1
|
Yu Z, Wu A, Ke H, Liu J, Zhao Y, Zhu Y, Wang XY, Xiang Y, Xin HB, Tian XL. Age-Disturbed Vascular Extracellular Matrix Links to Abdominal Aortic Aneurysms. J Gerontol A Biol Sci Med Sci 2024; 79:glae201. [PMID: 39312673 DOI: 10.1093/gerona/glae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 09/25/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common but life-threatening vascular condition in men at an advanced age. However, the underlying mechanisms of age-increased incidence and mortality of AAA remain elusive. Here, we performed RNA sequencing (RNA-seq) of mouse aortas from males (young: 3-month, n = 4 vs old: 23-month, n = 4) and integrated with the data sets of human aortas (young: 20-39, n = 47 vs old: 60-79 years, n = 92) from GTEx project and the data set (GSE183464) for AAA to search for age-shifted aortic aneurysm genes, their relevant biological processes, and signaling pathways. Angiotensin II-induced AAA in mice was used to verify the critical findings. We found 1 001 genes transcriptionally changed with ages in both mouse and human. Most age-increased genes were enriched intracellularly and the relevant biological processes included mitochondrial function and translational controls, whereas the age-decreased genes were largely localized in extracellular regions and cell periphery and the involved biological processes were associated with extracellular matrix (ECM). Fifty-one were known genes for AAA and found dominantly in extracellular region. The common age-shifted vascular genes and known aortic aneurysm genes had shared functional influences on ECM organization, apoptosis, and angiogenesis. Aorta with angiotensin II-induced AAA exhibited similar phenotypic changes in ECM to that in old mice. Together, we present a conserved transcriptional signature for aortic aging and provide evidence that mitochondrial dysfunction and the imbalanced ribosomal homeostasis act likely as driven-forces for aortic aging and age-disturbed ECM is the substrate for developing AAA.
Collapse
Affiliation(s)
- Zhenping Yu
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Andong Wu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Hao Ke
- Cancer and Cell Senescence, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Jiankun Liu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Yuanzheng Zhu
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Xiao-Yu Wang
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| | - Hong-Bo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Aging and Disease, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Rivera CF, Farra YM, Silvestro M, Medvedovsky S, Matz J, Pratama MY, Vlahos J, Ramkhelawon B, Bellini C. Mapping the unicellular transcriptome of the ascending thoracic aorta to changes in mechanosensing and mechanoadaptation during aging. Aging Cell 2024; 23:e14197. [PMID: 38825882 PMCID: PMC11320362 DOI: 10.1111/acel.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
Aortic stiffening is an inevitable manifestation of chronological aging, yet the mechano-molecular programs that orchestrate region- and layer-specific adaptations along the length and through the wall of the aorta are incompletely defined. Here, we show that the decline in passive cyclic distensibility is more pronounced in the ascending thoracic aorta (ATA) compared to distal segments of the aorta and that collagen content increases in both the medial and adventitial compartments of the ATA during aging. The single-cell RNA sequencing of aged ATA tissues reveals altered cellular senescence, remodeling, and inflammatory responses accompanied by enrichment of T-lymphocytes and rarefaction of vascular smooth muscle cells, compared to young samples. T lymphocyte clusters accumulate in the adventitia, while the activation of mechanosensitive Piezo-1 enhances vasoconstriction and contributes to the overall functional decline of ATA tissues. These results portray the immuno-mechanical aging of the ATA as a process that culminates in a stiffer conduit permissive to the accrual of multi-gerogenic signals priming to disease development.
Collapse
Affiliation(s)
- Cristobal F. Rivera
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Yasmeen M. Farra
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| | - Michele Silvestro
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Steven Medvedovsky
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Jacqueline Matz
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| | - Muhammad Yogi Pratama
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - John Vlahos
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Bhama Ramkhelawon
- Department of Surgery, Division of Vascular and Endovascular SurgeryNew York University Langone Medical CenterNew YorkNew YorkUSA
- Department of Cell BiologyNew York University Langone Medical CenterNew YorkNew YorkUSA
| | - Chiara Bellini
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
3
|
Mizoguchi T, Okita M, Minami Y, Fukunaga M, Maki A, Itoh M. Age-dependent dysfunction of the cerebrovascular system in the zebrafish telencephalon. Exp Gerontol 2023; 178:112206. [PMID: 37196825 DOI: 10.1016/j.exger.2023.112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
The brain is an essential organ that controls various biological activities via the nervous system. The cerebral blood vessels supply oxygen and nutrients to neuronal cells and carry away waste products, which is essential in maintaining brain functions. Aging affects cerebral vascular function and decreases brain function. However, the physiological process of age-dependent cerebral vascular dysfunction is not fully understood. In this study, we examined aging effects on cerebral vascular patterning, vascular function, and learning ability in adult zebrafish. We found that the tortuosity of the blood vessels was increased, and the blood flow rate was reduced with aging in the zebrafish dorsal telencephalon. Moreover, we found cerebral blood flow positively correlated with learning ability in middle-old-aged zebrafish, as in aged humans. In addition, we also found that the elastin fiber decreased in the middle-old-aged fish brain vessel, suggesting a possible molecular mechanism underlying vessel dysfunction. Therefore, adult zebrafish may serve as a useful model for studying the aging-dependent decline in vascular function and human diseases such as vascular dementia.
Collapse
Affiliation(s)
- Takamasa Mizoguchi
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mayu Okita
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yuina Minami
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Misa Fukunaga
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayumi Maki
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Science, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan; Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
4
|
Krammer C, Yang B, Reichl S, Besson-Girard S, Ji H, Bolini V, Schulte C, Noels H, Schlepckow K, Jocher G, Werner G, Willem M, El Bounkari O, Kapurniotu A, Gokce O, Weber C, Mohanta S, Bernhagen J. Pathways linking aging and atheroprotection in Mif-deficient atherosclerotic mice. FASEB J 2023; 37:e22752. [PMID: 36794636 DOI: 10.1096/fj.202200056r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.
Collapse
Affiliation(s)
- Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabrina Reichl
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Simon Besson-Girard
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), LMU Munich, Planegg-Martinsried, Germany
| | - Hao Ji
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
| | - Verena Bolini
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Corinna Schulte
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Werner
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich (TUM), Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| |
Collapse
|
5
|
Kiss T, Nyúl-Tóth Á, Gulej R, Tarantini S, Csipo T, Mukli P, Ungvari A, Balasubramanian P, Yabluchanskiy A, Benyo Z, Conley SM, Wren JD, Garman L, Huffman DM, Csiszar A, Ungvari Z. Old blood from heterochronic parabionts accelerates vascular aging in young mice: transcriptomic signature of pathologic smooth muscle remodeling. GeroScience 2022; 44:953-981. [PMID: 35124764 PMCID: PMC9135944 DOI: 10.1007/s11357-022-00519-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/16/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular aging has a central role in the pathogenesis of cardiovascular diseases contributing to increased mortality of older adults. There is increasing evidence that, in addition to the documented role of cell-autonomous mechanisms of aging, cell-nonautonomous mechanisms also play a critical role in the regulation of vascular aging processes. Our recent transcriptomic studies (Kiss T. et al. Geroscience. 2020;42(2):727-748) demonstrated that circulating anti-geronic factors from young blood promote vascular rejuvenation in aged mice. The present study was designed to expand upon the results of this study by testing the hypothesis that circulating pro-geronic factors also contribute to the genesis of vascular aging phenotypes. To test this hypothesis, through heterochronic parabiosis, we determined the extent to which shifts in the vascular transcriptome (RNA-seq) are modulated by the old systemic environment. We reanalyzed existing RNA-seq data, comparing the transcriptome in the aorta arch samples isolated from isochronic parabiont aged (20-month-old) C57BL/6 mice [A-(A); parabiosis for 8 weeks] and young isochronic parabiont (6-month-old) mice [Y-(Y)] and also assessing transcriptomic changes in the aortic arch in young (6-month-old) parabiont mice [Y-(A); heterochronic parabiosis for 8 weeks] induced by the presence of old blood derived from aged (20-month-old) parabionts. We identified 528 concordant genes whose expression levels differed in the aged phenotype and were shifted towards the aged phenotype by the presence of old blood in young Y-(A) animals. Among them, the expression of 221 concordant genes was unaffected by the presence of young blood in A-(Y) mice. GO enrichment analysis suggests that old blood-regulated genes may contribute to pathologic vascular remodeling. IPA Upstream Regulator analysis (performed to identify upstream transcriptional regulators that may contribute to the observed transcriptomic changes) suggests that the mechanism of action of pro-geronic factors present in old blood may include inhibition of pathways mediated by SRF (serum response factor), insulin-like growth factor-1 (IGF-1) and VEGF-A. In conclusion, relatively short-term exposure to old blood can accelerate vascular aging processes. Our findings provide additional evidence supporting the significant plasticity of vascular aging and the existence of circulating pro-geronic factors mediating pathological remodeling of the vascular smooth muscle cells and the extracellular matrix.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Zoltan Benyo
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Lori Garman
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK USA
| | - Derek M. Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
6
|
Risk stratification and mortality prediction in octo- and nonagenarians with peripheral artery disease: a retrospective analysis. BMC Cardiovasc Disord 2021; 21:370. [PMID: 34340657 PMCID: PMC8330051 DOI: 10.1186/s12872-021-02177-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives Among changes in demographics, aging is the most relevant cardiovascular risk factor. The prevalence of peripheral artery disease (PAD) is high in elderly patients and is associated with a worse prognosis. Despite optimal treatments, mortality in the high-risk population of octo- and nonagenarians with PAD remains excessive, and predictive factors need to be identified. The objective of this study was to investigate predictors of mortality in octo- and nonagenarians with PAD. Methods Cases of treated octo- and nonagenarians, including the clinical characteristics and markers of myocardial injury and heart failure, were studied retrospectively with respect to all-cause mortality. Hazard ratios [HR] were calculated and survival was analyzed by Kaplan-Meyer curves and receiver operating characteristic curved were assessed for troponin-ultra and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels and chronic limb-threatening ischemia (CLTI). Results A total of 123 octo- and nonagenarians admitted for PAD were eligible. The troponin level was the major predictor of all-cause mortality (HR: 4.6, 95% confidence interval [CI]: 1.4–15.3), followed by the NT-proBNP level (HR: 3.9, 95% CI 1.8–8.8) and CLTI (HR: 3.1, 95% CI 1.6–5.9). Multivariate regression revealed that each increment of 1 standard deviation in log troponin and log NT-proBNP was associated with a 2.7-fold (95% CI 1.8–4.1) and a 1.9-fold (95% CI 1.2–2.9) increased risk of all-cause death. Receiver operating characteristic curve analysis using a combination of all predictors yielded an improved area under the curve of 0.888. In a control group of an equal number of younger individuals, only NT-proBNP (HR: 4.2, 95% CI 1.2–14.1) and CLTI (HR: 6.1, 95% CI 1.6–23.4) were predictive of mortality. Conclusion Our study demonstrates that cardiovascular biomarkers and CLTI are the primary predictors of increased mortality in elderly PAD patients. Further risk stratification through biomarkers in this high-risk population of octo- and nonagenarians with PAD is necessary. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02177-1.
Collapse
|
7
|
Gao P, Gao P, Choi M, Chegireddy K, Slivano OJ, Zhao J, Zhang W, Long X. Transcriptome analysis of mouse aortae reveals multiple novel pathways regulated by aging. Aging (Albany NY) 2020; 12:15603-15623. [PMID: 32805724 PMCID: PMC7467355 DOI: 10.18632/aging.103652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Abstract
Vascular aging has been documented as a vital process leading to arterial dysfunction and age-related cardiovascular and cerebrovascular diseases. However, our understanding of the molecular underpinnings of age-related phenotypes in the vascular system is incomplete. Here we performed bulk RNA sequencing in young and old mouse aortae to elucidate age-associated changes in the transcriptome. Results showed that the majority of upregulated pathways in aged aortae relate to immune response, including inflammation activation, apoptotic clearance, and phagocytosis. The top downregulated pathway in aged aortae was extracellular matrix organization. Additionally, protein folding control and stress response pathways were downregulated in the aged vessels, with an array of downregulated genes encoding heat shock proteins (HSPs). We also found that circadian core clock genes were differentially expressed in young versus old aortae. Finally, transcriptome analysis combined with protein expression examination and smooth muscle cell (SMC) lineage tracing revealed that SMCs in aged aortae retained the differentiated phenotype, with an insignificant decrease in SMC marker gene expression. Our results therefore unveiled critical pathways regulated by arterial aging in mice, which will provide important insight into strategies to defy vascular aging and age-associated vascular diseases.
Collapse
Affiliation(s)
- Ping Gao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Pan Gao
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Mihyun Choi
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Kavya Chegireddy
- School of Public Health, University at Albany, Albany, NY 12222, USA
| | - Orazio J Slivano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Jinjing Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Wei Zhang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Xiaochun Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.,Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Murtada SI, Kawamura Y, Caulk AW, Ahmadzadeh H, Mikush N, Zimmerman K, Kavanagh D, Weiss D, Latorre M, Zhuang ZW, Shadel GS, Braddock DT, Humphrey JD. Paradoxical aortic stiffening and subsequent cardiac dysfunction in Hutchinson-Gilford progeria syndrome. J R Soc Interface 2020; 17:20200066. [PMID: 32453981 DOI: 10.1098/rsif.2020.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare disorder with devastating sequelae resulting in early death, presently thought to stem primarily from cardiovascular events. We analyse novel longitudinal cardiovascular data from a mouse model of HGPS (LmnaG609G/G609G) using allometric scaling, biomechanical phenotyping, and advanced computational modelling and show that late-stage diastolic dysfunction, with preserved systolic function, emerges with an increase in the pulse wave velocity and an associated loss of aortic function, independent of sex. Specifically, there is a dramatic late-stage loss of smooth muscle function and cells and an excessive accumulation of proteoglycans along the aorta, which result in a loss of biomechanical function (contractility and elastic energy storage) and a marked structural stiffening despite a distinctly low intrinsic material stiffness that is consistent with the lack of functional lamin A. Importantly, the vascular function appears to arise normally from the low-stress environment of development, only to succumb progressively to pressure-related effects of the lamin A mutation and become extreme in the peri-morbid period. Because the dramatic life-threatening aortic phenotype manifests during the last third of life there may be a therapeutic window in maturity that could alleviate concerns with therapies administered during early periods of arterial development.
Collapse
Affiliation(s)
- S-I Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Y Kawamura
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - A W Caulk
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - H Ahmadzadeh
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - N Mikush
- Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - K Zimmerman
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - D Kavanagh
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - D Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - M Latorre
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Z W Zhuang
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - G S Shadel
- Molecular and Cellular Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - D T Braddock
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Li H, Wang X, Lu X, Zhu H, Li S, Duan S, Zhao X, Zhang F, Alterovitz G, Wang F, Li Q, Tian XL, Xu M. Co-expression network analysis identified hub genes critical to triglyceride and free fatty acid metabolism as key regulators of age-related vascular dysfunction in mice. Aging (Albany NY) 2019; 11:7620-7638. [PMID: 31514170 PMCID: PMC6781998 DOI: 10.18632/aging.102275] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
Background: Aging has often been linked to age-related vascular disorders. The elucidation of the putative genes and pathways underlying vascular aging likely provides useful insights into vascular diseases at advanced ages. Transcriptional regulatory network analysis is the key to describing genetic interactions between molecular regulators and their target gene transcriptionally changed during vascular aging. Results: A total of 469 differentially expressed genes were parsed into 6 modules. Among the incorporated sample traits, the most significant module related to vascular aging was associated with triglyceride and enriched with biological terms like proteolysis, blood circulation, and circulatory system process. The module associated with triglyceride was preserved in an independent microarray dataset, indicating the robustness of the identified vascular aging-related subnetwork. Additionally, Enpp5, Fez1, Kif1a, F3, H2-Q7, and their interacting miRNAs mmu-miR-449a, mmu-miR-449c, mmu-miR-34c, mmu-miR-34b-5p, mmu-miR-15a, and mmu-let-7, exhibited the most connectivity with external lipid-related traits. Transcriptional alterations of the hub genes Enpp5, Fez1, Kif1a, and F3, and the interacting microRNAs mmu-miR-34c, mmu-miR-34b-5p, mmu-let-7, mmu-miR-449a, and mmu-miR-449c were confirmed. Conclusion: Our findings demonstrate that triglyceride and free fatty acid-related genes are key regulators of age-related vascular dysfunction in mice and show that the hub genes for Enpp5, Fez1, Kif1a, and F3 as well as their interacting miRNAs mmu-miR-34c, mmu-miR-34b-5p, mmu-let-7, mmu-miR-449a, and mmu-miR-449c, could serve as potential biomarkers in vascular aging. Methods: The microarray gene expression profiles of aorta samples from 6-month old mice (n=6) and 20-month old mice (n=6) were processed to identify nominal differentially expressed genes. These nominal differentially expressed genes were subjected to a weighted gene co-expression network analysis. A network-driven integrative analysis with microRNAs and transcription factors was performed to define significant modules and underlying regulatory pathways associated with vascular aging, and module preservation test was conducted to validate the age-related modules based on an independent microarray gene expression dataset in mice aorta samples including three 32-week old wild-type mice (around 6-month old) and three 78-week old wild-type mice (around 20-month old). Gene ontology and protein-protein interaction analyses were conducted to determine the hub genes as potential biomarkers in the progress of vascular aging. The hub genes were further validated with quantitative real-time polymerase chain reaction in aorta samples from 20 young (6-month old) mice and 20 old (20-month old) mice.
Collapse
Affiliation(s)
- Huimin Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Xinhui Wang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyue Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hongxin Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Sheng Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shiwei Duan
- , Medical Genetics Center, School of Medicine, Ningbo University, Ningbo 315000, China
| | - Xinzhi Zhao
- International Peace Maternity and Child Health Hospital of China Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | | | - Gil Alterovitz
- Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Fudi Wang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiao-Li Tian
- Department of Human Population Genetics, Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Armstrong DMF, Sikka G, Armstrong ADC, Saad KR, Freitas WRD, Berkowitz DE, Fagundes DJ, Santhanam L, Taha MO. Knockdown of transglutaminase-2 prevents early age-induced vascular changes in mice1. Acta Cir Bras 2019; 33:991-999. [PMID: 30517326 DOI: 10.1590/s0102-865020180110000006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To determine whether the absence of transglutaminase 2 enzyme (TG2) in TG2 knockout mice (TG2-/-) protect them against early age-related functional and histological arterial changes. METHODS Pulse wave velocity (PWV) was measured using non-invasive Doppler and mean arterial pressure (MAP) was measured in awake mice using tail-cuff system. Thoracic aortas were excised for evaluation of endothelial dependent vasodilation (EDV) by wire myography, as well as histological analyses. RESULTS PWV and MAP were similar in TG2-/-mice to age-matched wild type (WT) control mice. Old WT mice exhibited a markedly attenuated EDV as compared to young WT animals. The TG2-/-young and old mice had enhanced EDV responses (p<0.01) as compared to WT mice. There was a significant increase in TG2 crosslinks by IHC in WT old group compared to Young, with no stain in the TG2-/-animals. Optical microscopy examination of Old WT mice aorta showed thinning and fragmentation of elastic laminae. Young WT mice, old and young TG2-/-mice presented regularly arranged and parallel elastic laminae of the tunica media. CONCLUSION The genetic suppression of TG2 delays the age-induced endothelial dysfunction and histological modifications.
Collapse
Affiliation(s)
- Dinani Matoso Filho Armstrong
- MSc, Assistant Professor, Medical School, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina-PE, Brazil. Acquisition, analysis and interpretation of data; technical procedures; manuscript preparation and writing
| | - Gautam Sikka
- Fellow PhD degree, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University (JHU), Baltimore-MD, USA. Conception and design of the study, acquisition of data
| | - Anderson da Costa Armstrong
- PhD, Associate Professor, Medical School, UNIVASF, Petrolina-PE, Brazil. Analysis and interpretation of data, statistical analysis, critical revision
| | - Karen Ruggeri Saad
- PhD, Associate Professor, Medical School, UNIVASF, Petrolina-PE, Brazil. Substantive scientific and intellectual contributions to the study, critical revision
| | - William Rodrigues de Freitas
- PhD, Associate Professor, Medical School, UNIVASF, Petrolina-PE, Brazil. Histopathological examinations, acquisition and interpretation of data
| | - Dan Ezra Berkowitz
- MBBCh, Associate Professor, Department of Anesthesiology and Critical Care Medicine, JHU, Baltimore-MD, USA. Substantive scientific and intellectual contributions to the study
| | - Djalma José Fagundes
- PhD, Full Professor, Division of Surgical Techniques and Experimental Surgery, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), Brazil. Conception and design of the study, critical revision
| | - Lakshmi Santhanam
- PhD, Associate Professor, Department of Anesthesiology and Critical Care Medicine, JHU, Baltimore-MD, USA. Conception and design of the study, analysis and interpretation of data
| | - Murched Omar Taha
- PhD, Associate Professor, Division of Surgical Techniques and Experimental Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Conception and design of the study, critical revision, final approval
| |
Collapse
|
11
|
Cuomo F, Ferruzzi J, Agarwal P, Li C, Zhuang ZW, Humphrey JD, Figueroa CA. Sex-dependent differences in central artery haemodynamics in normal and fibulin-5 deficient mice: implications for ageing. Proc Math Phys Eng Sci 2019; 475:20180076. [PMID: 30760948 PMCID: PMC6364598 DOI: 10.1098/rspa.2018.0076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022] Open
Abstract
Mouse models provide unique opportunities to study vascular disease, but they demand increased experimental and computational resolution. We describe a workflow for combining in vivo and in vitro biomechanical data to build mouse-specific computational models of the central vasculature including regional variations in biaxial wall stiffness, thickness and perivascular support. These fluid-solid interaction models are informed by micro-computed tomography imaging and in vivo ultrasound and pressure measurements, and include mouse-specific inflow and outflow boundary conditions. Hence, the model can capture three-dimensional unsteady flows and pulse wave characteristics. The utility of this experimental-computational approach is illustrated by comparing central artery biomechanics in adult wild-type and fibulin-5 deficient mice, a model of early vascular ageing. Findings are also examined as a function of sex. Computational results compare well with measurements and data available in the literature and suggest that pulse wave velocity, a spatially integrated measure of arterial stiffness, does not reflect well the presence of regional differences in stiffening, particularly those manifested in male versus female mice. Modelling results are also useful for comparing quantities that are difficult to measure or infer experimentally, including local pulse pressures at the renal arteries and characteristics of the peripheral vascular bed that may differ with disease.
Collapse
Affiliation(s)
- Federica Cuomo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jacopo Ferruzzi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Pradyumn Agarwal
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Chen Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhen W. Zhuang
- Translational Research Imaging Center, Yale University, New Haven, CT, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - C. Alberto Figueroa
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Li T, Ai Z, Ji W. Primate stem cells: bridge the translation from basic research to clinic application. SCIENCE CHINA-LIFE SCIENCES 2018; 62:12-21. [PMID: 30099707 DOI: 10.1007/s11427-018-9334-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
Abstract
A growing body of literature has shown that stem cells are very effective for the treatment of degenerative diseases in rodents but these exciting results have not translated to clinical practice. The difference results from the divergence in genetic, metabolic, and physiological phenotypes between rodents and humans. The high degree of similarity between non-human primates (NHPs) and humans provides the most accurate models for preclinical studies of stem cell therapy. Using a NHP model to understand the following key issues, which cannot be addressed in humans or rodents, will be helpful for extending stem cell applications in the basic science and the clinic. These issues include pluripotency of primate stem cells, the safety and efficiency of stem cell therapy, and transplantation procedures of stem cells suitable for clinical translation. Here we review studies of the above issues in NHPs and current challenges of stem cell applications in both basic science and clinical therapies. We propose that the use of NHP models, in particular combining the serial production and transplantation procedures of stem cells is the most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Tianqing Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Zongyong Ai
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
13
|
Compromised mechanical homeostasis in arterial aging and associated cardiovascular consequences. Biomech Model Mechanobiol 2018; 17:1281-1295. [PMID: 29754316 DOI: 10.1007/s10237-018-1026-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Aging leads to central artery stiffening and associated hemodynamic sequelae. Because healthy arteries exhibit differential geometry, composition, and mechanical behaviors along the central vasculature, we sought to determine whether wall structure and mechanical function differ across five vascular regions-the ascending and descending thoracic aorta, suprarenal and infrarenal abdominal aorta, and common carotid artery-in 20 versus 100-week-old male wild-type mice. Notwithstanding generally consistent changes across these regions, including a marked thickening of the arterial wall, diminished in vivo axial stretch, and loss of elastic energy storage capacity, the degree of changes tended to be slightly greater in abdominal than in thoracic or carotid vessels. Likely due to the long half-life of vascular elastin, most mechanical changes in the arterial wall resulted largely from a distributed increase in collagen, including thicker fibers in the media, and localized increases in glycosaminoglycans. Changes within the central arteries associated with significant increases in central pulse pressure and adverse changes in the left ventricle, including increased cardiac mass and decreased diastolic function. Given the similar half-life of vascular elastin in mice and humans but very different life-spans, there are important differences in the aging of central vessels across these species. Nevertheless, the common finding of aberrant matrix remodeling contributing to a compromised mechanical homeostasis suggests that studies of central artery aging in the mouse can provide insight into mechanisms and treatment strategies for the many adverse effects of vascular aging in humans.
Collapse
|
14
|
Kim SK, McCurley AT, DuPont JJ, Aronovitz M, Moss ME, Stillman IE, Karumanchi SA, Christou DD, Jaffe IZ. Smooth Muscle Cell-Mineralocorticoid Receptor as a Mediator of Cardiovascular Stiffness With Aging. Hypertension 2018; 71:609-621. [PMID: 29463624 PMCID: PMC5843545 DOI: 10.1161/hypertensionaha.117.10437] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/26/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022]
Abstract
Stiffening of the vasculature with aging is a strong predictor of adverse cardiovascular events, independent of all other risk factors including blood pressure, yet no therapies target this process. MRs (mineralocorticoid receptors) in smooth muscle cells (SMCs) have been implicated in the regulation of vascular fibrosis but have not been explored in vascular aging. Comparing SMC-MR-deleted male mice to MR-intact littermates at 3, 12, and 18 months of age, we demonstrated that aging-associated vascular stiffening and fibrosis are mitigated by MR deletion in SMCs. Progression of cardiac stiffness and fibrosis and the decline in exercise capacity with aging were also mitigated by MR deletion in SMC. Vascular gene expression profiling analysis revealed that MR deletion in SMC is associated with recruitment of a distinct antifibrotic vascular gene expression program with aging. Moreover, long-term pharmacological inhibition of MR in aged mice prevented the progression of vascular fibrosis and stiffness and induced a similar antifibrotic vascular gene program. Finally, in a small trial in elderly male humans, short-term MR antagonism produced an antifibrotic signature of circulating biomarkers similar to that observed in the vasculature of SMC-MR-deleted mice. These findings suggest that SMC-MR contributes to vascular stiffening with aging and is a potential therapeutic target to prevent the progression of aging-associated vascular fibrosis and stiffness.
Collapse
MESH Headings
- Aged
- Animals
- Cellular Senescence/drug effects
- Cellular Senescence/physiology
- Disease Progression
- Exercise Tolerance/physiology
- Fibrosis/metabolism
- Fibrosis/pathology
- Fibrosis/prevention & control
- Gene Expression/drug effects
- Gene Expression Profiling
- Humans
- Male
- Mice
- Mineralocorticoid Receptor Antagonists/metabolism
- Mineralocorticoid Receptor Antagonists/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Spironolactone/metabolism
- Spironolactone/pharmacology
- Treatment Outcome
- Vascular Stiffness/drug effects
- Vascular Stiffness/physiology
Collapse
Affiliation(s)
- Seung Kyum Kim
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (S.K.K., A.T.M., J.J.D., M.A., M.E.M., I.Z.J.); Departments of Pathology (I.E.S.) and Medicine and Obstetrics and Gynecology (S.A.K.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Department of Applied Physiology and Kinesiology, University of Florida, Gainesville (D.D.C.)
| | - Amy T McCurley
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (S.K.K., A.T.M., J.J.D., M.A., M.E.M., I.Z.J.); Departments of Pathology (I.E.S.) and Medicine and Obstetrics and Gynecology (S.A.K.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Department of Applied Physiology and Kinesiology, University of Florida, Gainesville (D.D.C.)
| | - Jennifer J DuPont
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (S.K.K., A.T.M., J.J.D., M.A., M.E.M., I.Z.J.); Departments of Pathology (I.E.S.) and Medicine and Obstetrics and Gynecology (S.A.K.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Department of Applied Physiology and Kinesiology, University of Florida, Gainesville (D.D.C.)
| | - Mark Aronovitz
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (S.K.K., A.T.M., J.J.D., M.A., M.E.M., I.Z.J.); Departments of Pathology (I.E.S.) and Medicine and Obstetrics and Gynecology (S.A.K.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Department of Applied Physiology and Kinesiology, University of Florida, Gainesville (D.D.C.)
| | - M Elizabeth Moss
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (S.K.K., A.T.M., J.J.D., M.A., M.E.M., I.Z.J.); Departments of Pathology (I.E.S.) and Medicine and Obstetrics and Gynecology (S.A.K.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Department of Applied Physiology and Kinesiology, University of Florida, Gainesville (D.D.C.)
| | - Isaac E Stillman
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (S.K.K., A.T.M., J.J.D., M.A., M.E.M., I.Z.J.); Departments of Pathology (I.E.S.) and Medicine and Obstetrics and Gynecology (S.A.K.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Department of Applied Physiology and Kinesiology, University of Florida, Gainesville (D.D.C.)
| | - S Ananth Karumanchi
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (S.K.K., A.T.M., J.J.D., M.A., M.E.M., I.Z.J.); Departments of Pathology (I.E.S.) and Medicine and Obstetrics and Gynecology (S.A.K.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Department of Applied Physiology and Kinesiology, University of Florida, Gainesville (D.D.C.)
| | - Demetra D Christou
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (S.K.K., A.T.M., J.J.D., M.A., M.E.M., I.Z.J.); Departments of Pathology (I.E.S.) and Medicine and Obstetrics and Gynecology (S.A.K.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Department of Applied Physiology and Kinesiology, University of Florida, Gainesville (D.D.C.)
| | - Iris Z Jaffe
- From the Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (S.K.K., A.T.M., J.J.D., M.A., M.E.M., I.Z.J.); Departments of Pathology (I.E.S.) and Medicine and Obstetrics and Gynecology (S.A.K.), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA; and Department of Applied Physiology and Kinesiology, University of Florida, Gainesville (D.D.C.).
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Although the roles of oxidant stress and redox perturbations in hypertension have been the subject of several reviews, role of thioredoxin (Trx), a major cellular redox protein in age-related hypertension remains inadequately reviewed. The purpose of this review is to bring readers up-to-date with current understanding of the role of thioredoxin in age-related hypertension. RECENT FINDINGS Age-related hypertension is a major underlying cause of several cardiovascular disorders, and therefore, intensive management of blood pressure is indicated in most patients with cardiovascular complications. Recent studies have shown that age-related hypertension was reversed and remained lowered for a prolonged period in mice with higher levels of human Trx (Trx-Tg). Additionally, injection of human recombinant Trx (rhTrx) decreased hypertension in aged wild-type mice that lasted for several days. Both Trx-Tg and aged wild-type mice injected with rhTrx were normotensive, showed increased NO production, decreased arterial stiffness, and increased vascular relaxation. These studies suggest that rhTrx could potentially be a therapeutic molecule to reverse age-related hypertension in humans. The reversal of age-related hypertension by restoring proteins that have undergone age-related modification is conceptually novel in the treatment of hypertension. Trx reverses age-related hypertension via maintaining vascular redox homeostasis, regenerating critical vasoregulatory proteins oxidized due to advancing age, and restoring native function of proteins that have undergone age-related modifications with loss-of function. Recent studies demonstrate that Trx is a promising molecule that may ameliorate or reverse age-related hypertension in older adults.
Collapse
Affiliation(s)
- Kumuda C Das
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA.
| | - Venkatesh Kundumani-Sridharan
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| | - Jaganathan Subramani
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| |
Collapse
|
16
|
Hilgers RHP, Kundumani-Sridharan V, Subramani J, Chen LC, Cuello LG, Rusch NJ, Das KC. Thioredoxin reverses age-related hypertension by chronically improving vascular redox and restoring eNOS function. Sci Transl Med 2017; 9:9/376/eaaf6094. [PMID: 28179506 DOI: 10.1126/scitranslmed.aaf6094] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 10/13/2016] [Accepted: 11/29/2016] [Indexed: 01/05/2023]
Abstract
The incidence of high blood pressure with advancing age is notably high, and it is an independent prognostic factor for the onset or progression of a variety of cardiovascular disorders. Although age-related hypertension is an established phenomenon, current treatments are only palliative but not curative. Thus, there is a critical need for a curative therapy against age-related hypertension, which could greatly decrease the incidence of cardiovascular disorders. We show that overexpression of human thioredoxin (TRX), a redox protein, in mice prevents age-related hypertension. Further, injection of recombinant human TRX (rhTRX) for three consecutive days reversed hypertension in aged wild-type mice, and this effect lasted for at least 20 days. Arteries of wild-type mice injected with rhTRX or mice with TRX overexpression exhibited decreased arterial stiffness, greater endothelium-dependent relaxation, increased nitric oxide production, and decreased superoxide anion (O2•-) generation compared to either saline-injected aged wild-type mice or mice with TRX deficiency. Our study demonstrates a potential translational role of rhTRX in reversing age-related hypertension with long-lasting efficacy.
Collapse
Affiliation(s)
- Rob H P Hilgers
- Department of Anesthesiology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 6598, Lubbock, TX 79430, USA
| | - Venkatesh Kundumani-Sridharan
- Department of Anesthesiology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 6598, Lubbock, TX 79430, USA
| | - Jaganathan Subramani
- Department of Anesthesiology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 6598, Lubbock, TX 79430, USA
| | - Leon C Chen
- Department of Anesthesiology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 6598, Lubbock, TX 79430, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 Markham Street, Little Rock, AR 72205, USA
| | - Kumuda C Das
- Department of Anesthesiology, Texas Tech University Health Sciences Center, 3601 4th Street, MS 6598, Lubbock, TX 79430, USA.
| |
Collapse
|
17
|
Kim CW, Pokutta-Paskaleva A, Kumar S, Timmins LH, Morris AD, Kang DW, Dalal S, Chadid T, Kuo KM, Raykin J, Li H, Yanagisawa H, Gleason RL, Jo H, Brewster LP. Disturbed Flow Promotes Arterial Stiffening Through Thrombospondin-1. Circulation 2017; 136:1217-1232. [PMID: 28778947 DOI: 10.1161/circulationaha.116.026361] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Arterial stiffness and wall shear stress are powerful determinants of cardiovascular health, and arterial stiffness is associated with increased cardiovascular mortality. Low and oscillatory wall shear stress, termed disturbed flow (d-flow), promotes atherosclerotic arterial remodeling, but the relationship between d-flow and arterial stiffness is not well understood. The objective of this study was to define the role of d-flow on arterial stiffening and discover the relevant signaling pathways by which d-flow stiffens arteries. METHODS D-flow was induced in the carotid arteries of young and old mice of both sexes. Arterial stiffness was quantified ex vivo with cylindrical biaxial mechanical testing and in vivo from duplex ultrasound and compared with unmanipulated carotid arteries from 80-week-old mice. Gene expression and pathway analysis was performed on endothelial cell-enriched RNA and validated by immunohistochemistry. In vitro testing of signaling pathways was performed under oscillatory and laminar wall shear stress conditions. Human arteries from regions of d-flow and stable flow were tested ex vivo to validate critical results from the animal model. RESULTS D-flow induced arterial stiffening through collagen deposition after partial carotid ligation, and the degree of stiffening was similar to that of unmanipulated carotid arteries from 80-week-old mice. Intimal gene pathway analyses identified transforming growth factor-β pathways as having a prominent role in this stiffened arterial response, but this was attributable to thrombospondin-1 (TSP-1) stimulation of profibrotic genes and not changes to transforming growth factor-β. In vitro and in vivo testing under d-flow conditions identified a possible role for TSP-1 activation of transforming growth factor-β in the upregulation of these genes. TSP-1 knockout animals had significantly less arterial stiffening in response to d-flow than wild-type carotid arteries. Human arteries exposed to d-flow had similar increases TSP-1 and collagen gene expression as seen in our model. CONCLUSIONS TSP-1 has a critical role in shear-mediated arterial stiffening that is mediated in part through TSP-1's activation of the profibrotic signaling pathways of transforming growth factor-β. Molecular targets in this pathway may lead to novel therapies to limit arterial stiffening and the progression of disease in arteries exposed to d-flow.
Collapse
Affiliation(s)
- Chan Woo Kim
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Anastassia Pokutta-Paskaleva
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Sandeep Kumar
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Lucas H Timmins
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Andrew D Morris
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Dong-Won Kang
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Sidd Dalal
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Tatiana Chadid
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Katie M Kuo
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Julia Raykin
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Haiyan Li
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Hiromi Yanagisawa
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Rudolph L Gleason
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.)
| | - Hanjoong Jo
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.).
| | - Luke P Brewster
- From Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (C.W.K., A.P.-P., S.K., D.-W.K., J.R., R.L.G., H.J., L.P.B.); Department of Microbiology, College of Medicine, Inha University, Incheon, Republic of Korea (C.W.K.); Department of Surgery, Emory University, Atlanta, GA (A.P.-P., A.D.M., T.C., K.M.K., H.L., L.P.B.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA (L.H.T.); Department of Bioengineering, University of Utah, Salt Lake City (L.H.T.); Mercer University School of Medicine, Macon, GA (S.D.); Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan (H.Y.); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (R.L.G.); Surgical and Research Services, Atlanta VA Medical Center, Decatur, GA (L.P.B.); and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta (L.P.B.).
| |
Collapse
|
18
|
Chiossi G, Costantine MM, Tamayo E, Hankins GDV, Saade GR, Longo M. Fetal programming of blood pressure in a transgenic mouse model of altered intrauterine environment. J Physiol 2016; 594:7015-7025. [PMID: 27506899 PMCID: PMC5134377 DOI: 10.1113/jp272602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Nitric oxide is essential in the vascular adaptation to pregnancy, as knockout mice lacking nitric oxide synthase (NOS3) have abnormal utero-placental perfusion, hypertension and growth restriction. We previously showed with ex vivo studies on transgenic animals lacking NOS3 that adverse intrauterine environment alters fetal programming of vascular reactivity in adult offspring. The current research shows that altered vascular reactivity correlates with higher blood pressure in vivo. Our data suggest that higher blood pressure depends on both genetic background (NOS3 deficiency) and uterine environment, becomes more evident with age (> 7 postnatal weeks), activity and stress, is gender specific (preponderant among males), and can be affected by the sleep-awake cycle. In utero or early postnatal life (< 7 weeks), before onset of hypertension, may represent a potential window for intervention to prevent future cardiovascular disorders. ABSTRACT Nitric oxide is involved in the vascular adaptation to pregnancy. Using transgenic animals, we previously showed that adverse intrauterine environment alters vascular reactivity in adult offspring. The aim of our study was to determine if altered vascular programming is associated with abnormal blood pressure (BP) profiles in vivo. Mice lacking a functional endothelial nitric oxide synthase (KO, NOS3-/- ) and wild-type mice (WT, NOS3+/+ ) were crossbred to generate homozygous NOS3-/- (KO), maternally derived heterozygous NOS3+/- (KOM: mother with adverse intrauterine environment from NOS3 deficiency), paternally derived heterozygous NOS3+/- (KOP: mother with normal in utero milieu) and NOS3+/+ (WT) litters. BP was measured in vivo at 7, 14 and 21 weeks of age. After univariate analysis, multivariate population-averaged linear regression models were used to identify factors affecting BP. When compared to WT offspring, systolic (SBP), diastolic (DBP) and mean (MAP) BP progressively increased from KOP, to KOM, and peaked among KO (P < 0.001), although significance was not reached for KOP. Higher BP was also associated with male gender, older age (> 7 postnatal weeks), higher locomotor activity, daytime recordings, and recent blood pressure transducer insertion (P < 0.001). Post hoc analysis showed that KOM had higher SBP than KOP (P < 0.05). Our study indicates that adverse intrauterine environment contributes, along with multiple other factors, to account for hypertension; moreover, in utero or early postnatal life may represent a possible therapeutic window for prevention of cardiovascular disease later in life.
Collapse
Affiliation(s)
- Giuseppe Chiossi
- Department of Obstetrics and GynecologyDivision of Maternal Fetal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Maged M. Costantine
- Department of Obstetrics and GynecologyDivision of Maternal Fetal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Esther Tamayo
- Department of Obstetrics and GynecologyDivision of Maternal Fetal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Gary D. V. Hankins
- Department of Obstetrics and GynecologyDivision of Maternal Fetal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - George R. Saade
- Department of Obstetrics and GynecologyDivision of Maternal Fetal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
| | - Monica Longo
- Department of Obstetrics and GynecologyDivision of Maternal Fetal MedicineUniversity of Texas Medical BranchGalvestonTXUSA
- Department of ObstetricsGynecology & Reproductive SciencesUniversity of Texas Health Science Center at HoustonHoustonTXUSA
| |
Collapse
|
19
|
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson's disease. Stem Cell Res 2016; 17:352-366. [PMID: 27622596 DOI: 10.1016/j.scr.2016.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023] Open
Abstract
The derivation of dopaminergic neurons from induced pluripotent stem cells brings new hope for a patient-specific, stem cell-based replacement therapy to treat Parkinson's disease (PD) and related neurodegenerative diseases; and this novel cell-based approach has already proven effective in animal models. However, there are several aspects of this procedure that have yet to be optimized to the extent required for translation to an optimal cell-based transplantation protocol in humans. These challenges include pinpointing the optimal graft location, appropriately scaling up the graft volume, and minimizing the risk of chronic immune rejection, among others. To advance this procedure to the clinic, it is imperative that a model that accurately and fully recapitulates characteristics most pertinent to a cell-based transplantation to the human brain is used to optimize key technical aspects of the procedure. Nonhuman primates mimic humans in multiple ways including similarities in genomics, neuroanatomy, neurophysiology, immunogenetics, and age-related changes in immune function. These characteristics are critical to the establishment of a relevant model in which to conduct preclinical studies to optimize the efficacy and safety of cell-based therapeutic approaches to the treatment of PD. Here we review previous studies in rodent models, and emphasize additional advantages afforded by nonhuman primate models in general, and the baboon model in particular, for preclinical optimization of cell-based therapeutic approaches to the treatment of PD and other neurodegenerative diseases. We outline current unresolved challenges to the successful application of stem cell therapies in humans and propose that the baboon model in particular affords a number of traits that render it most useful for preclinical studies designed to overcome these challenges.
Collapse
Affiliation(s)
- Douglas A Grow
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States
| | - Christopher S Navara
- Department of Biology, University of Texas at San Antonio, San Antonio Cellular Therapeutics Institute, PriStem, United States.
| |
Collapse
|
20
|
Erkens R, Kramer CM, Lückstädt W, Panknin C, Krause L, Weidenbach M, Dirzka J, Krenz T, Mergia E, Suvorava T, Kelm M, Cortese-Krott MM. Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function. Free Radic Biol Med 2015; 89:906-17. [PMID: 26475037 DOI: 10.1016/j.freeradbiomed.2015.10.409] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022]
Abstract
Increased production of reactive oxygen species and failure of the antioxidant defense system are considered to play a central role in the pathogenesis of cardiovascular disease. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch controlling the expression of antioxidant and protective enzymes, and was proposed to participate in protection of vascular and cardiac function. This study was undertaken to analyze cardiac and vascular phenotype of mice lacking Nrf2. We found that Nrf2 knock out (Nrf2 KO) mice have a left ventricular (LV) diastolic dysfunction, characterized by prolonged E wave deceleration time, relaxation time and total diastolic time, increased E/A ratio and myocardial performance index, as assessed by echocardiography. LV dysfunction in Nrf2 KO mice was associated with cardiac hypertrophy, and a downregulation of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in the myocardium. Accordingly, cardiac relaxation was impaired, as demonstrated by decreased responses to β-adrenergic stimulation by isoproterenol ex vivo, and to the cardiac glycoside ouabain in vivo. Surprisingly, we found that vascular endothelial function and endothelial nitric oxide synthase (eNOS)-mediated vascular responses were fully preserved, blood pressure was decreased, and eNOS was upregulated in the aorta and the heart of Nrf2 KO mice. Taken together, these results show that LV dysfunction in Nrf2 KO mice is mainly associated with cardiac hypertrophy and downregulation of SERCA2a, and is independent from changes in coronary vascular function or systemic hemodynamics, which are preserved by a compensatory upregulation of eNOS. These data provide new insights into how Nrf2 expression/function impacts the cardiovascular system.
Collapse
Affiliation(s)
- Ralf Erkens
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christian M Kramer
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Wiebke Lückstädt
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christina Panknin
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Lisann Krause
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Mathias Weidenbach
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Jennifer Dirzka
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Thomas Krenz
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Evanthia Mergia
- Institute for Pharmacology and Toxicology, Ruhr-University Bochum, Bochum, Germany
| | - Tatsiana Suvorava
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Division of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
21
|
Rammos C, Luedike P, Hendgen-Cotta U, Rassaf T. Potential of dietary nitrate in angiogenesis. World J Cardiol 2015; 7:652-657. [PMID: 26516419 PMCID: PMC4620076 DOI: 10.4330/wjc.v7.i10.652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 08/12/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction with impaired bioavailability of nitric oxide (NO) is the hallmark in the development of cardiovascular disease. Endothelial dysfunction leads to atherosclerosis, characterized by chronic inflammation of the arterial wall and stepwise narrowing of the vessel lumen. Atherosclerosis causes deprivation of adequate tissue blood flow with compromised oxygen supply. To overcome this undersupply, remodeling of the vascular network is necessary to reconstitute and sustain tissue viability. This physiological response is often not sufficient and therapeutic angiogenesis remains an unmet medical need in critical limb ischemia or coronary artery disease. Feasible approaches to promote blood vessel formation are sparse. Administration of pro-angiogenic factors, gene therapy, or targeting of microRNAs has not yet entered the daily practice. Nitric oxide is an important mediator of angiogenesis that becomes limited under ischemic conditions and the maintenance of NO availability might constitute an attractive therapeutic target. Until recently it was unknown how the organism provides NO under ischemia. In recent years it could be demonstrated that NO can be formed independently of its enzymatic synthesis in the endothelium by reduction of inorganic nitrite under hypoxic conditions. Circulating nitrite derives from oxidation of NO or reduction of inorganic nitrate by commensal bacteria in the oral cavity. Intriguingly, nitrate is a common constituent of our everyday diet and particularly high concentrations are found in leafy green vegetables such as spinach, lettuce, or beetroot. Evidence suggests that dietary nitrate supplementation increases the regenerative capacity of ischemic tissue and that this effect may offer an attractive nutrition-based strategy to improve ischemia-induced revascularization. We here summarize and discuss the regenerative capacity of dietary nitrate on the vascular system.
Collapse
|
22
|
Filtration of Macrophage Migration Inhibitory Factor (MIF) in Patients with End Stage Renal Disease Undergoing Hemodialysis. PLoS One 2015; 10:e0140215. [PMID: 26485680 PMCID: PMC4617461 DOI: 10.1371/journal.pone.0140215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/23/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND End stage renal disease (ESRD) patients are characterized by increased morbidity and mortality due to highest prevalence of cardiovascular disease. Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that controls cellular signaling in human physiology, pathophysiology, and diseases. Increased MIF plasma levels promote vascular inflammation and development of atherosclerosis. We have shown that MIF is associated with vascular dysfunction in ESRD patients. Whether hemodialysis (HD) affects circulating MIF plasma levels is unknown. We here aimed to investigate whether HD influences the circulating MIF pool in ESRD patients. METHODS AND RESULTS An observational single-center study was conducted. MIF plasma levels in ESRD patients were assessed before, during, and after a HD session (n = 29). Healthy age-matched volunteers served as controls to compare correlations of MIF plasma levels with inflammatory plasma components (n = 20). MIF removed from the circulating blood pool could be detected in the dialysate and allowed for calculation of totally removed MIF (MIF content in dialysate 219±4 μg/HD-session). MIF plasma levels were markedly decreased 2 hour after initiation of HD (MIF plasma level pre-HD 84.8±6 ng/ml to intra-HD 61.2±5 ng/ml p<0.001) and were replenished already 20 min after termination of HD to basal levels (intra-HD 61.2±5 ng/ml to post-HD 79.8±5 ng/ml, p<0.001). CONCLUSION MIF is a dialyzable plasma component that is effectively filtrated during HD from the patient blood pool in large amounts. After removal of remarkable amounts of MIF during a single HD session, MIF plasma pool is early reconstituted after termination of HD from unknown sources.
Collapse
|
23
|
van Thiel BS, van der Pluijm I, te Riet L, Essers J, Danser AHJ. The renin-angiotensin system and its involvement in vascular disease. Eur J Pharmacol 2015; 763:3-14. [PMID: 25987425 DOI: 10.1016/j.ejphar.2015.03.090] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/15/2015] [Accepted: 03/24/2015] [Indexed: 10/24/2022]
Abstract
The renin-angiotensin system (RAS) plays a critical role in the pathogenesis of many types of cardiovascular diseases including cardiomyopathy, valvular heart disease, aneurysms, stroke, coronary artery disease and vascular injury. Besides the classical regulatory effects on blood pressure and sodium homoeostasis, the RAS is involved in the regulation of contractility and remodelling of the vessel wall. Numerous studies have shown beneficial effect of inhibition of this system in the pathogenesis of cardiovascular diseases. However, dysregulation and overexpression of the RAS, through different molecular mechanisms, also induces, the initiation of vascular damage. The key effector peptide of the RAS, angiotensin II (Ang II) promotes cell proliferation, apoptosis, fibrosis, oxidative stress and inflammation, processes known to contribute to remodelling of the vasculature. In this review, we focus on the components that are under the influence of the RAS and contribute to the development and progression of vascular disease; extracellular matrix defects, atherosclerosis and ageing. Furthermore, the beneficial therapeutic effects of inhibition of the RAS on the vasculature are discussed, as well as the need for additive effects on top of RAS inhibition.
Collapse
Affiliation(s)
- Bibi S van Thiel
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Luuk te Riet
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Genetics, Erasmus MC, Rotterdam, The Netherlands; Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands; Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Humphrey JD, Schwartz MA, Tellides G, Milewicz DM. Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections. Circ Res 2015; 116:1448-61. [PMID: 25858068 PMCID: PMC4420625 DOI: 10.1161/circresaha.114.304936] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thoracic aortic diseases that involve progressive enlargement, acute dissection, or rupture are influenced by the hemodynamic loads and mechanical properties of the wall. We have only limited understanding, however, of the mechanobiological processes that lead to these potentially lethal conditions. Homeostasis requires that intramural cells sense their local chemomechanical environment and establish, maintain, remodel, or repair the extracellular matrix to provide suitable compliance and yet sufficient strength. Proper sensing, in turn, necessitates both receptors that connect the extracellular matrix to intracellular actomyosin filaments and signaling molecules that transmit the related information to the nucleus. Thoracic aortic aneurysms and dissections are associated with poorly controlled hypertension and mutations in genes for extracellular matrix constituents, membrane receptors, contractile proteins, and associated signaling molecules. This grouping of factors suggests that these thoracic diseases result, in part, from dysfunctional mechanosensing and mechanoregulation of the extracellular matrix by the intramural cells, which leads to a compromised structural integrity of the wall. Thus, improved understanding of the mechanobiology of aortic cells could lead to new therapeutic strategies for thoracic aortic aneurysms and dissections.
Collapse
MESH Headings
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/physiopathology
- Aortic Dissection/therapy
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/therapy
- Aortic Rupture/genetics
- Aortic Rupture/metabolism
- Aortic Rupture/pathology
- Aortic Rupture/physiopathology
- Aortic Rupture/therapy
- Biomechanical Phenomena
- Disease Progression
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Genetic Predisposition to Disease
- Hemodynamics
- Humans
- Mechanotransduction, Cellular
- Phenotype
- Stress, Mechanical
Collapse
Affiliation(s)
- Jay D Humphrey
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.)
| | - Martin A Schwartz
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.)
| | - George Tellides
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.)
| | - Dianna M Milewicz
- From the Departments of Biomedical Engineering (J.D.H., M.A.S.), Medicine (Cardiology) (M.A.S.), Cell Biology (M.A.S.), and Surgery (G.T.), Yale University, New Haven, CT; and Department of Internal Medicine, University of Texas Health Science Center, Houston (D.M.M.).
| |
Collapse
|
25
|
Dietary nitrate is a modifier of vascular gene expression in old male mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:658264. [PMID: 25838870 PMCID: PMC4369962 DOI: 10.1155/2015/658264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/20/2015] [Indexed: 02/07/2023]
Abstract
Aging leads to a number of disadvantageous changes in the cardiovascular system. Deterioration of vascular homoeostasis with increase in oxidative stress, chronic low-grade inflammation, and impaired nitric oxide bioavailability results in endothelial dysfunction, increased vascular stiffness, and compromised arterial-ventricular interactions. A chronic dietary supplementation with the micronutrient nitrate has been demonstrated to improve vascular function. Healthy dietary patterns may regulate gene expression profiles. However, the mechanisms are incompletely understood. The changes that occur at the gene expression level and transcriptional profile following a nutritional modification with nitrate have not been elucidated. To determine the changes of the vascular transcriptome, we conducted gene expression microarray experiments on aortas of old mice, which were treated with dietary nitrate. Our results highlight differentially expressed genes overrepresented in gene ontology categories. Molecular interaction and reaction pathways involved in the calcium-signaling pathway and the detoxification system were identified. Our results provide novel insight to an altered gene-expression profile in old mice following nitrate supplementation. This supports the general notion of nutritional approaches to modulate age-related changes of vascular functions and its detrimental consequences.
Collapse
|
26
|
Liu J, Deutsch U, Fung I, Lobe CG. Conditional and inducible transgene expression in endothelial and hematopoietic cells using Cre/ loxP and tetracycline-off systems. Exp Ther Med 2014; 8:1351-1356. [PMID: 25289022 PMCID: PMC4186360 DOI: 10.3892/etm.2014.1965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 08/05/2014] [Indexed: 01/25/2023] Open
Abstract
In the present study, the tetracycline-off and Cre/loxP systems were combined to gain temporal and spatial control of transgene expression. Mice were generated that carried three transgenes: Tie2-tTA, tet-O-Cre and either the ZEG or ZAP reporter. Tie2-tTA directs expression of tetracycline-controlled transactivator (tTA) in endothelial and hematopoietic cells under the control of the Tie2 promoter. Tet-O-Cre produces Cre recombinase from a minimal promoter containing the tet-operator (tetO). ZEG or ZAP contains a strong promoter and a loxP-flanked stop sequence, followed by an enhanced green fluorescence protein (EGFP) or human placental alkaline phosphatase (hPLAP) reporter. In the presence of tetracycline, the tTA transactivator produced by Tie-2-tTA is disabled and Cre is not expressed. In the absence of tetracycline, the tTA binds tet-O-Cre to drive the expression of Cre, which recombines the loxP sites of the ZEG or ZAP transgene and results in reporter gene expression. In the present study, the expression of the ZEG or ZAP reporter genes in embryos and adult animals with and without tetracycline treatment was examined. In the presence of tetracycline, no reporter gene expression was observed. When tetracycline was withdrawn, Cre excision was activated and the reporter genes were detected in endothelial and hematopoietic cells. These results demonstrate that this system may be used to bypass embryonic lethality and access adult phenotypes.
Collapse
Affiliation(s)
- Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong 250014, P.R. China ; Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, Toronto, Ontario M4N 3M5, Canada ; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Urban Deutsch
- Theodor-Kocher-Institute, University of Berne, Berne CH-3012, Switzerland
| | - Iris Fung
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, Toronto, Ontario M4N 3M5, Canada ; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Corrinne G Lobe
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, Toronto, Ontario M4N 3M5, Canada ; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
27
|
Di Lascio N, Stea F, Kusmic C, Sicari R, Faita F. Non-invasive assessment of pulse wave velocity in mice by means of ultrasound images. Atherosclerosis 2014; 237:31-7. [PMID: 25194332 DOI: 10.1016/j.atherosclerosis.2014.08.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/18/2014] [Accepted: 08/14/2014] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Pulse wave velocity (PWV) is considered as a surrogate marker of arterial stiffness and could be useful for characterizing cardiovascular disease progression even in mouse models. Aim of this study was to develop an image process algorithm for assessing arterial PWV in mice using ultrasound images only and test it on the evaluation of age-associated differences in abdominal aorta PWV. METHODS Ultrasound scans were obtained from ten adult (mean age: 5.5 months) and nine old (mean age: 15.5 months) wild type male mice (strain C57BL6) under gaseous anesthesia. For each mouse, instantaneous values of diameter and flow velocity were obtained from abdominal aorta B-mode and PW-Doppler, respectively. Single-beat mean diameter and velocity were calculated providing the velocity-diameter (lnD-V) loop. PWV values for both the early systolic phase (aaPWV) and the late systolic one (aaPWVls) were obtained from the slope of the corresponding linear parts of the loop. Relative distension (relD) was calculated from the mean diameter signal. RESULTS aaPWV values for adult mice (1.91 ± 0.44 m/s) were significantly lower (p < 0.01) than those obtained for older ones (2.71 ± 0.63 m/s) and the same result was found for aaPWVls (2.68 ± 0.68 vs 3.67 ± 0.95 m/s; p < 0.05). relD measurements were significantly higher (p < 0.01) in adult (22.7% ± 5.2%) compared with older animal evaluations (15.8% ± 3.9%). CONCLUSIONS The proposed system discriminates well between age groups and supplies a non-invasive evaluation of anatomical and functional parameters of the mouse abdominal aorta. Since it provides a non-invasive PWV assessment from ultrasound (US) images only, it may offer a simple and useful system for evaluation of local vascular stiffness at other arterial site in the mouse, such as the carotid artery.
Collapse
Affiliation(s)
- Nicole Di Lascio
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Francesco Stea
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Rosa Sicari
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Francesco Faita
- Institute of Clinical Physiology, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
28
|
The role of oxidative stress and inflammation in cardiovascular aging. BIOMED RESEARCH INTERNATIONAL 2014; 2014:615312. [PMID: 25143940 PMCID: PMC4131065 DOI: 10.1155/2014/615312] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/10/2014] [Indexed: 02/07/2023]
Abstract
Age is an independent risk factor of cardiovascular disease, even in the absence of other traditional factors.
Emerging evidence in experimental animal and human models has emphasized a central role for two main mechanisms
of age-related cardiovascular disease: oxidative stress and inflammation.
Excess reactive oxygen species (ROS) and superoxide generated by oxidative stress
and low-grade inflammation accompanying aging recapitulate age-related cardiovascular dysfunction,
that is, left ventricular hypertrophy, fibrosis, and diastolic dysfunction in the heart as well as endothelial dysfunction,
reduced vascular elasticity, and increased vascular stiffness. We describe the signaling involved in these two
main mechanisms that include the factors NF-κB, JunD, p66Shc, and Nrf2.
Potential therapeutic strategies to improve the cardiovascular function with aging are discussed, with a focus on calorie restriction, SIRT1, and resveratrol.
Collapse
|
29
|
Modulation of circulating macrophage migration inhibitory factor in the elderly. BIOMED RESEARCH INTERNATIONAL 2014; 2014:582586. [PMID: 25114912 PMCID: PMC4119621 DOI: 10.1155/2014/582586] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 02/07/2023]
Abstract
Aging increases the risk for cardiovascular morbidity and mortality. Chronic low-grade inflammation deteriorates vascular function, increases age-related vascular stiffness, and affects hemodynamics. The proinflammatory cytokine macrophage migration inhibitory factor (MIF) is a major mediator of atherosclerosis. Plasma MIF levels are associated with arterial stiffness, a hallmark of vascular aging. Preclinical studies show that blockade of MIF leads to atherosclerotic plaque regression. Nutritional approaches provide opportunities to counteract age-related inflammation. Following a chronic dietary supplementation with the micronutrient nitrate has been demonstrated to improve vascular stiffness. Whether dietary nitrate affects circulating MIF levels is not known. In a randomized placebo-controlled, double-blinded study, elderly subjects received a dietary nitrate supplementation for 4 weeks. Dietary nitrate led to a decrease in plasma MIF levels in the elderly and to an improvement in vascular functions. This was associated with a reduction in central systolic blood pressure. Our data show that supplementation with dietary nitrate is associated with a reduction of circulating MIF levels along with an improvement in vascular function. This supports the concept of dietary approaches to modulate age-related changes of vascular functions.
Collapse
|