcutaneous white adipose tissue (sWAT) of obese mice submitted to intermittent fasting (IF). METHODS Twelve-week-old C57BL/6 male mice received the diets Control (C) or high-fat (HF) for eight weeks (n = 20/each). Then, part of each group performed IF (24 h feeding/24 h fasting) for four weeks: C, C-IF, HF, and HF-IF (n = 10/each). RESULTS Food intake did not show a difference in feeding and fasting days, but HF groups had a high energy intake. IF led to multilocular adipocytes in sWAT (browning), and improved respiratory quotient on the fed day. IF decreased gene expression of Leptin, but increased Adiponectin, β3ar (beta3 adrenoreceptor), and Ucp1 (uncoupling protein). IF enhanced immunostaining of Caspase 3, Pcna (proliferating cell nuclear antigen), and UCP1 in sWAT. IF attenuated pro-inflammatory markers and pro-apoptotic markers in sWAT. CONCLUSIONS IF in obese mice led to browning in sWAT adipocytes, enhanced thermogenesis, an improved adipose tissue pro-inflammatory profile.
Collapse
Affiliation(s)
- Thatiany de Souza Marinho
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Energy restriction affect liver development in Hu sheep ram lambs through Hippo signaling pathway. Tissue Cell 2017; 49:603-611. [DOI: 10.1016/j.tice.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/29/2017] [Accepted: 08/24/2017] [Indexed: 12/17/2022]
|
7
|
Wan-Long Z, Zheng-Kun W. Effects of random food deprivation and refeeding on energy metabolism, behavior and hypothalamic neuropeptide expression in Apodemus chevrieri. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:71-78. [PMID: 27387442 DOI: 10.1016/j.cbpa.2016.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/28/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Maintaining adaptive control of behavior and physiology is the main strategy used by animals in responding to changes of food resources. To investigate the effects of random food deprivation (FD) and refeeding on energy metabolism and behavior in Apodemus chevrieri, we acclimated adult males to FD for 4weeks, then refed them ad libitum for 4weeks (FD-Re group). During the period of FD, animals were fed ad libitum for 4 randomly assigned days each week, and deprived of food the other 3days. A control group was fed ad libitum for 8weeks. At 4 and 8weeks we measured body mass, thermogenesis, serum leptin levels, body composition, gastrointestinal tract morphology, behavior and hypothalamic neuropeptide expression. At 4weeks, food intake, gastrointestinal mass, neuropeptide Y (NPY) and agouti-related protein (AgRP) mRNA expressions increased and thermogenesis, leptin levels, pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) expressions decreased in FD compared with controls. FD also showed more resting behavior and less activity than the controls on ad libitum day. There were no differences between FD-Re and controls at 8weeks, indicating significant plasticity. These results suggested that animals can compensate for unpredictable reduction in food availability by increasing food intake and reducing energy expended through thermogenesis and activity. Leptin levels, NPY, AgRP, POMC, and CART mRNA levels may also regulate energy metabolism. Significant plasticity in energy metabolism and behavior was shown by A. chevrieri over a short timescale, allowing them to adapt to food shortages in nutritionally unpredictable environments.
Collapse
Affiliation(s)
- Zhu Wan-Long
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China.
| | - Wang Zheng-Kun
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
8
|
Gender Differences in Response to Prolonged Every-Other-Day Feeding on the Proliferation and Apoptosis of Hepatocytes in Mice. Nutrients 2016; 8:176. [PMID: 27007393 PMCID: PMC4808902 DOI: 10.3390/nu8030176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/07/2016] [Indexed: 02/07/2023] Open
Abstract
Intermittent fasting decreases glucose and insulin levels and increases insulin sensitivity and lifespan. Decreased food intake influences the liver. Previous studies have shown gender differences in response to various types of caloric restriction, including every-other-day (EOD) feeding, in humans and rodents. Our goal was to show the influence of prolonged EOD feeding on the morphology, proliferation and apoptosis of livers from male and female mice. After nine months of an EOD diet, the livers from male and female mice were collected. We examined their morphology on histological slides using the Hematoxilin and Eosine (H_E) method and Hoechst staining of cell nuclei to evaluate the nuclear area of hepatocytes. We also evaluated the expression of mRNA for proto-oncogens, pro-survival proteins and apoptotic markers using Real Time Polimerase Chain Reaction (PCR). We noted increased lipid content in the livers of EOD fed female mice. EOD feeding lead to a decrease of proliferation and apoptosis in the livers of female and male mice, which suggest that tissue maintenance occurred during EOD feeding. Our experiment revealed sex-specific expression of mRNA for proto-oncogenes and pro-survival and pro-apoptotic genes in mice as well as sex-specific responses to the EOD treatment.
Collapse
|
9
|
Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α. Proc Natl Acad Sci U S A 2015; 112:E5669-78. [PMID: 26438876 DOI: 10.1073/pnas.1516219112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics.
Collapse
|
10
|
Spindler SR. Caloric restriction: from soup to nuts. Ageing Res Rev 2010; 9:324-53. [PMID: 19853062 DOI: 10.1016/j.arr.2009.10.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 10/07/2009] [Accepted: 10/09/2009] [Indexed: 12/25/2022]
Abstract
Caloric restriction (CR), reduced protein, methionine, or tryptophan diets; and reduced insulin and/or IGFI intracellular signaling can extend mean and/or maximum lifespan and delay deleterious age-related physiological changes in animals. Mice and flies can shift readily between the control and CR physiological states, even at older ages. Many health benefits are induced by even brief periods of CR in flies, rodents, monkeys, and humans. In humans and nonhuman primates, CR produces most of the physiologic, hematologic, hormonal, and biochemical changes it produces in other animals. In primates, CR provides protection from type 2 diabetes, cardiovascular and cerebral vascular diseases, immunological decline, malignancy, hepatotoxicity, liver fibrosis and failure, sarcopenia, inflammation, and DNA damage. It also enhances muscle mitochondrial biogenesis, affords neuroprotection; and extends mean and maximum lifespan. CR rapidly induces antineoplastic effects in mice. Most claims of lifespan extension in rodents by drugs or nutrients are confounded by CR effects. Transcription factors and co-activators involved in the regulation of mitochondrial biogenesis and energy metabolism, including SirT1, PGC-1alpha, AMPK and TOR may be involved in the lifespan effects of CR. Paradoxically, low body weight in middle aged and elderly humans is associated with increased mortality. Thus, enhancement of human longevity may require pharmaceutical interventions.
Collapse
|
11
|
Effects of fasting and refeeding on body mass, thermogenesis and serum leptin in Brandt's voles (Lasiopodomys brandtii). J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Lkhagvadorj S, Qu L, Cai W, Couture OP, Barb CR, Hausman GJ, Nettleton D, Anderson LL, Dekkers JCM, Tuggle CK. Microarray gene expression profiles of fasting induced changes in liver and adipose tissues of pigs expressing the melanocortin-4 receptor D298N variant. Physiol Genomics 2009; 38:98-111. [PMID: 19366786 DOI: 10.1152/physiolgenomics.90372.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcriptional profiling coupled with blood metabolite analyses were used to identify porcine genes and pathways that respond to a fasting treatment or to a D298N missense mutation in the melanocortin-4 receptor (MC4R) gene. Gilts (12 homozygous for D298 and 12 homozygous for N298) were either fed ad libitum or fasted for 3 days. Fasting decreased body weight, backfat, and serum urea concentration and increased serum nonesterified fatty acid. In response to fasting, 7,029 genes in fat and 1,831 genes in liver were differentially expressed (DE). MC4R genotype did not significantly affect gene expression, body weight, backfat depth, or any measured serum metabolite concentration. Pathway analyses of fasting-induced DE genes indicated that lipid and steroid synthesis was downregulated in both liver and fat. Fasting increased expression of genes involved in glucose sparing pathways, such as oxidation of amino acids and fatty acids in liver, and in extracellular matrix pathways, such as cell adhesion and adherens junction in fat. Additionally, we identified DE transcription factors (TF) that regulate many DE genes. This confirms the involvement of TF, such as PPARG, SREBF1, and CEBPA, which are known to regulate the fasting response, and implicates additional TF, such as ESR1. Interestingly, ESR1 controls several fasting induced genes in fat that are involved in cell matrix morphogenesis. Our findings indicate a transcriptional response to fasting in two key metabolic tissues of pigs, which was corroborated by changes in blood metabolites, and the involvement of novel putative transcriptional regulators in the immediate adaptive response to fasting.
Collapse
Affiliation(s)
- Sender Lkhagvadorj
- Department of Animal Science, Iowa State University, Ames, Iowa 50011-3150, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kouda K, Kohno H, Nakamura H, Ha-Kawa SK, Sonoda Y, Iki M. Technetium-99m-GSA clearance in mice under long-term dietary restriction. Ann Nucl Med 2009; 23:123-9. [DOI: 10.1007/s12149-008-0217-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/16/2008] [Indexed: 11/24/2022]
|
14
|
Spindler SR, Dhahbi JM. Conserved and tissue-specific genic and physiologic responses to caloric restriction and altered IGFI signaling in mitotic and postmitotic tissues. Annu Rev Nutr 2007; 27:193-217. [PMID: 17428180 DOI: 10.1146/annurev.nutr.27.061406.093743] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caloric restriction (CR), the consumption of fewer calories without malnutrition, and reduced insulin and/or IGFI receptor signaling delay many age-related physiological changes and extend the lifespan of many model organisms. Here, we present and review microarray and biochemical studies indicating that the potent anticancer effects of CR and disrupted insulin/IGFI receptor signaling evolved as a byproduct of the role of many mitotic tissues as reservoirs of metabolic energy. We argue that the longevity effects of CR are derived from repeated cycles of apoptosis and autophagic cell death in mitotically competent tissues and protein turnover and cellular repair in postmitotic tissues. We review studies showing that CR initiated late in life can rapidly induce many of the benefits of lifelong CR, including its anticancer effects. We also discuss evidence from liver and heart indicating that many benefits of lifelong CR are recapitulated in mitotic and postmitotic tissues when CR is initiated late in life.
Collapse
Affiliation(s)
- Stephen R Spindler
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
15
|
Spindler SR, Mote PL. Screening candidate longevity therapeutics using gene-expression arrays. Gerontology 2007; 53:306-21. [PMID: 17570924 DOI: 10.1159/000103924] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/28/2007] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We review studies showing that CR acts rapidly, even in late adulthood, to extend health- and lifespan in mice. These rapid physiological effects are closely linked to patterns of gene expression in liver and heart. Non-human primate and human studies suggest that the signal transduction pathways responsible for the lifespan and health effects of caloric restriction (CR) may also be involved in human longevity. Thus, pharmaceuticals capable of mimicking the effects of CR (and other methods of lifespan extension) may have application to human health. OBJECTIVE We show that lifespan studies are an inefficient and theoretically problematic way of screening for longevity therapeutics. We review studies suggesting that rapid changes in patterns of gene expression can be used to identify pharmaceuticals capable of mimicking some positive effects of caloric restriction. RESULTS We present a traditional study of the effects of melatonin, melatonin and pregnenolone, aminoguanidine, aminoguanidine and alpha-lipoic acid, aminoguanidine, alpha-lipoic acid, pregnenolone, and coenzyme-Q(10) on the lifespan of mice. No treatment extended lifespan. However, because the mice die mostly of cancer, only chemopreventives active against specific cancers can be identified by such studies. The studies were also time-consuming and expensive. We discuss high-density microarray studies of the effectiveness of glucoregulatory drugs and putative cancer chemopreventatives at reproducing the hepatic gene-expression profiles of long-term and short-term CR. We describe the identification of one compound, metformin, which reproduces a subset of the gene-expression and physiological effects of CR. CONCLUSION Taken together, our results suggest that gene-expression biomarkers may be superior to lifespan studies for initial screening of candidate longevity therapeutics.
Collapse
Affiliation(s)
- Stephen R Spindler
- Department of Biochemistry, University of California, Riverside, Calif 92521, USA.
| | | |
Collapse
|
16
|
Pouliquen D, Olivier C, Debien E, Meflah K, Vallette FM, Menanteau J. Changes in liver mitochondrial plasticity induced by brain tumor. BMC Cancer 2006; 6:234. [PMID: 17018136 PMCID: PMC1599747 DOI: 10.1186/1471-2407-6-234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 10/03/2006] [Indexed: 11/13/2022] Open
Abstract
Background Accumulating data suggest that liver is a major target organ of systemic effects observed in the presence of a cancer. In this study, we investigated the consequences of the presence of chemically induced brain tumors in rats on biophysical parameters accounting for the dynamics of water in liver mitochondria. Methods Tumors of the central nervous system were induced by intraveinous administration of ethylnitrosourea (ENU) to pregnant females on the 19th day of gestation. The mitochondrial crude fraction was isolated from the liver of each animal and the dynamic parameters of total water and its macromolecule-associated fraction (structured water, H2Ost) were calculated from Nuclear Magnetic Resonance (NMR) measurements. Results The presence of a malignant brain tumor induced a loss of water structural order that implicated changes in the physical properties of the hydration shells of liver mitochondria macromolecules. This feature was linked to an increase in the membrane cholesterol content, a way to limit water penetration into the bilayer and then to reduce membrane permeability. As expected, these alterations in mitochondrial plasticity affected ionic exchanges and led to abnormal features of mitochondrial biogenesis and caspase activation. Conclusion This study enlightens the sensitivity of the structured water phase in the liver mitochondria machinery to external conditions such as tumor development at a distant site. The profound metabolic and functional changes led to abnormal features of ion transport, mitochondrial biogenesis and caspase activation.
Collapse
Affiliation(s)
- Daniel Pouliquen
- Inserm, U601, Equipe « Apoptose et progression tumorale », F-44000, Nantes, France
- Université de Nantes, Faculté de Médecine, Département de recherche en cancérologie, IFR26, F-44000, Nantes, France
| | - Christophe Olivier
- Inserm, U601, Equipe « Apoptose et progression tumorale », F-44000, Nantes, France
- Université de Nantes, Faculté de Pharmacie, F-44000, Nantes, France
| | - Emilie Debien
- Inserm, U601, Equipe « Apoptose et progression tumorale », F-44000, Nantes, France
- Université de Nantes, Faculté de Médecine, Département de recherche en cancérologie, IFR26, F-44000, Nantes, France
| | - Khaled Meflah
- Inserm, U601, Equipe « Apoptose et progression tumorale », F-44000, Nantes, France
- Université de Nantes, Faculté de Médecine, Département de recherche en cancérologie, IFR26, F-44000, Nantes, France
| | - François M Vallette
- Inserm, U601, Equipe « Apoptose et progression tumorale », F-44000, Nantes, France
- Université de Nantes, Faculté de Médecine, Département de recherche en cancérologie, IFR26, F-44000, Nantes, France
| | - Jean Menanteau
- Inserm, U601, Equipe « Apoptose et progression tumorale », F-44000, Nantes, France
- Université de Nantes, Faculté de Médecine, Département de recherche en cancérologie, IFR26, F-44000, Nantes, France
| |
Collapse
|
17
|
Ishihara H, Wenying F, Kouda K, Nakamura H, Kohno H, Nishio N, Sonoda Y. Effects of Dietary Restriction on Physical Performance in Mice. ACTA ACUST UNITED AC 2005; 24:209-13. [PMID: 15930808 DOI: 10.2114/jpa.24.209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dietary restriction is known to prolong life in laboratory animals. However, little is known about the effects of dietary restriction on physical performance. To evaluate physical performance, we measured four item indices: time to climb out of obstacles, time to escape restraint by gummed tape, time hanging from a bar, and ability to resist slipping every week. The diets of ICR mice were restricted from the age of 7 weeks through 24 weeks. Body weight of the diet-restricted mice decreased during the 7th to 9th weeks of age. After the 10th week, weight gain resumed. In response to assigned tasks, the diet-restricted mice performed better in all activities: they climbed out of obstacles faster, freed themselves sooner from restraint by gummed tape, hung from a bar longer, and better resisted slipping down a slope. These results suggest that diet-restricted mice have superior physical abilities, such as those required to overcome or avoid risks to life, than do ad-libitum-fed mice.
Collapse
|