1
|
Schiavinato A, Pasanen-Zentz A, Mörgelin M, Wehrle A, Karmacharya S, Rübsam M, Zigrino P, Wagener R, Paulsson M, Lausch E. ANTXR2 Deficiency Promotes Cellular Senescence and Chondroid Differentiation in Hyaline Fibromatosis Syndrome Fibroblasts. J Invest Dermatol 2025:S0022-202X(25)00470-1. [PMID: 40368274 DOI: 10.1016/j.jid.2025.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Affiliation(s)
- Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Arthur Pasanen-Zentz
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | - Anika Wehrle
- Pediatric Genetics, Center for Pediatric and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Shreya Karmacharya
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Matthias Rübsam
- Department Cell Biology of the Skin and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paola Zigrino
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ekkehart Lausch
- Pediatric Genetics, Center for Pediatric and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Li DS, Tellides G, Humphrey JD. Biomechanical and transcriptional evidence that smooth muscle cell death drives an osteochondrogenic phenotype and severe proximal vascular disease in progeria. Biomech Model Mechanobiol 2023; 22:1333-1347. [PMID: 37149823 PMCID: PMC10544720 DOI: 10.1007/s10237-023-01722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end-of-life. We found a progressive disease process in proximal elastic arteries that was less evident in distal muscular arteries. Changes in aortic structure and function were then associated with changes in transcriptomics assessed via both bulk and single cell RNA sequencing, which suggested a novel sequence of progressive aortic disease: adverse extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotype that results in an accumulation of proteoglycans that thickens the aortic wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased central artery pulse wave velocity is known to drive left ventricular diastolic dysfunction, the primary diagnosis in progeria children. It appears that mechanical stresses above ~ 80 kPa initiate this progressive aortic disease process, explaining why elastic lamellar structures that are organized early in development under low wall stresses appear to be nearly normal whereas other medial constituents worsen progressively in adulthood. Mitigating early mechanical stress-driven smooth muscle cell loss/phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Molly Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Murtada SI, Kawamura Y, Cavinato C, Wang M, Ramachandra AB, Spronck B, Tellides G, Humphrey JD. Smooth Muscle Cell Death Drives an Osteochondrogenic Phenotype and Severe Proximal Vascular Disease in Progeria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523266. [PMID: 36711514 PMCID: PMC9882088 DOI: 10.1101/2023.01.10.523266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome results in rapid aging and severe cardiovascular sequelae that accelerate near end of life. We associate progressive deterioration of arterial structure and function with single cell transcriptional changes, which reveals a rapid disease process in proximal elastic arteries that largely spares distal muscular arteries. These data suggest a novel sequence of progressive vascular disease in progeria: initial extracellular matrix remodeling followed by mechanical stress-induced smooth muscle cell death in proximal arteries, leading a subset of remnant smooth muscle cells to an osteochondrogenic phenotypic modulation that results in an accumulation of proteoglycans that thickens the wall and increases pulse wave velocity, with late calcification exacerbating these effects. Increased pulse wave velocity drives left ventricular diastolic dysfunction, the primary diagnosis in progeria children. Mitigating smooth muscle cell loss / phenotypic modulation promises to have important cardiovascular implications in progeria patients.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yuki Kawamura
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mo Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Bart Spronck
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Maastricht University, Maastricht, Netherlands
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
San Martin R, Das P, Sanders JT, Hill AM, McCord RP. Transcriptional profiling of Hutchinson-Gilford Progeria syndrome fibroblasts reveals deficits in mesenchymal stem cell commitment to differentiation related to early events in endochondral ossification. eLife 2022; 11:e81290. [PMID: 36579892 PMCID: PMC9833827 DOI: 10.7554/elife.81290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/29/2022] [Indexed: 12/30/2022] Open
Abstract
The expression of a mutant Lamin A, progerin, in Hutchinson-Gilford Progeria Syndrome leads to alterations in genome architecture, nuclear morphology, epigenetic states, and altered phenotypes in all cells of the mesenchymal lineage. Here, we report a comprehensive analysis of the transcriptional status of patient derived HGPS fibroblasts, including nine cell lines not previously reported, in comparison with age-matched controls, adults, and old adults. We find that Progeria fibroblasts carry abnormal transcriptional signatures, centering around several functional hubs: DNA maintenance and epigenetics, bone development and homeostasis, blood vessel maturation and development, fat deposition and lipid management, and processes related to muscle growth. Stratification of patients by age revealed misregulated expression of genes related to endochondral ossification and chondrogenic commitment in children aged 4-7 years old, where this differentiation program starts in earnest. Hi-C measurements on patient fibroblasts show weakening of genome compartmentalization strength but increases in TAD strength. While the majority of gene misregulation occurs in regions which do not change spatial chromosome organization, some expression changes in key mesenchymal lineage genes coincide with lamin associated domain misregulation and shifts in genome compartmentalization.
Collapse
Affiliation(s)
- Rebeca San Martin
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| | - Priyojit Das
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| | - Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Ashtyn M Hill
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| |
Collapse
|
5
|
Murtada SI, Kawamura Y, Caulk AW, Ahmadzadeh H, Mikush N, Zimmerman K, Kavanagh D, Weiss D, Latorre M, Zhuang ZW, Shadel GS, Braddock DT, Humphrey JD. Paradoxical aortic stiffening and subsequent cardiac dysfunction in Hutchinson-Gilford progeria syndrome. J R Soc Interface 2020; 17:20200066. [PMID: 32453981 DOI: 10.1098/rsif.2020.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare disorder with devastating sequelae resulting in early death, presently thought to stem primarily from cardiovascular events. We analyse novel longitudinal cardiovascular data from a mouse model of HGPS (LmnaG609G/G609G) using allometric scaling, biomechanical phenotyping, and advanced computational modelling and show that late-stage diastolic dysfunction, with preserved systolic function, emerges with an increase in the pulse wave velocity and an associated loss of aortic function, independent of sex. Specifically, there is a dramatic late-stage loss of smooth muscle function and cells and an excessive accumulation of proteoglycans along the aorta, which result in a loss of biomechanical function (contractility and elastic energy storage) and a marked structural stiffening despite a distinctly low intrinsic material stiffness that is consistent with the lack of functional lamin A. Importantly, the vascular function appears to arise normally from the low-stress environment of development, only to succumb progressively to pressure-related effects of the lamin A mutation and become extreme in the peri-morbid period. Because the dramatic life-threatening aortic phenotype manifests during the last third of life there may be a therapeutic window in maturity that could alleviate concerns with therapies administered during early periods of arterial development.
Collapse
Affiliation(s)
- S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Y Kawamura
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - A W Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - H Ahmadzadeh
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - N Mikush
- Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - K Zimmerman
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - D Kavanagh
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - M Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Z W Zhuang
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - G S Shadel
- Molecular and Cellular Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - D T Braddock
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Evaluation of musculoskeletal phenotype of the G608G progeria mouse model with lonafarnib, pravastatin, and zoledronic acid as treatment groups. Proc Natl Acad Sci U S A 2020; 117:12029-12040. [PMID: 32404427 DOI: 10.1073/pnas.1906713117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a uniformly fatal condition that is especially prevalent in skin, cardiovascular, and musculoskeletal systems. A wide gap exists between our knowledge of the disease and a promising treatment or cure. The aim of this study was to first characterize the musculoskeletal phenotype of the homozygous G608G BAC-transgenic progeria mouse model, and to determine the phenotype changes of HGPS mice after a five-arm preclinical trial of different treatment combinations with lonafarnib, pravastatin, and zoledronic acid. Microcomputed tomography and CT-based rigidity analyses were performed to assess cortical and trabecular bone structure, density, and rigidity. Bones were loaded to failure with three-point bending to assess strength. Contrast-enhanced µCT imaging of mouse femurs was performed to measure glycosaminoglycan content, thickness, and volume of the femoral head articular cartilage. Advanced glycation end products were assessed with a fluorometric assay. The changes demonstrated in the cortical bone structure, rigidity, stiffness, and modulus of the HGPS G608G mouse model may increase the risk for bending and deformation, which could result in the skeletal dysplasia characteristic of HGPS. Cartilage abnormalities seen in this HGPS model resemble changes observed in the age-matched WT controls, including early loss of glycosaminoglycans, and decreased cartilage thickness and volume. Such changes might mimic prevalent degenerative joint diseases in the elderly. Lonafarnib monotherapy did not improve bone or cartilage parameters, but treatment combinations with pravastatin and zoledronic acid significantly improved bone structure and mechanical properties and cartilage structural parameters, which ameliorate the musculoskeletal phenotype of the disease.
Collapse
|
7
|
Bassir SH, Chase I, Paster BJ, Gordon LB, Kleinman ME, Kieran MW, Kim DM, Sonis A. Microbiome at sites of gingival recession in children with Hutchinson-Gilford progeria syndrome. J Periodontol 2019. [PMID: 29520806 DOI: 10.1002/jper.17-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder with significant oral and dental abnormalities. Clinical symptoms include various features of accelerated aging such as alopecia, loss of subcutaneous fat, bone abnormalities, and premature cardiovascular disease. In addition, children with HGPS have been observed to suffer from generalized gingival recession. Whether periodontal manifestations associated with this syndrome are the results of changes in the oral flora is unknown. The present study aimed to identify the microbial composition of subgingival sites with gingival recession in children with HGPS. METHODS Nine children with HGPS were enrolled in this study. Plaque samples were collected from teeth with gingival recession. DNA samples were analyzed using the Human Oral Microbe Identification Microarray (HOMIM). Microbial profiles from HGPS children were compared with microbial profiles of controls from healthy individuals (n = 9) and patients with periodontal disease (n = 9). RESULTS Comparison of microbial compositions of HGPS samples with periodontal health samples demonstrated significant differences for two bacterial taxa; Porphyromonas catoniae and Prevotella oulora were present in children with HGPS, but not normal controls. There were statistically significant differences of 20 bacterial taxa between HGPS and periodontal disease groups. CONCLUSIONS Typical periodontal pathogens were not present at sites with gingival recession in HGPS children. The microbial compositions of sites of gingival recession and attachment loss in HGPS were generally more similar to those of periodontal health than periodontal disease. Species other than typical periodontal pathogens may be involved in this recession.
Collapse
Affiliation(s)
- Seyed Hossein Bassir
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Isabelle Chase
- Department of Pediatric Dentistry, Boston Children's Hospital, Boston, MA
| | - Bruce J Paster
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,The Forsyth Institute, Cambridge, MA
| | - Leslie B Gordon
- Department of Pediatrics, Hasbro Children's Hospital and Warren Alpert Medical School of Brown University, Providence, RI.,Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Monica E Kleinman
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Mark W Kieran
- Division of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - David M Kim
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Andrew Sonis
- Department of Developmental Biology, Children's Hospital Boston, Boston, MA
| |
Collapse
|
8
|
Haydont V, Neiveyans V, Zucchi H, Fortunel NO, Asselineau D. Genome-wide profiling of adult human papillary and reticular fibroblasts identifies ACAN, Col XI α1, and PSG1 as general biomarkers of dermis ageing, and KANK4 as an exemplary effector of papillary fibroblast ageing, related to contractility. Mech Ageing Dev 2018; 177:157-181. [PMID: 29913199 DOI: 10.1016/j.mad.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/20/2018] [Accepted: 06/08/2018] [Indexed: 01/21/2023]
Abstract
Deciphering the characteristics of dermal fibroblasts is critical to further understand skin ageing. We have conducted a genome-wide transcriptomic characterization of papillary (Fp) and reticular (Fr) fibroblasts extracted from human skin samples corresponding to younger and older adult ages. From this screen, biomarkers suitable for the assessment of chronological ageing were identified, and extrapolated to the context of photo-damaged skin. In particular, KANK4, ACAN, Col XI α1, and PSG1, were expressed at an increased level in both chronologically-aged and photo-damaged skin. Notably, analysis focused on Fp identified significant transcriptional signatures associated with ageing, which included transcripts related to extracellular matrix, focal adhesion points, and cytoskeleton, thus suggesting functional consequences on tissue structure. At a cellular level, an increased contractility was identified as a property of aged Fp. Accordingly, further investigations were conducted on the KN motif and ankyrin repeat-containing protein 4 (KANK4) to explore its possible function as an original effector involved in the acquisition of aged properties in Fp, notably their increased contractility. We show that KANK4 down-modulation using siRNA led to increased Rho pathway activity, thereby reducing their contractility. As a proof-of-principle, the present study shows that targeting KANK4 was efficient to attenuate aged Fp characteristics.
Collapse
Affiliation(s)
- Valérie Haydont
- Advanced Research, L'Oréal Research and Innovation, 93600, Aulnay-sous-Bois, France.
| | - Véronique Neiveyans
- Advanced Research, L'Oréal Research and Innovation, 93600, Aulnay-sous-Bois, France
| | - Hélène Zucchi
- Advanced Research, L'Oréal Research and Innovation, 93600, Aulnay-sous-Bois, France
| | - Nicolas O Fortunel
- Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Institut de Biologie François Jacob, CEA/DRF/IRCM, 91000, Evry, France; INSERM U967, Fontenay-aux-Roses, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France.
| | - Daniel Asselineau
- Advanced Research, L'Oréal Research and Innovation, 93600, Aulnay-sous-Bois, France
| |
Collapse
|
9
|
Survey of plasma proteins in children with progeria pre-therapy and on-therapy with lonafarnib. Pediatr Res 2018; 83:982-992. [PMID: 29342131 DOI: 10.1038/pr.2018.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
BackgroundHutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare, fatal, segmental premature aging syndrome caused by the aberrant lamin A protein, progerin. The protein farnesyltransferase inhibitor, lonafarnib, ameliorates some aspects of cardiovascular and bone disease.MethodsWe performed a prospective longitudinal survey of plasma proteins in 24 children with HGPS (an estimated 10% of the world's population at the time) at baseline and on lonafarnib therapy, compared with age- and gender-matched controls using a multi-analyte, microsphere-based immunofluorescent assay.ResultsThe mean levels for 23/66 (34.8%) proteins were significantly lower and 7/66 (10.6%) were significantly higher in HGPS samples compared with those in controls (P≤0.05). Six proteins whose concentrations were initially lower normalized with lonafarnib therapy: interleukins 1α, 7, and 13, beta-2 microglobulin, C-reactive protein, and myoglobin. Alpha-2 macroglobulin, a protease inhibitor associated with stroke, was elevated at baseline and subsequently normalized with lonafarnib therapy.ConclusionThis is the first study to employ a multi-analyte array platform in HGPS. Novel potential biomarkers identified in this study should be further validated by correlations with clinical disease status, especially proteins associated with cardiovascular disease and those that normalized with lonafarnib therapy.
Collapse
|
10
|
Snorradottir AO, Isaksson HJ, Kaeser SA, Skodras AA, Olafsson E, Palsdottir A, Bragason BT. Deposition of collagen IV and aggrecan in leptomeningeal arteries of hereditary brain haemorrhage with amyloidosis. Brain Res 2013; 1535:106-14. [PMID: 23973860 DOI: 10.1016/j.brainres.2013.08.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/28/2013] [Accepted: 08/15/2013] [Indexed: 12/18/2022]
Abstract
Hereditary Cystatin C Amyloid Angiopathy (HCCAA) is a rare genetic disease in Icelandic families caused by a mutation in the cystatin C gene, CST3. HCCAA is classified as a cerebral amyloid angiopathy and mutant cystatin C forms amyloid deposits in cerebral arteries resulting in fatal haemorrhagic strokes in young adults. The aetiology of HCCAA pathology is not clear and there is, at present, no animal model of the disease. The aim of this study was to increase understanding of the cerebral vascular pathology of HCCAA patients with an emphasis on structural changes within the arterial wall of affected leptomeningeal arteries. Examination of post-mortem samples revealed extensive changes in the walls of affected arteries characterised by deposition of extracellular matrix constituents, notably collagen IV and the proteoglycan aggrecan. Other structural abnormalities were thickening of the laminin distribution, intimal thickening concomitant with a frayed elastic layer, and variable reduction in the integrity of endothelia. Our results show that excess deposition of extracellular matrix proteins in cerebral arteries of HCCAA is a prominent feature of the disease and may play an important role in its pathogenesis.
Collapse
|
11
|
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder. The estimated incidence is one in 4 million births. Orthopaedic manifestations include abnormality of the hips occurring early in the disease process. Severe coxa valga can be apparent by the age of 2 years. We report two cases of HGPS, one in a 7-year-old girl with avascular necrosis of the left hip and the second in a 13-year-old girl with recurrent traumatic hip dislocations. We demonstrate the pathoanatomical changes in the hip with HGPS using a combination of imaging modalities including radiographic, computed tomographic and MRI scans. These include coxa magna, coxa valga and acetabular dysplasia. We also comment on how these would affect the surgical management of this high-risk group of patients.
Collapse
|
12
|
Harten IA, Zahr RS, Lemire JM, Machan JT, Moses MA, Doiron RJ, Curatolo AS, Rothman FG, Wight TN, Toole BP, Gordon LB. Age-dependent loss of MMP-3 in Hutchinson-Gilford progeria syndrome. J Gerontol A Biol Sci Med Sci 2011; 66:1201-7. [PMID: 21852285 DOI: 10.1093/gerona/glr137] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare, progressive segmental premature aging disease that includes scleroderma-like skin, progressive joint contracture, and atherosclerosis. Affected individuals die prematurely of heart attacks or strokes. Extracellular matrix dysregulation is implicated as a factor in disease progression. We analyzed messenger RNA and protein levels for matrix metalloproteinases (MMPs)-2,-3, and -9 in HGPS primary human dermal fibroblasts using real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and gelatin zymography. MMP-3 messenger RNA and protein levels decreased significantly with increasing donor age in HGPS fibroblasts but not in controls. MMP-2 messenger RNA also showed a donor age-dependent decrease in HGPS fibroblasts, but levels of secreted protein were unchanged. MMP-9 was similar in HGPS and control cultures. The decreased MMP-3 may represent a shift in the inherent extracellular matrix-degrading proteolytic balance in favor of matrix deposition in HGPS. This metalloproteinase has the potential to serve as a biomarker of therapeutic efficacy when assessing treatments for HGPS.
Collapse
Affiliation(s)
- Ingrid A Harten
- Hope Heart Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Velasco J, Li J, DiPietro L, Stepp MA, Sandy JD, Plaas A. Adamts5 deletion blocks murine dermal repair through CD44-mediated aggrecan accumulation and modulation of transforming growth factor β1 (TGFβ1) signaling. J Biol Chem 2011; 286:26016-27. [PMID: 21566131 DOI: 10.1074/jbc.m110.208694] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ADAMTS5 has been implicated in the degradation of cartilage aggrecan in human osteoarthritis. Here, we describe a novel role for the enzyme in the regulation of TGFβ1 signaling in dermal fibroblasts both in vivo and in vitro. Adamts5(-/-) mice, generated by deletion of exon 2, exhibit impaired contraction and dermal collagen deposition in an excisional wound healing model. This was accompanied by accumulation in the dermal layer of cell aggregates and fibroblastic cells surrounded by a pericellular matrix enriched in full-length aggrecan. Adamts5(-/-) wounds exhibit low expression (relative to wild type) of collagen type I and type III but show a persistently elevated expression of tgfbRII and alk1. Aggrecan deposition and impaired dermal repair in Adamts5(-/-) mice are both dependent on CD44, and Cd44(-/-)/Adamts5(-/-) mice display robust activation of TGFβ receptor II and collagen type III expression and the dermal regeneration seen in WT mice. TGFβ1 treatment of newborn fibroblasts from wild type mice results in Smad2/3 phosphorylation, whereas cells from Adamts5(-/-) mice phosphorylate Smad1/5/8. The altered TGFβ1 response in the Adamts5(-/-) cells is dependent on the presence of aggrecan and expression of CD44, because Cd44(-/-)/Adamts5(-/-) cells respond like WT cells. We propose that ADAMTS5 deficiency in fibrous tissues results in a poor repair response due to the accumulation of aggrecan in the pericellular matrix of fibroblast progenitor cells, which prevents their transition to mature fibroblasts. Thus, the capacity of ADAMTS5 to modulate critical tissue repair signaling events suggests a unique role for this enzyme, which sets it apart from other members of the ADAMTS family of proteases.
Collapse
Affiliation(s)
- Jennifer Velasco
- Departments of Biochemistry, Rush UniversityMedical Center, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
14
|
Amelinckx A, Castello M, Arrieta-Quintero E, Lee T, Salas N, Hernandez E, Lee RK, Bhattacharya SK, Parel JMA. Laser trabeculoplasty induces changes in the trabecular meshwork glycoproteome: a pilot study. J Proteome Res 2009; 8:3727-36. [PMID: 19432485 PMCID: PMC2732437 DOI: 10.1021/pr900294g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Laser trabeculoplasty (LT) is a commonly used modality of treatment for glaucoma. The mechanism by which LT lowers the intraocular pressure (IOP) is unknown. With the use of cat eyes, selective laser trabeculoplasty (SLT) with a Q-switched frequency doubled Nd:YAG laser was used to treat the trabecular meshwork (TM). Laser treated TM was then subjected to proteomic analysis for detection of molecular changes and histological analysis for the detection of structural and protein expression patterns. In addition, the protein glycosylation patterns of laser treated and nontreated TM was assessed and differentially glycosylated proteins were proteomically identified. SLT laser treatment to the TM resulted in elevated glycosylation levels compared to nonlasered TM. TM laser treatment also resulted in protein expression levels changes of several proteins. Elevated levels of biglycan, keratocan and prolargin were detected in laser treated TM compared to nonlasered controls. Further investigation is anticipated to provide insight into how glycosylation changes affect TM proteins and TM regulation of aqueous outflow in response to laser trabeculoplasty.
Collapse
Affiliation(s)
- Adriana Amelinckx
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Fl
- Ophthalmic Biophysics Center, University of Miami Miller School of Medicine, Miami, Fl
| | - Maria Castello
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Fl
| | - Esdras Arrieta-Quintero
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Fl
- Ophthalmic Biophysics Center, University of Miami Miller School of Medicine, Miami, Fl
| | - Tinthu Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Fl
| | - Nelson Salas
- Ophthalmic Biophysics Center, University of Miami Miller School of Medicine, Miami, Fl
| | - Eleut Hernandez
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Fl
- Ophthalmic Biophysics Center, University of Miami Miller School of Medicine, Miami, Fl
| | - Richard K. Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Fl
| | | | - Jean-Marie A Parel
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Fl
- Ophthalmic Biophysics Center, University of Miami Miller School of Medicine, Miami, Fl
- Vision CRC, Sydney, Australia
| |
Collapse
|
15
|
Gordon LB, McCarten KM, Giobbie-Hurder A, Machan JT, Campbell SE, Berns SD, Kieran MW. Disease progression in Hutchinson-Gilford progeria syndrome: impact on growth and development. Pediatrics 2007; 120:824-33. [PMID: 17908770 DOI: 10.1542/peds.2007-1357] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Hutchinson-Gilford progeria syndrome is a rare and uniformly fatal segmental "premature aging" disease that affects a variety of organ systems. We sought to more clearly define the bone and weight abnormalities in patients with progeria as potential outcome parameters for prospective clinical trials. PATIENTS AND METHODS We collected and analyzed longitudinal medical information, both retrospectively and prospectively, from a total of 41 children with Hutchinson-Gilford progeria syndrome spanning 14 countries, from the Progeria Research Foundation Medical and Research Database at the Brown University Center for Gerontology. RESULTS In addition to a number of previously well-defined phenotypic findings in children with progeria, this study identified abnormalities in the eruption of secondary incisors lingually and palatally in the mandible and maxilla, respectively. Although bony structures appeared normal in early infancy, clavicular resorption, coxa valga, avascular necrosis of the femoral head, modeling abnormalities of long bones with slender diaphyses, flared metaphyses, and overgrown epiphyses developed. Long bones showed normal cortical thickness centrally and progressive focal demineralization peripherally. The most striking finding identified in the retrospective data set of 35 children was an average weight increase of only 0.44 kg/year, beginning at approximately 24 months of age and persisting through life, with remarkable intrapatient linearity. This rate is >2 SD below normal weight gain for any corresponding age and sharply contrasts with the parabolic growth pattern for normal age- and gender-matched children. This finding was also confirmed prospectively. CONCLUSIONS Our analysis shows evidence of a newly identified abnormal growth pattern for children with Hutchinson-Gilford progeria syndrome. The skeletal and dental findings are suggestive of a developmental dysplasia rather than a classical aging process. The presence of decreased and linear weight gain, maintained in all of the patients after the age of 2 years, provides the ideal parameter on which altered disease status can be assessed in clinical trials.
Collapse
Affiliation(s)
- Leslie B Gordon
- Department of Pediatrics, Rhode Island Hospital, Providence, Rhode Island, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
In the past several years, remarkable progress has been made in the understanding of the mechanisms of premature aging. These rare, genetic conditions offer valuable insights into the normal aging process and the complex biology of cardiovascular disease. Many of these advances have been made in the most dramatic of these disorders, Hutchinson–Gilford progeria syndrome. Although characterized by features of normal aging such as alopecia, skin wrinkling, and osteoporosis, patients with Hutchinson–Gilford progeria syndrome are affected by accelerated, premature arteriosclerotic disease that leads to heart attacks and strokes at a mean age of 13 years. In this review, we highlight recent advances in the biology of premature aging uncovered in Hutchinson–Gilford progeria syndrome and other accelerated aging syndromes, advances that provide insight into the mechanisms of cardiovascular diseases ranging from atherosclerosis to arrhythmias.
Collapse
Affiliation(s)
- Brian C Capell
- Genome Technology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-2486, USA
| | | | | |
Collapse
|
17
|
Plaas A, Osborn B, Yoshihara Y, Bai Y, Bloom T, Nelson F, Mikecz K, Sandy JD. Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5-hyaluronan complexes in articular cartilages. Osteoarthritis Cartilage 2007; 15:719-34. [PMID: 17360199 DOI: 10.1016/j.joca.2006.12.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Accepted: 12/23/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Human osteoarthritis (OA) is characterized by aggrecanase-mediated depletion of cartilage aggrecan. We have examined the abundance, location and some biochemical properties of the six known aggrecanases (A disintegrin and metalloproteinase with thrombospondin-like motifs 1 (ADAMTS1) 4, 5, 8, 9 and 15) in normal and OA human cartilages. METHODS Formalin-fixed, ethylenediamine tetraacetic acid (EDTA)-decalcified sections of full-depth cartilage from human OA tibial plateaus and normal control samples were studied by confocal imaging. Probes included specific antibodies to aggrecanases and two aggrecan epitopes, as well as biotinylated hyaluronan binding protein (HABP) for hyaluronan (HA) visualization. Cartilage extracts were analyzed by Western blot for the individual proteinases and aggrecan fragments. RESULTS ADAMTS5 was present in association with cells throughout normal cartilage and was markedly increased in OA, particularly in clonal groups in the superficial and transitional zones, where it was predominantly co-localized with HA. Consistent with the confocal analysis, a high molecular weight complex of ADAMTS5 and HA was isolated from human OA cartilage by isotonic salt extraction and chromatography on Superose 6. The complex eluted with an apparent molecular size of about 2x10(6) and contained major ADAMTS5 forms of 150, 60, 40 and 30kDa. The yield of most forms on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was markedly enhanced by prior digestion of the complex with either Streptomyces hyaluronidase or chondroitinase ABC. CONCLUSION ADAMTS5 abundance and distribution in human OA cartilages is consistent with a central role for this enzyme in destructive aggrecanolysis. HA-dependent sequestration of ADAMTS5 in the pericellular matrix may be a mechanism for regulating the activity of this proteinase in human OA cartilage.
Collapse
Affiliation(s)
- A Plaas
- Department of Internal Medicine, College of Medicine, University of South Florida, Tampa, FL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kudlow BA, Kennedy BK, Monnat RJ. Werner and Hutchinson-Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 2007; 8:394-404. [PMID: 17450177 DOI: 10.1038/nrm2161] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Progeroid syndromes have been the focus of intense research in part because they might provide a window into the pathology of normal ageing. Werner syndrome and Hutchinson-Gilford progeria syndrome are two of the best characterized human progeroid diseases. Mutated genes that are associated with these syndromes have been identified, mouse models of disease have been developed, and molecular studies have implicated decreased cell proliferation and altered DNA-damage responses as common causal mechanisms in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Brian A Kudlow
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|