1
|
Jia H, Kaster N, Khan R, Ayari-Akkari A. The Roles of myomiRs in the Pathogenesis of Sarcopenia: From Literature to In Silico Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01373-0. [PMID: 40025274 DOI: 10.1007/s12033-025-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
Senile sarcopenia is a condition of age-associated muscular disorder and is a significant health issue around the world. In the current review, we curated the information from the NCBI, PubMed, and Google Scholar literature and explored the non-genetic and genetic causes of senile sarcopenia. Interestingly, the myomiRs such as miR-1, miR-206, miR-133a, miR-133b, miR-208b, and miR-499 are skeletal muscle's critical structural and functional regulators. However, very scattered information is available regarding the roles of myomiRs in different skeletal muscle phenotypes through a diverse list of known target genes. Therefore, these pieces of information must be organized to focus on the conserved target genes and comparable effects of the myomiRs in regulating senile sarcopenia. Hence, in the present review, the roles of pathogenetic factors in regulating senile sarcopenia were highlighted. The literature was further curated for the roles of myomiRs such as hsa-miR-1-3p/206, hsa-miR-27-3p, hsa-miR-146-5p, and hsa-miR-499-5p and their target genes. Additionally, we used different bioinformatics tools and predicted target genes of the myomiRs and found the most critical target genes, shared pathways, and their standard functions in regulating muscle structure and functions. The information gathered in the current review will help the researchers to explore their possible therapeutic potential, especially the use of the myomiRs for the treatment of senile sarcopenia.
Collapse
Affiliation(s)
- Huanxia Jia
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang, 461000, Henan, People's Republic of China
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana, Kazakhstan.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
2
|
Comfort N, Gade M, Strait M, Merwin SJ, Antoniou D, Parodi C, Marcinczyk L, Jean‐Francois L, Bloomquist TR, Memou A, Rideout HJ, Corti S, Kariya S, Re DB. Longitudinal transcriptomic analysis of mouse sciatic nerve reveals pathways associated with age-related muscle pathology. J Cachexia Sarcopenia Muscle 2023; 14:1322-1336. [PMID: 36905126 PMCID: PMC10235898 DOI: 10.1002/jcsm.13204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Sarcopenia, the age-associated decline in skeletal muscle mass and strength, has long been considered a disease of muscle only, but accumulating evidence suggests that sarcopenia could originate from the neural components controlling muscles. To identify early molecular changes in nerves that may drive sarcopenia initiation, we performed a longitudinal transcriptomic analysis of the sciatic nerve, which governs lower limb muscles, in aging mice. METHODS Sciatic nerve and gastrocnemius muscle were obtained from female C57BL/6JN mice aged 5, 18, 21 and 24 months old (n = 6 per age group). Sciatic nerve RNA was extracted and underwent RNA sequencing (RNA-seq). Differentially expressed genes (DEGs) were validated using quantitative reverse transcription PCR (qRT-PCR). Functional enrichment analysis of clusters of genes associated with patterns of gene expression across age groups (adjusted P-value < 0.05, likelihood ratio test [LRT]) was performed. Pathological skeletal muscle aging was confirmed between 21 and 24 months by a combination of molecular and pathological biomarkers. Myofiber denervation was confirmed with qRT-PCR of Chrnd, Chrng, Myog, Runx1 and Gadd45ɑ in gastrocnemius muscle. Changes in muscle mass, cross-sectional myofiber size and percentage of fibres with centralized nuclei were analysed in a separate cohort of mice from the same colony (n = 4-6 per age group). RESULTS We detected 51 significant DEGs in sciatic nerve of 18-month-old mice compared with 5-month-old mice (absolute value of fold change > 2; false discovery rate [FDR] < 0.05). Up-regulated DEGs included Dbp (log2 fold change [LFC] = 2.63, FDR < 0.001) and Lmod2 (LFC = 7.52, FDR = 0.001). Down-regulated DEGs included Cdh6 (LFC = -21.38, FDR < 0.001) and Gbp1 (LFC = -21.78, FDR < 0.001). We validated RNA-seq findings with qRT-PCR of various up- and down-regulated genes including Dbp and Cdh6. Up-regulated genes (FDR < 0.1) were associated with the AMP-activated protein kinase signalling pathway (FDR = 0.02) and circadian rhythm (FDR = 0.02), whereas down-regulated DEGs were associated with biosynthesis and metabolic pathways (FDR < 0.05). We identified seven significant clusters of genes (FDR < 0.05, LRT) with similar expression patterns across groups. Functional enrichment analysis of these clusters revealed biological processes that may be implicated in age-related changes in skeletal muscles and/or sarcopenia initiation including extracellular matrix organization and an immune response (FDR < 0.05). CONCLUSIONS Gene expression changes in mouse peripheral nerve were detected prior to disturbances in myofiber innervation and sarcopenia onset. These early molecular changes we report shed a new light on biological processes that may be implicated in sarcopenia initiation and pathogenesis. Future studies are warranted to confirm the disease modifying and/or biomarker potential of the key changes we report here.
Collapse
Affiliation(s)
- Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Samantha J. Merwin
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Daphne Antoniou
- Center for Basic ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Chiara Parodi
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Lina Marcinczyk
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Lea Jean‐Francois
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Tessa R. Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
| | - Anna Memou
- Center for Clinical, Experimental Surgery, and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Hardy J. Rideout
- Center for Clinical, Experimental Surgery, and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Stefania Corti
- Neuroscience Section, Dino Ferrari Centre, Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Shingo Kariya
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Diane B. Re
- Department of Environmental Health Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNYUSA
- Center for Motor Neuron Biology and DiseaseColumbia UniversityNew YorkNYUSA
- NIEHS Center for Environmental Health Sciences in Northern ManhattanColumbia UniversityNew YorkNYUSA
| |
Collapse
|
3
|
Shu H, Huang Y, Zhang W, Ling L, Hua Y, Xiong Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front Endocrinol (Lausanne) 2023; 14:1073587. [PMID: 36817606 PMCID: PMC9929355 DOI: 10.3389/fendo.2023.1073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Sarcopenia is a senile disease with high morbidity, serious complications and limited clinical treatments. Menopause increases the risk of sarcopenia in females, while the exact pathogenesis remains unclear. To systematically investigate the development of hormone-related sarcopenia, we established a model of sarcopenia by ovariectomy and recorded successive characteristic changes. Furthermore, we performed the transcriptome RNA sequencing and bioinformatics analysis on this model to explore the underlying mechanism. In our study, we identified an integrated model combining obesity, osteoporosis and sarcopenia. Functional enrichment analyses showed that most of the significantly enriched pathways were down-regulated and closely correlated with endocrine and metabolism, muscle dysfunction, cognitive impairment and multiple important signaling pathways. We finally selected eight candidate genes to verify their expression levels. These findings confirmed the importance of estrogen in the maintenance of skeletal muscle function and homeostasis, and provided potential targets for further study on hormone-related sarcopenia.
Collapse
Affiliation(s)
- Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubing Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqian Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengai Xiong,
| |
Collapse
|
4
|
Liao Z, Xiao M, Chen J, Yang Y, Lyu Q, Zhou J, Sun Y, Zhao Y, Fan Z, Yu J, Wu Y, Chen Q, Wu J, Xiao Q. CHRNA1 induced sarcopenia through neuromuscular synaptic elimination. Exp Gerontol 2022; 166:111891. [PMID: 35809807 DOI: 10.1016/j.exger.2022.111891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/25/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
Abstract
Sarcopenia seriously affects the quality of life of the elderly, but its molecular mechanism is still unclear. Degeneration in muscle innervation is related to age-related movement disorders and muscle atrophy. The expression of CHRNA1 is increased in the skeletal muscle of the elderly, and in aging rodents. Therefore, we investigated whether CHRNA1 induces the occurrence and development of sarcopenia. Compared with the control group, local injection of AAV9-CHRNA1 into the hindlimb muscles decreased the percentage of muscle innervation. At the same time, the skeletal muscle mass decreased, as manifested by a decrease in the gastrocnemius mass index and the cross-sectional area of the muscle fibers. The function of skeletal muscle also decreased, which was manifested by decreases of compound muscle action potential and muscle contractility. Therefore, we concluded that upregulation of CHRNA1 can induce and aggravate sarcopenia.
Collapse
Affiliation(s)
- Zhiyin Liao
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Minghan Xiao
- Department of Cardiology, University of Chinese Academy of Sciences, No. 118, Xingguang Avenue, Liangjiang New Area, 401147 Chongqing, China
| | - Jinliang Chen
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Yunfei Yang
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Qiong Lyu
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Jing Zhou
- Department of Clinic, Chongqing Medical And Pharmaceutical College, No. 82, University Town Middle Road, Shapingba District, 401331 Chongqing, China
| | - Yue Sun
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Yuxing Zhao
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Zhen Fan
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Jing Yu
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Yongxin Wu
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Qiunan Chen
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Jianghao Wu
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016 Chongqing, China.
| |
Collapse
|
5
|
Distinct and additive effects of calorie restriction and rapamycin in aging skeletal muscle. Nat Commun 2022; 13:2025. [PMID: 35440545 PMCID: PMC9018781 DOI: 10.1038/s41467-022-29714-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Preserving skeletal muscle function is essential to maintain life quality at high age. Calorie restriction (CR) potently extends health and lifespan, but is largely unachievable in humans, making “CR mimetics” of great interest. CR targets nutrient-sensing pathways centering on mTORC1. The mTORC1 inhibitor, rapamycin, is considered a potential CR mimetic and is proven to counteract age-related muscle loss. Therefore, we tested whether rapamycin acts via similar mechanisms as CR to slow muscle aging. Here we show that long-term CR and rapamycin unexpectedly display distinct gene expression profiles in geriatric mouse skeletal muscle, despite both benefiting aging muscles. Furthermore, CR improves muscle integrity in mice with nutrient-insensitive, sustained muscle mTORC1 activity and rapamycin provides additive benefits to CR in naturally aging mouse muscles. We conclude that rapamycin and CR exert distinct, compounding effects in aging skeletal muscle, thus opening the possibility of parallel interventions to counteract muscle aging. The anti-aging intervention calorie restriction (CR) is thought to act via the nutrient-sensing multiprotein complex mTORC1. Here the authors show that the mTORC1-inhibitor rapamycin and CR use largely distinct mechanisms to slow mouse muscle aging.
Collapse
|
6
|
Nair VD, Vasoya M, Nair V, Smith GR, Pincas H, Ge Y, Douglas CM, Esser KA, Sealfon SC. Differential analysis of chromatin accessibility and gene expression profiles identifies cis-regulatory elements in rat adipose and muscle. Genomics 2021; 113:3827-3841. [PMID: 34547403 DOI: 10.1016/j.ygeno.2021.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Chromatin accessibility is a key factor influencing gene expression. We optimized the Omni-ATAC-seq protocol and used it together with RNA-seq to investigate cis-regulatory elements in rat white adipose and skeletal muscle, two tissues with contrasting metabolic functions. While promoter accessibility correlated with RNA expression, integration of the two datasets identified tissue-specific differentially accessible regions (DARs) that predominantly localized in intergenic and intron regions. DARs were mapped to differentially expressed (DE) genes enriched in distinct biological processes in each tissue. Randomly selected DE genes were validated by qPCR. Top enriched motifs in DARs predicted binding sites for transcription factors (TFs) showing tissue-specific up-regulation. The correlation between differential chromatin accessibility at a given TF binding motif and differential expression of target genes further supported the functional relevance of that motif. Our study identified cis-regulatory regions that likely play a major role in the regulation of tissue-specific gene expression in adipose and muscle.
Collapse
Affiliation(s)
- Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vishnu Nair
- Department of Computer Sciences, Columbia University, New York, NY 10027, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Kurosawa T, Minato K, Ikemoto-Uezumi M, Hino J, Tsuchida K, Uezumi A. Transgenic Expression of Bmp3b in Mesenchymal Progenitors Mitigates Age-Related Muscle Mass Loss and Neuromuscular Junction Degeneration. Int J Mol Sci 2021; 22:ijms221910246. [PMID: 34638584 PMCID: PMC8549698 DOI: 10.3390/ijms221910246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is a vital organ for a healthy life, but its mass and function decline with aging, resulting in a condition termed sarcopenia. The etiology of sarcopenia remains unclear. We recently demonstrated that interstitial mesenchymal progenitors are essential for homeostatic muscle maintenance, and a diminished expression of the mesenchymal-specific gene Bmp3b is associated with sarcopenia. Here, we assessed the protective function of Bmp3b against sarcopenia by generating conditional transgenic (Tg) mice that enable a forced expression of Bmp3b specifically in mesenchymal progenitors. The mice were grown until they reached the geriatric stage, and the age-related muscle phenotypes were examined. The Tg mice had significantly heavier muscles compared to control mice, and the type IIB myofiber cross-sectional areas were preserved in Tg mice. The composition of the myofiber types did not differ between the genotypes. The Tg mice showed a decreasing trend of fibrosis, but the degree of fat infiltration was as low as that in the control mice. Finally, we observed the preservation of innervated neuromuscular junctions (NMJs) in the Tg muscle in contrast to the control muscle, where the NMJ degeneration was conspicuous. Thus, our results indicate that the transgenic expression of Bmp3b in mesenchymal progenitors alleviates age-related muscle deterioration. Collectively, this study strengthens the beneficial role of mesenchymal Bmp3b against sarcopenia and suggests that preserving the youthfulness of mesenchymal progenitors may be an effective means of combating sarcopenia.
Collapse
Affiliation(s)
- Tamaki Kurosawa
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (T.K.); (K.M.); (M.I.-U.)
- Laboratory of Veterinary Pharmacology, Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, Tokyo University, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keitaro Minato
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (T.K.); (K.M.); (M.I.-U.)
- Department of Regenerative and Transplant Medicine, Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Tyuo-Ku, Niigata 951-8510, Japan
| | - Madoka Ikemoto-Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (T.K.); (K.M.); (M.I.-U.)
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita 564-8565, Japan;
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan;
| | - Akiyoshi Uezumi
- Muscle Aging and Regenerative Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan; (T.K.); (K.M.); (M.I.-U.)
- Correspondence:
| |
Collapse
|
8
|
Zhu S, Lü A, Zhao Y, Pu D, Liao Z, Sun Y, Chen J, Xiao Q. [Expressions of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases 1 in skeletal muscles of aged rats with sarcopenia]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:104-109. [PMID: 32376563 DOI: 10.12122/j.issn.1673-4254.2020.01.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the changes of skeletal muscle mass and strength and the expressions of matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinases-1 (TIMP-1) and collagen-1 in the skeletal muscle of aged rats with sarcopenia. METHODS With 11 young (6-month-old) SD rats as control group, 18 aged (25-month-old) SD rats were divided into two groups (n=9) according to the relative lean mass determined dual X-ray absorptiometry (DXA), namely aged control group and aged sarcopenia group (the relative lean mass was 2SD higher in aged control than in aged sarcopenia group. The forelimb grip strength of the rats was measured using an electronic grip strength meter. The extracellular matrix (ECM) of the rat's gastrocnemius was observed with HE staining and sirius Red staining, and the protein expressions of collagen-1, MMP-1, and TIMP-1 in the muscular tissues were detected with Western blotting. RESULTS Compared with the young rats, the aged control rats had significantly lower relative grip strength (P < 0.01) and increased expressions of collagen-1 and TIMP-1 (P < 0.05) and ECM content in the skeletal muscles, but the relative lean mass and MMP-1 protein expression were comparable between the two groups (P>0.05). Compared with the aged control rats, the aged sarcopenic rats had significantly lowered relative lean mass (P < 0.01) and MMP-1 expressions of (P < 0.05) and increased expressions of collagen-1 and TIMP-1 proteins and ECM content in the muscular tissues (P < 0.05) without significant changes in the relative grip strength (P>0.05). CONCLUSIONS MMP-1/TIMP-1 imbalance in the skeletal muscle during aging affects ECM metabolism and leads to increased collagen fibers, which in turn affects the skeletal muscle mass and function and contribute to the onset of sarcopenia.
Collapse
Affiliation(s)
- Shiyu Zhu
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ankang Lü
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuxing Zhao
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Die Pu
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhiyin Liao
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Sun
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jinliang Chen
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qian Xiao
- Department of Geriatrics, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Zhang Y, Shen X, He L, Zhao F, Yan S. Association of sarcopenia and muscle mass with both peripheral neuropathy and nerve function in patients with type 2 diabetes. Diabetes Res Clin Pract 2020; 162:108096. [PMID: 32109517 DOI: 10.1016/j.diabres.2020.108096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
AIM This study aimed to investigate the association of sarcopenia and muscle mass with both peripheral neuropathy and nerve function in type 2 diabetes mellitus. METHODS A total of 1794 patients (937 men and 857 women) with type 2 diabetes, with a mean age of 60.22 years, were enrolled for a cross-sectional study; of these, 183 patients were enrolled for a follow-up study with a median follow-up of 2.7 years. All participants underwent nerve conduction studies and muscle mass index (ASM/HT2) measurements. The composite Z scores for the sensory nerve conduction velocity (SCV) and the motor nerve conduction velocity (MCV) were calculated. The changes in ASM/HT2, SCV, and MCV were calculated from the measurements nearly 2 years apart and classified into three groups: a decrease in ASM/HT2 of >3%, a minor change within ±3%, and an increase in ASM/HT2 of >3%. RESULTS The ASM/HT2 of men was positively associated with the composite Z scores of MCV and SCV, and sarcopenia highly correlated with DPN after adjusting for confounding factors. The optimal cutoff point for ASM/HT2 that indicated DPN was 7.09 kg/m2. Furthermore, increases in ASM/HT2 independently predicted a greater benefit of MCV and SCV increment outcomes, whereas a minor change in ASM/HT2 only significantly associated with lower benefit in terms of SCV increment. However, this phenomenon was not observed in women. CONCLUSIONS Sarcopenia and DPN exhibited a close association. The increased muscle mass improved the partial MCVs and SCVs. However, a sex-related discrepancy was observed in this phenomenon.
Collapse
Affiliation(s)
- Yongze Zhang
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China; Diabetes Research Institute of Fujian Province, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China
| | - Ximei Shen
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China; Diabetes Research Institute of Fujian Province, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China
| | - Lanlan He
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China; Diabetes Research Institute of Fujian Province, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China; Graduate Student of Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, Fujian, China
| | - Fengying Zhao
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China; Diabetes Research Institute of Fujian Province, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China
| | - Sunjie Yan
- Department of Endocrinology, the First Affiliated Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China; Diabetes Research Institute of Fujian Province, 20 Cha Zhong Road, Fuzhou, Fujian 350005, China.
| |
Collapse
|
10
|
Zhou J, Liao Z, Jia J, Chen JL, Xiao Q. The effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. PeerJ 2019; 7:e7199. [PMID: 31304063 PMCID: PMC6610545 DOI: 10.7717/peerj.7199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023] Open
Abstract
This study investigated the effects of resveratrol feeding and exercise training on the skeletal muscle function and transcriptome of aged rats. Male SD rats (25 months old) were divided into the control group (Old), the daily exercise training group (Trained), and the resveratrol feeding group (Resveratrol). After 6 weeks of intervention, the body mass, grip strength, and gastrocnemius muscle mass were determined, and the muscle samples were analyzed by transcriptome sequencing. The differentially expressed genes were analyzed followed by GO enrichment analysis and KEGG analysis. The Old group showed positive increases in body mass, while both the Trained and Resveratrol groups showed negative growth. No significant differences in the gastrocnemius muscle index and absolute grip strength were found among the three groups. However, the relative grip strength was higher in the Trained group than in the Old group. Only 21 differentially expressed genes were identified in the Trained group vs. the Old group, and 12 differentially expressed genes were identified in the Resveratrol group vs. the Old group. The most enriched GO terms in the Trained group vs. the Old group were mainly associated with RNA metabolic processes and transmembrane transporters, and the significantly upregulated KEGG pathways included mucin-type O-glycan biosynthesis, drug metabolism, and pyrimidine metabolism. The most enriched GO terms in the Resveratrol group vs. the Old group were primarily associated with neurotransmitter transport and synaptic vesicle, and the upregulated KEGG pathways included synaptic vesicle cycle, nicotine addiction, retinol metabolism, insulin secretion, retrograde endocannabinoid signaling, and glutamatergic synapse. Neither exercise training nor resveratrol feeding has a notable effect on skeletal muscle function and related gene expression in aged rats. However, both exercise training and resveratrol feeding have strong effects on weight loss, which is beneficial for reducing the exercise loads of the elderly.
Collapse
Affiliation(s)
- Jing Zhou
- Chongqing Medical and Pharmaceutical College, Chongqing, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Jia
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jin-Liang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Inhibition of TLR9 attenuates skeletal muscle fibrosis in aged sarcopenic mice via the p53/SIRT1 pathway. Exp Gerontol 2019; 122:25-33. [PMID: 31003004 DOI: 10.1016/j.exger.2019.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
Abstract
Sarcopenia is an age-related syndrome characterized by a gradual loss of muscle mass and function, but its pathophysiological mechanism remains unclear. Skeletal muscle extracellular matrix (ECM) remodeling is an important pathological change in sarcopenia, and fibrosis is the most obvious manifestation of this change. We found that the expression of the immunoreceptor Toll-like receptor 9 (TLR9) is significantly increased in skeletal muscle in aged mice and is positively related to muscle fibrosis. Moreover, in previous reports, the longevity gene Sirt1 was reported to attenuate ECM deposition and improve muscle function. In this study, we hypothesized that TLR9 modulated skeletal muscle fibrosis via Sirt1. We used TLR9 knockout (TLR9 KO) mice and C57 mice, and grip strength and body composition were compared at different ages. We found that TLR9 knockout significantly attenuated skeletal muscle fibrosis and improved muscle function in aged mice. Furthermore, silent information regulator 1 (Sirt1) activity in mice was inhibited by Ex527, which is a specific inhibitor of Sirt1. Negative Sirt1 regulation via the activation of TLR9-related signaling pathways participated in skeletal muscle fibrosis in the sarcopenic mice, and this process might mediated by the Sirt1/Smad signaling pathway. Our findings revealed that fibrosis changes in the gastrocnemius muscle in sarcopenic mice are closely related to TLR9 activation, and TLR9 modulation could be a therapeutic strategy for combating sarcopenia during aging.
Collapse
|
12
|
Moskalev A, Guvatova Z, Shaposhnikov M, Lashmanova E, Proshkina E, Koval L, Zhavoronkov A, Krasnov G, Kudryavtseva A. The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax. Front Genet 2019; 10:149. [PMID: 30891062 PMCID: PMC6411687 DOI: 10.3389/fgene.2019.00149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/12/2019] [Indexed: 01/24/2023] Open
Abstract
Some effects of aging in animals are tissue-specific. In D. melanogaster neuronal overexpression of Gclc increases lifespan and improves certain physiological parameters associated with health benefits such as locomotor activity, circadian rhythmicity, and stress resistance. Our previous transcriptomic analyses of Drosophila heads, primarily composed of neuronal tissue, revealed significant changes in expression levels of genes involved in aging-related signaling pathways (Jak-STAT, MAPK, FOXO, Notch, mTOR, TGF-beta), translation, protein processing in endoplasmic reticulum, proteasomal degradation, glycolysis, oxidative phosphorylation, apoptosis, regulation of circadian rhythms, differentiation of neurons, synaptic plasticity, and transmission. Considering that various tissues age differently and age-related gene expression changes are tissue-specific, we investigated the effects of neuronal Gclc overexpression on gene expression levels in the imago thorax, which is primarily composed of muscles. A total of 58 genes were found to be differentially expressed between thoraces of control and Gclc overexpressing flies. The Gclc level demonstrated associations with expression of genes involved in the circadian rhythmicity, the genes in categories related to the muscle system process and the downregulation of genes involved in proteolysis. Most of the functional categories altered by Gclc overexpression related to metabolism including Drug metabolism, Metabolism of xenobiotics by cytochrome P450, Glutathione metabolism, Starch and sucrose metabolism, Citrate cycle (TCA cycle), One carbon pool by folate. Thus, the transcriptomic changes caused by neuron-specific Gclc overexpression in the thorax were less pronounced than in the head and affected pathways also differed from previous results. Although these pathways don't belong to the canonical longevity pathways, we suggest that they could participate in the delay of aging of Gclc overexpressing flies.
Collapse
Affiliation(s)
- Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Zulfiya Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Shaposhnikov
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Ekaterina Lashmanova
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ekaterina Proshkina
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Liubov Koval
- Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | | | - George Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|