1
|
Lin S, Yan J, He S, Luo L. Identification of pyroptosis-related gene S100A12 as a potential diagnostic biomarker for sepsis through bioinformatics analysis and machine learning. Mol Immunol 2025; 183:44-55. [PMID: 40318597 DOI: 10.1016/j.molimm.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Sepsis is a non-discriminatory inflammatory reaction that can result in a diverse array of organ dysfunctions, which can be fatal. Pyroptosis is a programmed mechanism of cell death that is distinguishable from apoptosis and other forms of cellular demise. However, the role of pyroptosis in sepsis remains to be further explored. In this study, by employing a combination of the difference analysis, WGCNA, Friends' analysis, and machine learning, the central gene S100A12 was successfully identified. S100A12 demonstrated superb diagnostic capabilities in both the integrated and external validation datasets. Furthermore, significant disparities were observed in the levels of monocytes, eosinophils, and neutrophils between sepsis patients and the control group, as per the findings of immune infiltration analysis. The aforementioned immune infiltrating cells exhibited an increase in expression levels among patients diagnosed with sepsis and were found to be significantly and positively associated with S100A12 expression. The results of the single-cell analysis indicated a significant expression of S100A12 in both neutrophils and monocytes, which was in complete alignment with the outcomes of immune infiltration. In summary, the pyroptosis-related gene S100A12 represents a potential biomarker for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Shanshan Lin
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Jiayu Yan
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing 100000, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China.
| |
Collapse
|
2
|
Cahill S, Humphries F. Inflammasomopathies: mechanisms and disease signatures. Trends Immunol 2025; 46:372-385. [PMID: 40263090 DOI: 10.1016/j.it.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
Inflammasomes form in response to infection, cellular stress, or damage. Gain-of-function (GOF) mutations in inflammasome receptors have been identified as the underlying cause of severe inflammatory diseases, termed 'inflammasomopathies'. Recently, molecular interrogation of these diseases revealed several distinctions at the level of the tissue affected, the inflammatory mediators that drive disease progression, and the contribution of programmed cell death. In this review we discuss key emerging differences across inflammasomopathies and the distinct inflammatory patterns seen in patients. We discuss how programmed cell death influences the progression of inflammasomopathies and the role of plasma membrane rupture. Understanding the molecular disease signatures across inflammasomopathies provides crucial insights into identifying and treating the underlying disease and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Sara Cahill
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
Pak SW, Kim WI, Lee SJ, Lee J, Park MJ, Park JH, Kim JC, Kim T, Kim JS, Kim YH, Shin IS. NLRC4 Regulates Th2 Differentiation in Mice With Allergic Airway Inflammation Induced by House Dust Mite. Allergy 2025. [PMID: 40171954 DOI: 10.1111/all.16550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Junhyeong Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Jung Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Hwan Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Yun Hee Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
4
|
Yao Q, Lei Y, Zhang Y, Chen H, Dong X, Ye Z, Liang H. EZH2-H3K27me3-Mediated Epigenetic Silencing of DKK1 Induces Nucleus Pulposus Cell Pyroptosis in Intervertebral Disc Degeneration by Activating NLRP3 and NAIP/NLRC4. Inflammation 2025; 48:902-918. [PMID: 39052181 DOI: 10.1007/s10753-024-02096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Nucleus pulposus (NP) cell pyroptosis is crucial for intervertebral disc degeneration (IDD). However, the precise mechanisms underlying pyroptosis in IDD remain elusive. Therefore, this study aimed to investigate how dickkopf-1 (DKK1) influences NP cell pyroptosis and delineate the regulatory mechanisms of IDD. Behavioral tests and histological examinations were conducted in rat IDD models to assess the effect of DKK1 on the structure and function of intervertebral discs. Detected pyroptosis levels using Hoechst 33,342/propidium iodide (PI) double staining, and determined pyroptosis-related protein expression via western blotting. The cellular mechanisms of DKK1 in pyroptosis were explored in interleukin (IL)-1β-induced NP cells transfected with or without DKK1 overexpression plasmids (oe-DKK1). In addition, IL-1β-treated NP cells transfected with sh-EZH2 and/or sh-DKK1 were utilized to clarify the interplay between the enhancer of zeste homologue 2 (EZH2) and DKK1 in pyroptosis. Additionally, the epigenetic regulation of DKK1 by EZH2 was explored in NP cells treated with the EZH2 inhibitors GSK126/DZNep. DKK1 expression decreased in IDD rats. Transfection with oe-DKK1 reduced pro-inflammatory factors and extracellular matrix markers in IDD rats. In IL-1β-induced NP cells, DKK1 overexpression suppressed pyroptosis and inhibited the NLRP3 and NAIP/NLRC4 inflammasome activation. EZH2 knockdown increased DKK1 expression and reduced pyroptosis-related proteins. Conversely, DKK1 downregulation reversed the inhibitory effects of EZH2 knockdown on pyroptosis. Furthermore, EZH2 suppressed DKK1 expression via H3K27 methylation at the DKK1 promoter. EZH2 negatively regulates DKK1 expression via H3K27me3 methylation, promoting NP cell pyroptosis in IDD patients. This regulatory effect involves the activation of NLRP3 and NAIP/NLRC4 inflammasomes.
Collapse
Affiliation(s)
- Qijun Yao
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Yue Lei
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Yongxu Zhang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Haoran Chen
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Xiaowei Dong
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Zhiqiang Ye
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China
| | - Haidong Liang
- Department of Bone and Soft Tissue Repair and Reconstructive Surgery, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian, Liaoning, 116000, China.
| |
Collapse
|
5
|
Dos Santos TCF, Silva EN, Frezarim GB, Salatta BM, Baldi F, Fonseca LFS, Albuquerque LGD, Muniz MMM, Silva DBDS. Identification of cis-sQTL demonstrates genetic associations and functional implications of inflammatory processes in Nelore cattle muscle tissue. Mamm Genome 2025; 36:106-117. [PMID: 39825903 DOI: 10.1007/s00335-024-10100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/22/2024] [Indexed: 01/20/2025]
Abstract
This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package. A permutation analysis then assessed the significance of the best SNPs for each spliced transcript. Functional enrichment analysis was performed on the sGenes to investigate their roles in the immune system. In total, 3,187 variants were linked to 3,202 spliced transcripts, with 83 sGenes involved in immune system processes. Of these, 31 sGenes were enriched for five transcription factors. Most cis-sQTL effects were found in intronic regions, with 27 sQTL variants associated with disease susceptibility and resistance in cattle. Key sGenes identified, such as GSDMA, NLRP6, CASP6, GZMA, CASP4, CASP1, TREM2, NLRP1, and NAIP, were related to inflammasome formation and pyroptosis. Additionally, genes like PIDD1, OPTN, NFKBIB, STAT1, TNIP3, and TREM2 were involved in regulating the NF-kB pathway. These findings lay the groundwork for breeding disease-resistant cattle and enhance our understanding of genetic mechanisms in immune responses.
Collapse
Affiliation(s)
- Thaís Cristina Ferreira Dos Santos
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brasil.
| | - Evandro Neves Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil
- Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brasil
| | | | - Bruna Maria Salatta
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | - Fernando Baldi
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | | | - Lucia Galvão De Albuquerque
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, DF, Brasil
| | - Maria Malane Magalhães Muniz
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- University of Guelph, UOGELPH, Guelph, Canada
| | - Danielly Beraldo Dos Santos Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil.
| |
Collapse
|
6
|
Liu M, Gao X, Wang H, Zhang Y, Li X, Zhu R, Sheng Y. Leveraging diverse cell-death patterns in diagnosis of sepsis by integrating bioinformatics and machine learning. PeerJ 2025; 13:e19077. [PMID: 40028203 PMCID: PMC11871900 DOI: 10.7717/peerj.19077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Background Sepsis is a life-threatening disease causing millions of deaths every year. It has been reported that programmed cell death (PCD) plays a critical role in the development and progression of sepsis, which has the potential to be a diagnosis and prognosis indicator for patient with sepsis. Methods Fourteen PCD patterns were analyzed for model construction. Seven transcriptome datasets and a single cell sequencing dataset were collected from the Gene Expression Omnibus database. Results A total of 289 PCD-related differentially expressed genes were identified between sepsis patients and healthy individuals. The machine learning algorithm screened three PCD-related genes, NLRC4, TXN and S100A9, as potential biomarkers for sepsis. The area under curve of the diagnostic model reached 100.0% in the training set and 100.0%, 99.9%, 98.9%, 99.5% and 98.6% in five validation sets. Furthermore, we verified the diagnostic genes in sepsis patients from our center via qPCR experiment. Single cell sequencing analysis revealed that NLRC4, TXN and S100A9 were mainly expressed on myeloid/monocytes and dendritic cells. Immune infiltration analysis revealed that multiple immune cells involved in the development of sepsis. Correlation and gene set enrichment analysis (GSEA) analysis revealed that the three biomarkers were significantly associated with immune cells infiltration. Conclusions We developed and validated a diagnostic model for sepsis based on three PCD-related genes. Our study might provide potential peripheral blood diagnostic candidate biomarkers for patients with sepsis.
Collapse
Affiliation(s)
- Mi Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hang Zhou, China
| | - Xingxing Gao
- Department of Thyroid Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou, China
| | - Hongfa Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hang Zhou, China
| | - Yiping Zhang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hang Zhou, China
| | - Xiaojun Li
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hang Zhou, China
| | - Renlai Zhu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hang Zhou, China
| | - Yunru Sheng
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hang Zhou, China
| |
Collapse
|
7
|
Fish A, Forster J, Malik V, Kulkarni A. Shear-Stress Initiates Signal Two of NLRP3 Inflammasome Activation in LPS-Primed Macrophages through Piezo1. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7363-7376. [PMID: 39836089 DOI: 10.1021/acsami.4c18845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation. We demonstrated that magnitudes of shear stress within 1.0 to 50 dyn/cm2 were able to induce ASC speck formation, while 50 dyn/cm2 was sufficient to induce significant calcium signaling, gasdermin-D cleavage, caspase-1 activity, and IL-1β secretion, all hallmarks of inflammasome activation. Utilizing NLRP3 and caspase-1 knockout iBMDMs, we demonstrated that the NLRP3 inflammasome was primarily activated as a result of shear stress exposure. Quantitative polymerase chain reaction (qPCR), ELISA, and a small molecule inhibitor study aided us in demonstrating that expression of Piezo1, NLRP3, gasdermin-D, IL-1β, and CCL2 secretion were all upregulated in iBMDMs treated with shear stress. This study provides a foundation for further understanding the interconnected pathogenesis of chronic inflammatory diseases and the ability of shear stress to play a role in their progression.
Collapse
Affiliation(s)
- Adam Fish
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James Forster
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Vaishali Malik
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Pak SW, Kim WI, Lee SJ, Park SH, Cho YK, Kim JS, Kim JC, Kim SH, Shin IS. Silibinin alleviates house dust mite induced allergic airway inflammation by inhibiting NLRC4 inflammasome and MMP-9 expression. Biomed Pharmacother 2025; 183:117823. [PMID: 39823722 DOI: 10.1016/j.biopha.2025.117823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Silibinin, a major compound of silymarin, has been reported to alleviate respiratory diseases including acute lung injury, asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis through its antifibrotic, anti-inflammatory, and antioxidant properties. However, the specific mechanisms underlying its therapeutic effects, particularly in allergic asthma, are not fully understood. With the increasing prevalence and impact of allergic asthma, there is a need to elucidate the exact underlying mechanisms of its potential treatment effects. Herein, we investigated the therapeutic effects of silibinin on allergic asthma using house dust mite (HDM)-exposed mice and an HDM-stimulated human bronchial epithelium cell line, focusing on the roles of the NLR family CARD domain containing 4 (NLRC4) inflammasome and matrix metalloproteinase-9 (MMP-9). To induce airway inflammation, HDM extracts were instilled intranasally on days 0, 4, 8, and 12 to mice. Silibinin (20 and 40 mg/kg) was orally administered daily from days 0-12. The results showed that silibinin treatment attenuated allergic immune responses induced by HDM exposure, as evidenced by decreased airway hyperresponsiveness, reduced inflammatory cells and cytokines, lower immunoglobulin E levls, and decreased mucus production. Furthermore, silibinin treatment suppressed NLRC4 inflammasome activation and downregulated MMP-9 expression in the lungs. In HDM-stimulated cells, silibinin treatment decreased inflammatory cytokine levels and the expression of NLRC4 and interleukin-1β, indicating inhibition of NLRC4 inflammasome activation. Overall, our data demonstrated that silibinin alleviated allergic responses in HDM-induced asthmatic mice by inhibiting NLRC4 inflammasome activation and MMP-9 expression, underscoring its therapeutic potential in the treatment of asthma.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si, Chungbuk 28503, Republic of Korea
| | - Joong-Sun Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch, Korea Institute of Toxicology (KIT), Jeongeup-si, Jeonbuk 53212, Republic of Korea.
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
9
|
Malik HS, Bliska JB. Guards and decoys: RIPoptosome and inflammasome pathway regulators of bacterial effector-triggered immunity. PLoS Pathog 2025; 21:e1012884. [PMID: 39883598 PMCID: PMC11781737 DOI: 10.1371/journal.ppat.1012884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Virulent microbes produce proteins that interact with host cell targets to promote pathogenesis. For example, virulent bacterial pathogens have proteins called effectors that are typically enzymes and are secreted into host cells. To detect and respond to the activities of effectors, diverse phyla of host organisms evolved effector-triggered immunity (ETI). In ETI, effectors are often sensed indirectly by detection of their virulence activities in host cells. ETI mechanisms can be complex and involve several classes of host proteins. Guards monitor the functional or physical integrity of another host protein, the guardee or decoy, and become activated to initiate an immune response when the guardee or decoy is modified or disrupted by an effector. A guardee typically has an intrinsic anti-pathogen function and is the intended target of an effector. A decoy structurally mimics a host protein that has intrinsic anti-pathogen activity and is unintentionally targeted by an effector. A decoy can be an individual protein, or a protein domain integrated into a guard. Here, we review the origins of ETI and focus on 5 mechanisms, in which the key steps of a pathway can include activation of a caspase by a RIPoptosome or inflammasome, formation of pores in the plasma membrane, release of cytokines and ending in cell death by pyroptosis. Survey of the 5 mechanisms, which have been shown to be host protective in mouse models of bacterial infection, reveal how distinct regulators of RIPoptosome or inflammasome pathways can act as guards or integrated decoys to trigger ETI. Common themes are highlighted and the limited mechanistic understanding of ETI bactericidal activity is discussed.
Collapse
Affiliation(s)
- Haleema Sadia Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
10
|
Liu YY, Bao DQ, Zhang ZS, Zhu Y, Liu LM, Li T. Radix Sanguisorbae Improves Intestinal Barrier in Septic Rats via HIF-1 α/HO-1/Fe 2+ Axis. Chin J Integr Med 2024; 30:1101-1112. [PMID: 38212494 DOI: 10.1007/s11655-023-3550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate whether Radix Sanguisorbae (RS, Diyu) could restore intestinal barrier function following sepsis using a cecal ligation and puncture (CLP)-induced septic rat model and lipopolysaccharide (LPS)-challenged IEC-6 cell model, respectively. METHODS Totally 224 rats were divided into 4 groups including a control, sham, CLP and RS group according to a random number table. The rats in the control group were administrated with Ringer's lactate solution (30 mL/kg) with additional dopamine [10 µ g/(kg·min)] and given intramuscular injections of cefuroxime sodium (10 mg/kg) 12 h following CLP. The rats in the RS group were administrated with RS (10 mg/kg) through tail vein 1 h before CLP and treated with RS (10 mg/kg) 12 h following CLP. The rats in the sham group were only performed abdominal surgery without CLP. The rats in the CLP group were performed with CLP without any treatment. The other steps were same as control group. The effects of RS on intestinal barrier function, mesenteric microvessels barrier function, multi-organ function indicators, inflammatory response and 72 h survival window following sepsis were observed. In vitro, the effects of RS on LPS-challenged IEC-6 cell viability, the expressions of zona occludens-1 (ZO-1) and ferroptosis index were evaluated by cell counting kit-8, immunofluorescence and Western blot analysis. Bioinformatic tools were applied to investigate the pharmacological network of RS in sepsis to predict the active compounds and potential protein targets and pathways. RESULTS The sepsis caused severe intestinal barrier dysfunction, multi-organ injury, lipid peroxidation accumulation, and ferroptosis in vivo. RS treatment significantly prolonged the survival time to 56 h and increased 72-h survival rate to 7/16 (43.75%). RS also improved intestinal barrier function and relieved intestinal inflammation. Moreover, RS significantly decreased lipid peroxidation and inhibited ferroptosis (P<0.05 or P<0.01). Administration of RS significantly worked better than Ringer's solution used alone. Using network pharmacology prediction, we found that ferroptosis and hypoxia inducible factor-1 (HIF-1 α) signaling pathways might be involved in RS effects on sepsis. Subsequent Western blot, ferrous iron measurements, and FerroOrange fluorescence of ferrous iron verified the network pharmacology predictions. CONCLUSION RS improved the intestinal barrier function and alleviated intestinal injury by inhibiting ferroptosis, which was related in part to HIF-1 α/heme oxygenase-1/Fe2+ axis.
Collapse
Affiliation(s)
- Yi-Yan Liu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China
| | - Dai-Qin Bao
- Department of Anesthesiology, Army Medical Center of PLA, Chongqing, 400042, China
| | - Zi-Sen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China
| | - Liang-Ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injuries, Department of War Wound Shock and Transfusion, Institute of Surgery Research, Chongqing, 400042, China.
| |
Collapse
|
11
|
Wen Z, Yuan T, Liu J, Wang D, Ni J, Yan X, Tang J, Tang J, Wu X, Wang Z. Atg16l2 augments Nlrc4 inflammasome activation by facilitating NAIPs-NLRC4 association. Eur J Immunol 2024; 54:e2451078. [PMID: 39175123 DOI: 10.1002/eji.202451078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
As cytoplasmic protein complexes that are pivotal for innate immunity, inflammasomes act primarily through the detection of pathogen- or danger-associated molecular patterns. Nucleotide oligomerisation domain-like receptor family and caspase activation recruitment domain-containing protein 4 (NLRC4) inflammasomes identify and eliminate intracellular pathogens, a process contingent on the ligand-recognition capabilities of neuronal apoptosis inhibitory proteins (NAIPs). Upon detection of specific molecules indicative of intracellular infection, NAIPs discern distinct pathogenic components and subsequently transmit signals to NLRC4, thus initiating their activation and triggering an inflammatory response. However, the mechanisms underlying NLRC4 inflammasome remain unclear. In this study, we elucidated the critical role of ATG16L2 in activating the NLRC4 inflammasome. ATG16L2-deficient macrophages exhibited reduced NLRC4 inflammasome activation, characterised by decreased oligomerisation of apoptosis-associated speck-like protein containing a CARD and attenuated cleavage of Pro-caspase-1, Pro-IL-1β and gasdermin D. Co-immunoprecipitation assays revealed an interaction between ATG16L2 and NAIPs. Furthermore, ATG16L2 enhanced the association between NAIPs and NLRC4 by binding to NAIPs. For ATG16L2-knockout mice infected with Salmonella typhimurium, pathogen clearance and survival rates markedly decreased. Collectively, our findings suggest that ATG16L2 is a significant modulator of the innate immune system, influencing the activity of the NLRC4 inflammasome and the host's defensive response to intracellular pathogens.
Collapse
Affiliation(s)
- Zhoujin Wen
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianli Yuan
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongyang Wang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuehan Yan
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Tang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayin Tang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Meng Y, Zhang Q, Xu M, Ding K, Yu Z, Li J. Pyroptosis regulation by Salmonella effectors. Front Immunol 2024; 15:1464858. [PMID: 39507539 PMCID: PMC11538000 DOI: 10.3389/fimmu.2024.1464858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The genus Salmonella contains the most common foodborne pathogens frequently isolated from food-producing animals and is responsible for zoonotic infections in humans and animals. Salmonella infection in humans and animals can cause intestinal damage, resulting in intestinal inflammation and disruption of intestinal homeostasis more severe cases can lead to bacteremia. Pyroptosis, a proinflammatory form of programmed cell death, is involved in many disease processes. Inflammasomes, pyroptosis, along with their respective signaling cascades, are instrumental in the preservation of intestinal homeostasis. In recent years, with the in-depth study of pyroptosis, our comprehension of the virulence factors and effector proteins in Salmonella has reached an extensive level, a deficit persists in our knowledge regarding the intrinsic pathogenic mechanisms about pyroptosis, necessitating a continued pursuit of understanding and investigation. In this review, we discuss the occurrence of pyroptosis induced by Salmonella effectors to provide new ideas for elucidating the regulatory mechanisms through which Salmonella virulence factors and effector proteins trigger pyroptosis could pave the way for novel concepts and strategies in the clinical prevention of Salmonella infections and the treatment of associated diseases.
Collapse
Affiliation(s)
- Yuan Meng
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qianjin Zhang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mengen Xu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Li
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
13
|
Li J, Wang M, Zhou H, Jin Z, Yin H, Yang S. The role of pyroptosis in the occurrence and development of pregnancy-related diseases. Front Immunol 2024; 15:1400977. [PMID: 39351226 PMCID: PMC11439708 DOI: 10.3389/fimmu.2024.1400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Pyroptosis is a form of programmed cell death that is crucial in the development of various diseases, including autoimmune diseases, atherosclerotic diseases, cancer, and pregnancy complications. In recent years, it has gained significant attention in national and international research due to its association with inflammatory immune overactivation and its involvement in pregnancy complications such as miscarriage and preeclampsia (PE). The mechanisms discussed include the canonical pyroptosis pathway of gasdermin activation and pore formation (caspase-1-dependent pyroptosis) and the non-canonical pyroptosis pathway (cysteoaspartic enzymes other than caspase-1). These pathways work on various cellular and factorial levels to influence normal pregnancy. This review aims to summarize and analyze the pyroptosis pathways associated with abnormal pregnancies and pregnancy complications. The objective is to enhance pregnancy outcomes by identifying various targets to prevent the onset of pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin
University, Changchun, Jilin, China
| |
Collapse
|
14
|
Shi W, Gao Y, Yang H, Li H, Liu T, Zhao J, Wei Z, Lin L, Huang Y, Guo Y, Xu A, Bai Z, Xiao X. Bavachinin, a main compound of Psoraleae Fructus, facilitates GSDMD-mediated pyroptosis and causes hepatotoxicity in mice. Chem Biol Interact 2024; 400:111133. [PMID: 38969277 DOI: 10.1016/j.cbi.2024.111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Psoraleae Fructus (PF, Psoralea corylifolia L.), a traditional medicine with a long history of application, is widely used clinically for the treatment of various diseases. However, the reports of PF-related adverse reactions, such as hepatotoxicity, phototoxic dermatitis, and allergy, are increasing year by year, with liver injury being the mostly common. Our previous studies have demonstrated that PF and its preparations can cause liver injury in lipopolysaccharide (LPS)-mediated susceptibility mouse model, but the mechanism of PF-related liver injury is unclear. In this study, we showed that PF and bavachinin, a major component of PF, can directly induce the expression of caspase-1 and interleukin-1β (IL-1β), indicating that PF and bavachinin can directly triggered the activation of inflammasome. Furthermore, pretreatment with NLR family pyrin domain-containing 3 (NLRP3), NLR family CARD domain containing 4 (NLRC4) or absent in melanoma 2 (AIM2) inflammasome inhibitors, containing MCC950, ODN TTAGGG (ODN) and carnosol, all significantly reversed bavachinin-induced inflammasome activation. Mechanistically, bavachinin dose-dependently promote Gasdermin D (GSDMD) post-shear activation and then induce mitochondrial reactive oxygen species (mtROS) production and this effect is markedly inhibited by pretreatment with N-Acetylcysteine amide (NAC). In addition, combination treatment of LPS and bavachinin significantly induced liver injury in mice, but not LPS or bavachinin alone, and transcriptome analysis further validated these results. Thus, PF and bavachinin can induce the activation of inflammasome by promoting GSDMD cleavage and cause hepatotoxicity in mice. Therefore, PF, bavachinin, and PF-related preparations should be avoided in patients with inflammasome activation-associated diseases.
Collapse
Affiliation(s)
- Wei Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Huijie Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ziying Wei
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li Lin
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuming Guo
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; National Key Laboratory of Kidney Diseases, China.
| | - Xiaohe Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; National Key Laboratory of Kidney Diseases, China.
| |
Collapse
|
15
|
Ren L, Yang H, Wang H, Qin S, Zhan X, Li H, Wei Z, Fang Z, Li Q, Liu T, Shi W, Zhao J, Li Z, Bai Z, Xu G, Zhao J. Tryptanthrin suppresses multiple inflammasome activation to regulate NASH progression by targeting ASC protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155758. [PMID: 38843643 DOI: 10.1016/j.phymed.2024.155758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The adaptor protein apoptosis-associated speck-like protein (ASC) containing a caspase recruitment domain (CARD) can be activated through pyrin domain (PYD) interactions between sensors and ASC, and through CARD interactions between caspase-1 and ASC. Although the majority of ternary inflammasome complexes depend on ASC, drugs targeting ASC protein remain scarce. After screening natural compounds from Isatidis Radixin, we found that tryptanthrin (TPR) could inhibit NLRP3-induced IL-1β and caspase-1 production, but the underlying anti-inflammatory mechanisms remain to be elucidated. PURPOSE The purpose of this study was to determine the impact of TPR on the NLRP3, NLRC4, and AIM2 inflammasomes and the underlying mechanisms. Additionally, the efficacy of TPR was analysed in the further course of methionine- and choline-deficient (MCD)-induced NASH and lipopolysaccharide (LPS)-induced sepsis models of mice. METHODS In vitro studies used bone marrow-derived macrophages to assess the anti-inflammatory activity of TPR, and the techniques included western blot, testing of intracellular K+ and Ca2+, immunofluorescence, enzyme-linked immunosorbent assay (ELISA), co-immunoprecipitation, ASC oligomerization assay, surface plasmon resonance (SPR), and molecular docking. We used LPS-induced sepsis models and MCD-induced NASH models in vivo to evaluate the effectiveness of TPR in inhibiting inflammatory diseases. RESULTS Our observations suggested that TPR could inhibit NLRP3, NLRC4, and AIM2 inflammasome activation. As shown in a mouse model of inflammatory diseases caused by MCD-induced NASH and LPS-induced sepsis, TPR significantly alleviated the progression of diseases. TPR interrupted the interactions between ASC and NLRP3/NLRC4/AIM2 in the co-immunoprecipitation experiment, and stable binding of TPR to ASC was also evident in SPR experiments. The underlying mechanisms of anti-inflammatory activities of TPR might be associated with targeting ASC, in particular, PYD domain of ASC. CONCLUSION In general, the requirement for ASC in multiple inflammasome complexes makes TPR, as a novel broad-spectrum inflammasome inhibitor, potentially useful for treating a wide range of multifactorial inflammasome-related diseases.
Collapse
Affiliation(s)
- Lutong Ren
- Department of Pharmacy, Inner Mongolia People's Hospital, Hohhot, China; Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huijie Yang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Wang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuanglin Qin
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaoyan Zhan
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziying Wei
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhie Fang
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiang Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Tingting Liu
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, China
| | - Wei Shi
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, China.
| | - Guang Xu
- China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; School of Chinese Medicine, Capital Medical University, Beijing, China.
| | - Jun Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
16
|
Zheng Z, Yang S, Dai W, Xue P, Sun Y, Wang J, Zhang X, Lin J, Kong J. The role of pyroptosis in metabolism and metabolic disease. Biomed Pharmacother 2024; 176:116863. [PMID: 38850650 DOI: 10.1016/j.biopha.2024.116863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Pyroptosis is a lytic and pro-inflammatory form of regulated cell death characterized by the formation of membrane pores mediated by the gasdermin protein family. Two main activation pathways have been documented: the caspase-1-dependent canonical pathway and the caspase-4/5/11-dependent noncanonical pathway. Pyroptosis leads to cell swelling, lysis, and the subsequent release of inflammatory mediators, including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Chronic inflammation is a well-established foundation and driver for the development of metabolic diseases. Conversely, metabolic pathway dysregulation can also induce cellular pyroptosis. Recent studies have highlighted the significant role of pyroptosis modulation in various metabolic diseases, including type 2 diabetes mellitus, obesity, and metabolic (dysfunction) associated fatty liver disease. These findings suggest that pyroptosis may serve as a promising novel therapeutic target for metabolic diseases. This paper reviews an in-depth study of the current advancements in understanding the role of pyroptosis in the progression of metabolic diseases.
Collapse
Affiliation(s)
- Zhuyuan Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Shaojie Yang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang 110122, PR China
| | - Pengwei Xue
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yang Sun
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jingnan Wang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaolin Zhang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jiang Lin
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jing Kong
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
17
|
Yang K, Zeng L, He Q, Wang S, Xu H, Ge J. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products. Front Pharmacol 2024; 15:1250918. [PMID: 38601463 PMCID: PMC11004298 DOI: 10.3389/fphar.2024.1250918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability among adults. Recanalization of blood vessels to facilitate timely reperfusion is the primary clinical approach; however, reperfusion itself may trigger cerebral ischemia-reperfusion injury. Emerging evidence strongly implicates the NLRP3 inflammasome as a potential therapeutic target, playing a key role in cerebral ischemia and reperfusion injury. The aberrant expression and function of NLRP3 inflammasome-mediated inflammation in cerebral ischemia have garnered considerable attention as a recent research focus. Accordingly, this review provides a comprehensive summary of the signaling pathways, pathological mechanisms, and intricate interactions involving NLRP3 inflammasomes in cerebral ischemia-reperfusion injury. Moreover, notable progress has been made in investigating the impact of natural plant products (e.g., Proanthocyanidins, methylliensinine, salidroside, α-asarone, acacia, curcumin, morin, ginsenoside Rd, paeoniflorin, breviscapine, sulforaphane, etc.) on regulating cerebral ischemia and reperfusion by modulating the NLRP3 inflammasome and mitigating the release of inflammatory cytokines. These findings aim to present novel insights that could contribute to the prevention and treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi He
- Department of Critical Care Medicine, People’s Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
18
|
Chiarini A, Armato U, Gui L, Dal Prà I. "Other Than NLRP3" Inflammasomes: Multiple Roles in Brain Disease. Neuroscientist 2024; 30:23-48. [PMID: 35815856 DOI: 10.1177/10738584221106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human neuroinflammatory and neurodegenerative diseases, whose prevalence keeps rising, are still unsolved pathobiological/therapeutical problems. Among others, recent etiology hypotheses stressed as their main driver a chronic neuroinflammation, which is mediated by innate immunity-related protein oligomers: the inflammasomes. A panoply of exogenous and/or endogenous harmful agents activates inflammasomes' assembly, signaling, and IL-1β/IL-18 production and neural cells' pyroptotic death. The underlying concept is that inflammasomes' chronic activation advances neurodegeneration while their short-lasting operation restores tissue homeostasis. Hence, from a therapeutic standpoint, it is crucial to understand inflammasomes' regulatory mechanisms. About this, a deluge of recent studies focused on the NLRP3 inflammasome with suggestions that its pharmacologic block would hinder neurodegeneration. Yet hitherto no evidence proves this view. Moreover, known inflammasomes are numerous, and the mechanisms regulating their expression and function may vary with the involved animal species and strains, as well as organs and cells, and the harmful factors triggered as a result. Therefore, while presently leaving out some little-studied inflammasomes, this review focuses on the "other than NLRP3" inflammasomes that participate in neuroinflammation's complex mechanisms: NLRP1, NLRP2, NLRC4, and AIM2. Although human-specific data about them are relatively scant, we stress that only a holistic view including several human brain inflammasomes and other potential pathogenetic drivers will lead to successful therapies for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Li Gui
- Department of Neurology, Southwest Hospital, Chongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Section, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
19
|
Fish A, Kulkarni A. Flow-Induced Shear Stress Primes NLRP3 Inflammasome Activation in Macrophages via Piezo1. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4505-4518. [PMID: 38240257 DOI: 10.1021/acsami.3c18645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The NLRP3 inflammasome is a crucial component of the innate immune system, playing a pivotal role in initiating and regulating the body's inflammatory response to various pathogens and cellular damage. Environmental stimuli, such as temperature, pH level, and nutrient availability, can influence the behavior and functions of innate immune cells, including immune cell activity, proliferation, and cytokine production. However, there is limited understanding regarding how mechanical forces, like shear stress, govern the intrinsic inflammatory reaction, particularly the activation of the NLRP3 inflammasome, and how shear stress impacts NLRP3 inflammasome activation through its capacity to induce alterations in gene expression and cytokine secretion. Here, we investigated how shear stress can act as a priming signal in NLRP3 inflammasome activation by exposing immortalized bone marrow-derived macrophages (iBMDMs) to numerous physiologically relevant magnitudes of shear stress before chemically inducing inflammasome activation. We demonstrated that shear stress of large magnitudes was able to prime iBMDMs more effectively for inflammasome activation compared to lower shear stress magnitudes, as quantified by the percentage of cells where ASC-CFP specks formed and IL-1β secretion, the hallmarks of inflammasome activation. Testing this in NLRP3 and caspase-1 knockout iBMDMs showed that the NLRP3 inflammasome was primarily primed for activation due to shear stress exposure. Quantitative polymerase chain reaction (qPCR) and a small-molecule inhibitor study mechanistically determined that shear stress regulates the NLRP3 inflammasome by upregulating Piezo1, IKKβ, and NLRP3. These findings offer insights into the mechanistic relationship among physiological shear stresses, inflammasome activation, and their impact on the progression of inflammatory diseases and their interconnected pathogenesis.
Collapse
Affiliation(s)
- Adam Fish
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
20
|
Guo Z, Su Z, Wei Y, Zhang X, Hong X. Pyroptosis in glioma: Current management and future application. Immunol Rev 2024; 321:152-168. [PMID: 38063042 DOI: 10.1111/imr.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Glioma, the predominant form of central nervous system (CNS) malignancies, presents a significant challenge due to its high prevalence and low 5-year survival rate. The efficacy of current treatment methods is limited by the presence of the blood-brain barrier, the immunosuppressive microenvironment, and other factors. Immunotherapy has emerged as a promising approach, as it can overcome the blood-brain barrier. A tumor's immune privilege, which is induced by an immunosuppressive environment, constricts immunotherapy's clinical impact in glioma. Pyroptosis, a programmed cell death mechanism facilitated by gasdermins, plays a significant role in the management of glioma. Its ability to initiate and regulate tumor occurrence, progression, and metastasis is well-established. However, it is crucial to note that uncontrolled or excessive cell death can result in tissue damage, acute inflammation, and cytokine release syndrome, thereby potentially promoting tumor advancement or recurrence. This paper aims to elucidate the molecular pathways involved in pyroptosis and subsequently discuss its induction in cancer therapy. In addition, the current treatment methods of glioma and the use of pyroptosis in these treatments are introduced. It is hoped to provide more ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Zeshang Guo
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhenjin Su
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| | - Ying Wei
- Department of Radiology, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xingmei Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Hong
- Department of Neurosurgery, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Eeckhout E, Asaoka T, Van Gorp H, Demon D, Girard-Guyonvarc’h C, Andries V, Vereecke L, Gabay C, Lamkanfi M, van Loo G, Wullaert A. The autoinflammation-associated NLRC4 V341A mutation increases microbiota-independent IL-18 production but does not recapitulate human autoinflammatory symptoms in mice. Front Immunol 2023; 14:1272639. [PMID: 38090573 PMCID: PMC10713841 DOI: 10.3389/fimmu.2023.1272639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Background Autoinflammation with infantile enterocolitis (AIFEC) is an often fatal disease caused by gain-of-function mutations in the NLRC4 inflammasome. This inflammasomopathy is characterized by macrophage activation syndrome (MAS)-like episodes as well as neonatal-onset enterocolitis. Although elevated IL-18 levels were suggested to take part in driving AIFEC pathology, the triggers for IL-18 production and its ensuing pathogenic effects in these patients are incompletely understood. Methods Here, we developed and characterized a novel genetic mouse model expressing a murine version of the AIFEC-associated NLRC4V341A mutation from its endogenous Nlrc4 genomic locus. Results NLRC4V341A expression in mice recapitulated increased circulating IL-18 levels as observed in AIFEC patients. Housing NLRC4V341A-expressing mice in germfree (GF) conditions showed that these systemic IL-18 levels were independent of the microbiota, and unmasked an additional IL-18-inducing effect of NLRC4V341A expression in the intestines. Remarkably, elevated IL-18 levels did not provoke detectable intestinal pathologies in NLRC4V341A-expressing mice, even not upon genetically ablating IL-18 binding protein (IL-18BP), which is an endogenous IL-18 inhibitor that has been used therapeutically in AIFEC. In addition, NLRC4V341A expression did not alter susceptibility to the NLRC4-activating gastrointestinal pathogens Salmonella Typhimurium and Citrobacter rodentium. Conclusion As observed in AIFEC patients, mice expressing a murine NLRC4V341A mutant show elevated systemic IL-18 levels, suggesting that the molecular mechanisms by which this NLRC4V341A mutant induces excessive IL-18 production are conserved between humans and mice. However, while our GF and infection experiments argue against a role for commensal or pathogenic bacteria, identifying the triggers and mechanisms that synergize with IL-18 to drive NLRC4V341A-associated pathologies will require further research in this NLRC4V341A mouse model.
Collapse
Affiliation(s)
- Elien Eeckhout
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Tomoko Asaoka
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Hanne Van Gorp
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Dieter Demon
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Charlotte Girard-Guyonvarc’h
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, Department of Pathology and Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Vanessa Andries
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Lars Vereecke
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Cem Gabay
- Division of Rheumatology, Department of Medicine, University Hospital of Geneva, Department of Pathology and Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Laboratory of Proteinscience, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
22
|
Pain P, Spinelli F, Gherardi G. Mitochondrial Cation Signalling in the Control of Inflammatory Processes. Int J Mol Sci 2023; 24:16724. [PMID: 38069047 PMCID: PMC10706693 DOI: 10.3390/ijms242316724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are the bioenergetic organelles responsible for the maintenance of cellular homeostasis and have also been found to be associated with inflammation. They are necessary to induce and maintain innate and adaptive immune cell responses, acting as signalling platforms and mediators in effector responses. These organelles are also known to play a pivotal role in cation homeostasis as well, which regulates the inflammatory responses through the modulation of these cation channels. In particular, this review focuses on mitochondrial Ca2+ and K+ fluxes in the regulation of inflammatory response. Nevertheless, this review aims to understand the interplay of these inflammation inducers and pathophysiological conditions. In detail, we discuss some examples of chronic inflammation such as lung, bowel, and metabolic inflammatory diseases caused by a persistent activation of the innate immune response due to a dysregulation of mitochondrial cation homeostasis.
Collapse
Affiliation(s)
| | | | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (P.P.); (F.S.)
| |
Collapse
|
23
|
Napodano C, Carnazzo V, Basile V, Pocino K, Stefanile A, Gallucci S, Natali P, Basile U, Marino M. NLRP3 Inflammasome Involvement in Heart, Liver, and Lung Diseases-A Lesson from Cytokine Storm Syndrome. Int J Mol Sci 2023; 24:16556. [PMID: 38068879 PMCID: PMC10706560 DOI: 10.3390/ijms242316556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammation and inflammasomes have been proposed as important regulators of the host-microorganism interaction, playing a key role in morbidity and mortality due to the coronavirus disease 2019 (COVID-19) in subjects with chronic conditions and compromised immune system. The inflammasome consists of a multiprotein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1β and IL-18. The pyrin containing NOD (nucleotide-binding oligomerization domain) like receptor (NLRP) is a family of intracellular receptors, sensing patterns associated to pathogens or danger signals and NLRP3 inflammasome is the most deeply analyzed for its involvement in the innate and adaptive immune system as well as its contribution to several autoinflammatory and autoimmune diseases. It is highly expressed in leukocytes and up-regulated in sentinel cells upon inflammatory stimuli. NLRP3 expression has also been reported in B and T lymphocytes, in epithelial cells of oral and genital mucosa, in specific parenchymal cells as cardiomyocytes, and keratinocytes, and chondrocytes. It is well known that a dysregulated activation of the inflammasome is involved in the pathogenesis of different disorders that share the common red line of inflammation in their pathogenetic fingerprint. Here, we review the potential roles of the NLRP3 inflammasome in cardiovascular events, liver damage, pulmonary diseases, and in that wide range of systemic inflammatory syndromes named as a cytokine storm.
Collapse
Affiliation(s)
- Cecilia Napodano
- Department of Laboratory of Medicine and Pathology, S. Agostino Estense Hospital, 41126 Modena, Italy;
| | - Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Krizia Pocino
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Annunziata Stefanile
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (A.S.)
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA 01655, USA;
| | - Patrizia Natali
- Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, AUSL/AOU Modena, 41124 Modena, Italy;
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, AUSL Latina, 04100 Latina, Italy; (V.C.); (U.B.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
24
|
Liu Y, Zhang L, Wu F, Liu Y, Li Y, Chen Y. Identification and validation of a pyroptosis-related signature in identifying active tuberculosis via a deep learning algorithm. Front Cell Infect Microbiol 2023; 13:1273140. [PMID: 38029270 PMCID: PMC10646574 DOI: 10.3389/fcimb.2023.1273140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Active tuberculosis (ATB), instigated by Mycobacterium tuberculosis (M.tb), rises as a primary instigator of morbidity and mortality within the realm of infectious illnesses. A significant portion of M.tb infections maintain an asymptomatic nature, recognizably termed as latent tuberculosis infections (LTBI). The complexities inherent to its diagnosis significantly hamper the initiatives aimed at its control and eventual eradication. Methodology Utilizing the Gene Expression Omnibus (GEO), we procured two dedicated microarray datasets, labeled GSE39940 and GSE37250. The technique of weighted correlation network analysis was employed to discern the co-expression modules from the differentially expressed genes derived from the first dataset, GSE39940. Consequently, a pyroptosis-related module was garnered, facilitating the identification of a pyroptosis-related signature (PRS) diagnostic model through the application of a neural network algorithm. With the aid of Single Sample Gene Set Enrichment Analysis (ssGSEA), we further examined the immune cells engaged in the pyroptosis process in the context of active ATB. Lastly, dataset GSE37250 played a crucial role as a validating cohort, aimed at evaluating the diagnostic prowess of our model. Results In executing the Weighted Gene Co-expression Network Analysis (WGCNA), a total of nine discrete co-expression modules were lucidly elucidated. Module 1 demonstrated a potent correlation with pyroptosis. A predictive diagnostic paradigm comprising three pyroptosis-related signatures, specifically AIM2, CASP8, and NAIP, was devised accordingly. The established PRS model exhibited outstanding accuracy across both cohorts, with the area under the curve (AUC) being respectively articulated as 0.946 and 0.787. Conclusion The present research succeeded in identifying the pyroptosis-related signature within the pathogenetic framework of ATB. Furthermore, we developed a diagnostic model which exuded a remarkable potential for efficient and accurate diagnosis.
Collapse
Affiliation(s)
- Yuchen Liu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifan Zhang
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengying Wu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Liu
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanchun Li
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Chen
- Division of Infectious Diseases, Department of Internal Medicine, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Epidemiology Unit, Peking Union Medical College, International Clinical Epidemiology Network, Beijing, China
- Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
An Y, Zhai Z, Wang X, Ding Y, He L, Li L, Mo Q, Mu C, Xie R, Liu T, Zhong W, Wang B, Cao H. Targeting Desulfovibrio vulgaris flagellin-induced NAIP/NLRC4 inflammasome activation in macrophages attenuates ulcerative colitis. J Adv Res 2023; 52:219-232. [PMID: 37586642 PMCID: PMC10555950 DOI: 10.1016/j.jare.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION The perturbations of gut microbiota could interact with excessively activated immune responses and play key roles in the etiopathogenesis of ulcerative colitis (UC). Desulfovibrio, the most predominant sulfate reducing bacteria (SRB) resided in the human gut, was observed to overgrow in patients with UC. The interactions between specific gut microbiota and drugs and their impacts on UC treatment have not been demonstrated well. OBJECTIVES This study aimed to elucidate whether Desulfovibrio vulgaris (D. vulgaris, DSV) and its flagellin could activate nucleotide-binding oligomerization domain-like receptors (NLR) family of apoptosis inhibitory proteins (NAIP) / NLR family caspase activation and recruitment domain-containing protein 4 (NLRC4) inflammasome and promote colitis, and further evaluate the efficacy of eugeniin targeting the interaction interface of D. vulgaris flagellin (DVF) and NAIP to attenuate UC. METHODS The abundance of DSV and the occurrence of macrophage pyroptosis in human UC tissues were investigated. Colitis in mice was established by dextran sulfate sodium (DSS) and gavaged with DSV or its purified flagellin. NAIP/NLRC4 inflammasome activation and macrophage pyroptosis were evaluated in vivo and in vitro. The effects of eugeniin on blocking the interaction of DVF and NAIP/NLRC4 and relieving colitis were also assessed. RESULTS The abundance of DSV increased in the feces of patients with UC and was found to be associated with disease activity. DSV and its flagellin facilitated DSS-induced colitis in mice. Mechanistically, RNA sequencing showed that gene expression associated with inflammasome complex and pyroptosis was upregulated after DVF treatment in macrophages. DVF was further demonstrated to induce significant macrophage pyroptosis in vitro, depending on NAIP/NLRC4 inflammasome activation. Furthermore, eugeniin was screened as an inhibitor of the interface between DVF and NAIP and successfully alleviated the proinflammatory effect of DVF in colitis. CONCLUSION Targeting DVF-induced NAIP/NLRC4 inflammasome activation and macrophage pyroptosis ameliorates UC. This finding is of great significance for exploring the gut microbiota-host interactions in UC development and providing new insights for precise treatment.
Collapse
Affiliation(s)
- Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Zihan Zhai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Linlin He
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lingfeng Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Qi Mo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Chenlu Mu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Runxiang Xie
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
26
|
Zhou Y, Yu S, Zhang W. NOD-like Receptor Signaling Pathway in Gastrointestinal Inflammatory Diseases and Cancers. Int J Mol Sci 2023; 24:14511. [PMID: 37833958 PMCID: PMC10572711 DOI: 10.3390/ijms241914511] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular proteins with a central role in innate and adaptive immunity. As a member of pattern recognition receptors (PRRs), NLRs sense specific pathogen-associated molecular patterns, trigger numerous signaling pathways and lead to the secretion of various cytokines. In recent years, cumulative studies have revealed the significant impacts of NLRs in gastrointestinal (GI) inflammatory diseases and cancers. Deciphering the role and molecular mechanism of the NLR signaling pathways may provide new opportunities for the development of therapeutic strategies related to GI inflammatory diseases and GI cancers. This review presents the structures and signaling pathways of NLRs, summarizes the recent advances regarding NLR signaling in GI inflammatory diseases and GI cancers and describes comprehensive therapeutic strategies based on this signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
27
|
Minns MS, Liboro K, Lima TS, Abbondante S, Miller BA, Marshall ME, Tran Chau J, Roistacher A, Rietsch A, Dubyak GR, Pearlman E. NLRP3 selectively drives IL-1β secretion by Pseudomonas aeruginosa infected neutrophils and regulates corneal disease severity. Nat Commun 2023; 14:5832. [PMID: 37730693 PMCID: PMC10511713 DOI: 10.1038/s41467-023-41391-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
Macrophages infected with Gram-negative bacteria expressing Type III secretion system (T3SS) activate the NLRC4 inflammasome, resulting in Gasdermin D (GSDMD)-dependent, but GSDME independent IL-1β secretion and pyroptosis. Here we examine inflammasome signaling in neutrophils infected with Pseudomonas aeruginosa strain PAO1 that expresses the T3SS effectors ExoS and ExoT. IL-1β secretion by neutrophils requires the T3SS needle and translocon proteins and GSDMD. In macrophages, PAO1 and mutants lacking ExoS and ExoT (ΔexoST) require NLRC4 for IL-1β secretion. While IL-1β release from ΔexoST infected neutrophils is also NLRC4-dependent, infection with PAO1 is instead NLRP3-dependent and driven by the ADP ribosyl transferase activity of ExoS. Genetic and pharmacologic approaches using MCC950 reveal that NLRP3 is also essential for bacterial killing and disease severity in a murine model of P. aeruginosa corneal infection (keratitis). Overall, these findings reveal a function for ExoS ADPRT in regulating inflammasome subtype usage in neutrophils versus macrophages and an unexpected role for NLRP3 in P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Martin S Minns
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
- Odyssey Therapeutics, Boston, MA, USA
| | - Karl Liboro
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Tatiane S Lima
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Serena Abbondante
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Brandon A Miller
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Michaela E Marshall
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Jolynn Tran Chau
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Alicia Roistacher
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - George R Dubyak
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Eric Pearlman
- Departments of Ophthalmology and Physiology & Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
Wu N, Zheng C, Xu J, Ma S, Jia H, Yan M, An F, Zhou Y, Qi J, Bian H. Race between virus and inflammasomes: inhibition or escape, intervention and therapy. Front Cell Infect Microbiol 2023; 13:1173505. [PMID: 37465759 PMCID: PMC10351387 DOI: 10.3389/fcimb.2023.1173505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunzhi Zheng
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
29
|
Zhao J, Liu H, Hong Z, Luo W, Mu W, Hou X, Xu G, Fang Z, Ren L, Liu T, Wen J, Shi W, Wei Z, Yang Y, Zou W, Zhao J, Xiao X, Bai Z, Zhan X. Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC. Mol Med 2023; 29:84. [PMID: 37400760 DOI: 10.1186/s10020-023-00671-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/29/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Abnormal activation of NLRP3 inflammasome is related to a series of inflammatory diseases, including type 2 diabetes, gouty arthritis, non-alcoholic steatohepatitis (NASH), and neurodegenerative disorders. Therefore, targeting NLRP3 inflammasome is regarded as a potential therapeutic strategy for many inflammatory diseases. A growing number of studies have identified tanshinone I (Tan I) as a potential anti-inflammatory agent because of its good anti-inflammatory activity. However, its specific anti-inflammatory mechanism and direct target are unclear and need further study. METHODS IL-1β and caspase-1 were detected by immunoblotting and ELISA, and mtROS levels were measured by flow cytometry. Immunoprecipitation was used to explore the interaction between NLRP3, NEK7 and ASC. In a mouse model of LPS-induced septic shock, IL-1β levels in peritoneal lavage fluid and serum were measured by ELISA. Liver inflammation and fibrosis in the NASH model were analyzed by HE staining and immunohistochemistry. RESULTS Tan I inhibited the activation of NLRP3 inflammasome in macrophages, but had no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, Tan I inhibited NLRP3 inflammasome assembly and activation by targeting NLRP3-ASC interaction. Furthermore, Tan I exhibited protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including septic shock and NASH. CONCLUSIONS Tan I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC, and exhibits protective effects in mouse models of LPS-induced septic shock and NASH. These findings suggest that Tan I is a specific NLRP3 inhibitor and may be a promising candidate for treating NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, North SiChuan Medical College, Nanchong, 637000, China
| | - Hongbin Liu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Department of Pharmacy, Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, 075000, China
| | - Zhixian Hong
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Luo
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenqing Mu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaorong Hou
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Guang Xu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhie Fang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Lutong Ren
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tingting Liu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jincai Wen
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ziying Wei
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongping Yang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaohe Xiao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhaofang Bai
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaoyan Zhan
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
30
|
Sun Z, Zhang T, Ning C, Shen D, Pei W, Zhou R, Zhu S, Huang G. CONSTRUCTION OF SEPSIS DIAGNOSTIC MODELS AND IDENTIFICATION OF MACROPHAGE SUBPOPULATIONS BASED ON PYROPTOSIS-RELATED GENES. Shock 2023; 60:1-10. [PMID: 37179249 PMCID: PMC10417255 DOI: 10.1097/shk.0000000000002137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/02/2023] [Indexed: 05/15/2023]
Abstract
ABSTRACT Background: Numerous studies have shown that pyroptosis is associated with sepsis progression, which can lead to dysregulated host immune responses and organ dysfunction. Therefore, investigating the potential prognostic and diagnostic values of pyroptosis in patients with sepsis is essential. Methods: We conducted a study using bulk and single-cell RNA sequencing (scRNA-seq) from the Gene Expression Omnibus database to examine the role of pyroptosis in sepsis. Univariate logistic analysis, least absolute shrinkage, and selection operator regression analysis were used to identify pyroptosis-related genes (PRGs), construct a diagnostic risk score model, and evaluate the selected genes' diagnostic value. Consensus clustering analysis was used to identify the PRG-related sepsis subtypes with varying prognoses. Functional and immune infiltration analyses were used to explain the subtypes' distinct prognoses, and scRNA-seq data were used to differentiate immune-infiltrating cells and macrophage subsets and study cell-cell communication. Results: A risk model was established based on 10 key PRGs ( NAIP , ELANE , GSDMB , DHX9 , NLRP3 , CASP8 , GSDMD , CASP4 , APIP , and DPP9 ), of which four ( ELANE , DHX9 , GSDMD , and CASP4 ) were associated with prognosis. Two subtypes with different prognoses were identified based on the key PRG expressions. Functional enrichment analysis revealed diminished nucleotide oligomerization domain-like receptor pathway activity and enhanced neutrophil extracellular trap formation in the subtype with a poor prognosis. Immune infiltration analysis suggested a different immune status between the two sepsis subtypes, with the subtype with a poor prognosis exhibiting stronger immunosuppression. The single-cell analysis identified a macrophage subpopulation characterized by gasdermin D (GSDMD) expression that may be involved in pyroptosis regulation, which was associated with the prognosis of sepsis. Conclusion: We developed and validated a risk score for sepsis identification based on 10 PRGs, four of which also have potential value in the prognosis of sepsis. We identified a subset of gasdermin D macrophages associated with poor prognosis, providing new insights into the role of pyroptosis in sepsis.
Collapse
Affiliation(s)
- Zefang Sun
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Zhang
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Caihong Ning
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dingcheng Shen
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenwu Pei
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Zhu
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Gengwen Huang
- Department of Pancreatic Surgery, General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Li X, Li X, Wang H, Zhao X. Exploring hub pyroptosis-related genes, molecular subtypes, and potential drugs in ankylosing spondylitis by comprehensive bioinformatics analysis and molecular docking. BMC Musculoskelet Disord 2023; 24:532. [PMID: 37386410 DOI: 10.1186/s12891-023-06664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease, and the diagnosis and treatment of AS have been limited because its pathogenesis is still unclear. Pyroptosis is a proinflammatory type of cell death that plays an important role in the immune system. However, the relationship between pyroptosis genes and AS has never been elucidated. METHODS GSE73754, GSE25101, and GSE221786 datasets were collected from the Gene Expression Omnibus (GEO) database. Differentially expressed pyroptosis-related genes (DE-PRGs) were identified by R software. Machine learning and PPI networks were used to screen key genes to construct a diagnostic model of AS. AS patients were clustered into different pyroptosis subtypes according to DE-PRGs using consensus cluster analysis and validated using principal component analysis (PCA). WGCNA was used for screening hub gene modules between two subtypes. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used for enrichment analysis to elucidate underlying mechanisms. The ESTIMATE and CIBERSORT algorithms were used to reveal immune signatures. The connectivity map (CMAP) database was used to predict potential drugs for the treatment of AS. Molecular docking was used to calculate the binding affinity between potential drugs and the hub gene. RESULTS Sixteen DE-PRGs were detected in AS compared to healthy controls, and some of these genes showed a significant correlation with immune cells such as neutrophils, CD8 + T cells, and resting NK cells. Enrichment analysis showed that DE-PRGs were mainly related to pyroptosis, IL-1β, and TNF signaling pathways. The key genes (TNF, NLRC4, and GZMB) screened by machine learning and the protein-protein interaction (PPI) network were used to establish the diagnostic model of AS. ROC analysis showed that the diagnostic model had good diagnostic properties in GSE73754 (AUC: 0.881), GSE25101 (AUC: 0.797), and GSE221786 (AUC: 0.713). Using 16 DE-PRGs, AS patients were divided into C1 and C2 subtypes, and these two subtypes showed significant differences in immune infiltration. A key gene module was identified from the two subtypes using WGCNA, and enrichment analysis suggested that the module was mainly related to immune function. Three potential drugs, including ascorbic acid, RO 90-7501, and celastrol, were selected based on CMAP analysis. Cytoscape showed GZMB as the highest-scoring hub gene. Finally, molecular docking results showed that GZMB and ascorbic acid formed three hydrogen bonds, including ARG-41, LYS-40, and HIS-57 (affinity: -5.3 kcal/mol). GZMB and RO-90-7501 formed one hydrogen bond, including CYS-136 (affinity: -8.8 kcal/mol). GZMB and celastrol formed three hydrogen bonds, including TYR-94, HIS-57, and LYS-40 (affinity: -9.4 kcal/mol). CONCLUSIONS Our research systematically analyzed the relationship between pyroptosis and AS. Pyroptosis may play an essential role in the immune microenvironment of AS. Our findings will contribute to a further understanding of the pathogenesis of AS.
Collapse
Affiliation(s)
- Xin Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangying Li
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Hongqiang Wang
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| | - Xiang Zhao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, China.
| |
Collapse
|
32
|
Guerville F, Vialemaringe M, Cognet C, Duffau P, Lazaro E, Cazanave C, Bonnet F, Leleux O, Rossignol R, Pinson B, Tumiotto C, Gabriel F, Appay V, Déchanet-Merville J, Wittkop L, Faustin B, Pellegrin I. Mechanisms of systemic low-grade inflammation in HIV patients on long-term suppressive antiretroviral therapy: the inflammasome hypothesis. AIDS 2023; 37:1035-1046. [PMID: 36928274 DOI: 10.1097/qad.0000000000003546] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
OBJECTIVE We aimed to determine the contribution of inflammasome activation in chronic low-grade systemic inflammation observed in patients with HIV (PWH) on long-term suppressive antiretroviral therapy (ART) and to explore mechanisms of such activation. DESIGN Forty-two PWH on long-term suppressive ART (HIV-RNA < 40 copies/ml) were compared with 10 HIV-negative healthy controls (HC). METHODS Inflammasome activation was measured by dosing mature interleukin (IL)-1β and IL-18 cytokines in patient serum. We explored inflammasome pathways through ex vivo stimulation of PWH primary monocytes with inflammasome activators; expression of inflammasome components by transcriptomic analysis; and metabolomics analysis of patient sera. RESULTS Median (Q1; Q3) age, ART and viral suppression duration in PWH were 54 (48; 60), 15 (9; 20) and 7.5 (5; 12) years, respectively. Higher serum IL-18 was measured in PWH than in HC (61 (42; 77) vs. 36 (27-48 pg/ml), P = 0.009); IL-1β was detected in 10/42 PWH (0.5 (0.34; 0.80) pg/ml) but not in HC. Monocytes from PWH did not produce more inflammatory cytokines in vitro , but secretion of IL-1β in response to NOD like receptor family, pyrin domain containing 3 (NLRP3) inflammasome stimulation was higher than in HC. This was not explained at the transcriptional level. We found an oxidative stress molecular profile in PWH sera. CONCLUSION HIV infection with long-term effective ART is associated with a serum inflammatory signature, including markers of inflammasome activation, and an increased activation of monocytes upon inflammasome stimulation. Other cells should be investigated as sources of inflammatory cytokines in PWH. Oxidative stress might contribute to this chronic low-grade inflammation.
Collapse
Affiliation(s)
| | | | - Celine Cognet
- CHU Bordeaux, Laboratory of Immunology and Immunogenetics
| | - Pierre Duffau
- University Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, INSERM ERL 1303
- CHU Bordeaux, Service de Médecine Interne et Immunologie Clinique
| | - Estibaliz Lazaro
- University Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, INSERM ERL 1303
- CHU Bordeaux, Service de Médecine Interne
| | | | - Fabrice Bonnet
- University Bordeaux, INSERM, Institut Bergonié, BPH, U1219, CIC-EC 1401
- CHU Bordeaux, Hôpital Saint-André, Service de Médecine Interne et Maladies Infectieuses
| | - Olivier Leleux
- University Bordeaux, INSERM, Institut Bergonié, BPH, U1219, CIC-EC 1401
| | - Rodrigue Rossignol
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University; CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat
| | - Benoît Pinson
- Service Analyses Métaboliques TBMcore CNRS UAR 3427 INSERM US005 Université de Bordeaux, 1 rue Camille Saint-Saëns
| | | | | | - Victor Appay
- University Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, INSERM ERL 1303
| | | | - Linda Wittkop
- University Bordeaux, INSERM, Institut Bergonié, BPH, U1219, CIC-EC 1401
- INRIA SISTM team, Talence
- CHU de Bordeaux, Service d'information médicale, INSERM, Institut Bergonié, CIC-EC 1401, Bordeaux, France
| | - Benjamin Faustin
- University Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, INSERM ERL 1303
- Immunology Discovery, Janssen Research & Development, San Diego, California, USA
| | - Isabelle Pellegrin
- University Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, INSERM ERL 1303
- CHU Bordeaux, Laboratory of Immunology and Immunogenetics
| |
Collapse
|
33
|
De Biasi S, Neroni A, Nasi M, Lo Tartaro D, Borella R, Gibellini L, Lucaccioni L, Bertucci E, Lugli L, Miselli F, Bedetti L, Neri I, Ferrari F, Facchinetti F, Berardi A, Cossarizza A. Healthy preterm newborns: Altered innate immunity and impaired monocyte function. Eur J Immunol 2023; 53:e2250224. [PMID: 36929362 DOI: 10.1002/eji.202250224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Birth prior to 37 completed weeks of gestation is referred to as preterm (PT). Premature newborns are at increased risk of developing infections as neonatal immunity is a developing structure. Monocytes, which are key players after birth, activate inflammasomes. Investigations into the identification of innate immune profiles in premature compared to full-term infants are limited. Our research includes the investigation of monocytes and NK cells, gene expression, and plasma cytokine levels to investigate any potential differences among a cohort of 68 healthy PT and full-term infants. According to high-dimensional flow cytometry, PT infants have higher proportions of CD56+/- CD16+ NK cells and immature monocytes, and lower proportions of classical monocytes. Gene expression revealed lower proportions of inflammasome activation after in vitro monocyte stimulation and the quantification of plasma cytokine levels expressed higher concentrations of alarmin S100A8. Our findings suggest that PT newborns have altered innate immunity and monocyte functional impairment, and pro-inflammatory plasmatic profile. This may explain PT infants' increased susceptibility to infectious disease and should pave the way for novel therapeutic strategies and clinical interventions.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Lucaccioni
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Emma Bertucci
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Licia Lugli
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Miselli
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Bedetti
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Neri
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Ferrari
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Facchinetti
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Berardi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| |
Collapse
|
34
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023; 16:24. [PMID: 36932407 PMCID: PMC10022228 DOI: 10.1186/s13045-023-01407-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Ziqi Zhang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
35
|
Wang J, Sun Z, Xie J, Ji W, Cui Y, Ai Z, Liang G. Inflammasome and pyroptosis in autoimmune liver diseases. Front Immunol 2023; 14:1150879. [PMID: 36969233 PMCID: PMC10030845 DOI: 10.3389/fimmu.2023.1150879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and IgG4-related sclerosing cholangitis (IgG4-SC) are the four main forms of autoimmune liver diseases (AILDs), which are all defined by an aberrant immune system attack on the liver. Most previous studies have shown that apoptosis and necrosis are the two major modes of hepatocyte death in AILDs. Recent studies have reported that inflammasome-mediated pyroptosis is critical for the inflammatory response and severity of liver injury in AILDs. This review summarizes our present understanding of inflammasome activation and function, as well as the connections among inflammasomes, pyroptosis, and AILDs, thus highlighting the shared features across the four disease models and gaps in our knowledge. In addition, we summarize the correlation among NLRP3 inflammasome activation in the liver-gut axis, liver injury, and intestinal barrier disruption in PBC and PSC. We summarize the differences in microbial and metabolic characteristics between PSC and IgG4-SC, and highlight the uniqueness of IgG4-SC. We explore the different roles of NLRP3 in acute and chronic cholestatic liver injury, as well as the complex and controversial crosstalk between various types of cell death in AILDs. We also discuss the most up-to-date developments in inflammasome- and pyroptosis-targeted medicines for autoimmune liver disorders.
Collapse
Affiliation(s)
- Jixuan Wang
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiwen Sun
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingri Xie
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wanli Ji
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cui
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zongxiong Ai
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| | - Guoying Liang
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| |
Collapse
|
36
|
Paidimuddala B, Cao J, Nash G, Xie Q, Wu H, Zhang L. Mechanism of NAIP-NLRC4 inflammasome activation revealed by cryo-EM structure of unliganded NAIP5. Nat Struct Mol Biol 2023; 30:159-166. [PMID: 36604500 PMCID: PMC10576962 DOI: 10.1038/s41594-022-00889-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/03/2022] [Indexed: 01/07/2023]
Abstract
The nucleotide-binding domain (NBD), leucine rich repeat (LRR) domain containing protein family (NLR family) apoptosis inhibitory proteins (NAIPs) are cytosolic receptors that play critical roles in the host defense against bacterial infection. NAIPs interact with conserved bacterial ligands and activate the NLR family caspase recruitment domain containing protein 4 (NLRC4) to initiate the NAIP-NLRC4 inflammasome pathway. Here we found the process of NAIP activation is completely different from NLRC4. Our cryo-EM structure of unliganded mouse NAIP5 adopts an unprecedented wide-open conformation, with the nucleating surface fully exposed and accessible to recruit inactive NLRC4. Upon ligand binding, the winged helix domain (WHD) of NAIP5 undergoes roughly 20° rotation to form a steric clash with the inactive NLRC4, which triggers the conformational change of NLRC4 from inactive to active state. We also show the rotation of WHD places the 17-18 loop at a position that directly bind the active NLRC4 and stabilize the NAIP5-NLRC4 complex. Overall, these data provide structural mechanisms of inactive NAIP5, the process of NAIP5 activation and NAIP-dependent NLRC4 activation.
Collapse
Affiliation(s)
- Bhaskar Paidimuddala
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jianhao Cao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Grady Nash
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Qing Xie
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Liman Zhang
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
37
|
Li Y, Jiang Q. Uncoupled pyroptosis and IL-1β secretion downstream of inflammasome signaling. Front Immunol 2023; 14:1128358. [PMID: 37090724 PMCID: PMC10117957 DOI: 10.3389/fimmu.2023.1128358] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 04/25/2023] Open
Abstract
Inflammasomes are supramolecular platforms that organize in response to various damage-associated molecular patterns and pathogen-associated molecular patterns. Upon activation, inflammasome sensors (with or without the help of ASC) activate caspase-1 and other inflammatory caspases that cleave gasdermin D and pro-IL-1β/pro-IL-18, leading to pyroptosis and mature cytokine secretion. Pyroptosis enables intracellular pathogen niche disruption and intracellular content release at the cost of cell death, inducing pro-inflammatory responses in the neighboring cells. IL-1β is a potent pro-inflammatory regulator for neutrophil recruitment, macrophage activation, and T-cell expansion. Thus, pyroptosis and cytokine secretion are the two main mechanisms that occur downstream of inflammasome signaling; they maintain homeostasis, drive the innate immune response, and shape adaptive immunity. This review aims to discuss the possible mechanisms, timing, consequences, and significance of the two uncoupling preferences downstream of inflammasome signaling. While pyroptosis and cytokine secretion may be usually coupled, pyroptosis-predominant and cytokine-predominant uncoupling are also observed in a stimulus-, cell type-, or context-dependent manner, contributing to the pathogenesis and development of numerous pathological conditions such as cryopyrin-associated periodic syndromes, LPS-induced sepsis, and Salmonella enterica serovar Typhimurium infection. Hyperactive cells consistently release IL-1β without LDH leakage and pyroptotic death, thereby leading to prolonged inflammation, expanding the lifespans of pyroptosis-resistant neutrophils, and hyperactivating stimuli-challenged macrophages, dendritic cells, monocytes, and specific nonimmune cells. Death inflammasome activation also induces GSDMD-mediated pyroptosis with no IL-1β secretion, which may increase lethality in vivo. The sublytic GSDMD pore formation associated with lower expressions of pyroptotic components, GSDMD-mediated extracellular vesicles, or other GSDMD-independent pathways that involve unconventional secretion could contribute to the cytokine-predominant uncoupling; the regulation of caspase-1 dynamics, which may generate various active species with different activities in terms of GSDMD or pro-IL-1β, could lead to pyroptosis-predominant uncoupling. These uncoupling preferences enable precise reactions to different stimuli of different intensities under specific conditions at the single-cell level, promoting cooperative cell and host fate decisions and participating in the pathogen "game". Appropriate decisions in terms of coupling and uncoupling are required to heal tissues and eliminate threats, and further studies exploring the inflammasome tilt toward pyroptosis or cytokine secretion may be helpful.
Collapse
|
38
|
Chang MX. Emerging mechanisms and functions of inflammasome complexes in teleost fish. Front Immunol 2023; 14:1065181. [PMID: 36875130 PMCID: PMC9978379 DOI: 10.3389/fimmu.2023.1065181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Inflammasomes are multiprotein complexes, which are assembled in response to a diverse range of exogenous pathogens and endogenous danger signals, leading to produce pro-inflammatory cytokines and induce pyroptotic cell death. Inflammasome components have been identified in teleost fish. Previous reviews have highlighted the conservation of inflammasome components in evolution, inflammasome function in zebrafish infectious and non-infectious models, and the mechanism that induce pyroptosis in fish. The activation of inflammasome involves the canonical and noncanonical pathways, which can play critical roles in the control of various inflammatory and metabolic diseases. The canonical inflammasomes activate caspase-1, and their signaling is initiated by cytosolic pattern recognition receptors. However the noncanonical inflammasomes activate inflammatory caspase upon sensing of cytosolic lipopolysaccharide from Gram-negative bacteria. In this review, we summarize the mechanisms of activation of canonical and noncanonical inflammasomes in teleost fish, with a particular focus on inflammasome complexes in response to bacterial infection. Furthermore, the functions of inflammasome-associated effectors, specific regulatory mechanisms of teleost inflammasomes and functional roles of inflammasomes in innate immune responses are also reviewed. The knowledge of inflammasome activation and pathogen clearance in teleost fish will shed new light on new molecular targets for treatment of inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of InSciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
39
|
Modulation of Nod-like Receptor Expression in the Thymus during Early Pregnancy in Ewes. Vaccines (Basel) 2022; 10:vaccines10122128. [PMID: 36560538 PMCID: PMC9781860 DOI: 10.3390/vaccines10122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) are involved in modulating the innate immune responses of the trophoblast and the placenta in normal pregnancy. The thymus participates in regulation of innate and adaptive immune responses. However, it is unclear whether expression of NLR is modulated in the maternal thymus during early pregnancy. In this study, thymuses were sampled at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation (n = 6 for each group) from ewes after slaughter. Different stages were chosen because the maternal thymus was under the different effects of interferon-tau and/or progesterone or not. RT-qPCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the NLR family, including NOD1; NOD2; major histocompatibility complex class II transactivator (CIITA); NLR family apoptosis inhibitory protein (NAIP); nucleotide-binding oligomerization domain and Leucine-rich repeat and Pyrin domain containing protein 1 (NLRP1), NLRP3 and NLRP7. The results showed that expression level of NOD1 was changed with the pregnancy stages, and expression levels of NOD2, CIITA, NAIP, NLRP1, NLRP3 and NLRP7 mRNA and proteins were peaked at day 13 of pregnancy. The levels of NOD2 and CIITA were increased during early pregnancy. The stainings for NOD2 and NLRP7 proteins were located in epithelial reticular cells, capillaries and thymic corpuscles. In summary, pregnancy stages changed expression of NLR family in the maternal thymus, which may be related to the modulation of maternal thymic immune responses, and beneficial for normal pregnancy in sheep.
Collapse
|
40
|
Zhao Z, Li Y, Cao J, Fang H, Zhang L, Yang L. Early Pregnancy Modulates Expression of the Nod-like Receptor Family in Lymph Nodes of Ewes. Animals (Basel) 2022; 12:ani12233285. [PMID: 36496806 PMCID: PMC9738492 DOI: 10.3390/ani12233285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
NOD receptors (NLRs) mediate adaptive immune responses and immune tolerance. Nevertheless, it is not clear if gestation modulates the NLR signaling pathway in lymph nodes of ewes. In this study, lymph nodes of ewes were collected at day 16 of the estrous cycle, and at days 13, 16 and 25 of gestation (n = 6 for each group). RT-qPCR, Western blot and immunohistochemistry analysis were used to analyze the expression of the NLR family, including NOD1, NOD2, CIITA, NAIP, NLRP1, NLRP3 and NLRP7. The data showed that early gestation enhanced expression of NOD1, CIITA, NLRP1, NLRP3 and NLRP7 mRNA, as well as proteins at day 16 of gestation, and the expression levels of NOD2, CIITA, NLRP1 and NLRP7 were higher at days 13 and 25 of gestation than day 16 of the estrous cycle. However, NOD1 expression was lower on days 13 and 25 of gestation compared to day 16 of the estrous cycle, and early gestation suppressed NAIP expression. In summary, early pregnancy modulated expression of the NLR family in ovine lymph nodes, which participates in immune regulation, and this modulation may be necessary for pregnancy establishment in ewes.
Collapse
|
41
|
Feng Y, Li M, Yangzhong X, Zhang X, Zu A, Hou Y, Li L, Sun S. Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem 2022; 78:721-737. [PMID: 35819638 PMCID: PMC9684248 DOI: 10.1007/s13105-022-00909-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022]
Abstract
Pyroptosis is commonly induced by the gasdermin (GSDM) family and is accompanied by the release of inflammatory cytokines such as IL-1β and IL-18. Recently, increasing evidence suggests that pyroptosis plays a role in respiratory diseases. This review aimed to summarize the roles and mechanisms of pyroptosis in inflammation-related respiratory diseases. There are several pathways involved in pyroptosis, such as the canonical inflammasome-induced pathway, non-canonical inflammasome-induced pathway, caspase-1/3/6/7/GSDMB pathway, caspase-8/GSDMC pathway, caspase-8/GSDMD pathway, and caspase-3/GSEME pathway. Pyroptosis may be involved in asthma, chronic obstructive pulmonary disease (COPD), lung cancer, acute lung injury (ALI), silicosis, pulmonary hypertension (PH), and tuberculosis (TB), in which the NLRP3 inflammasome-induced pathway is mostly highlighted. Pyroptosis contributes to the deterioration of asthma, COPD, ALI, silicosis, and PH. In addition, pyroptosis has dual effects on lung cancer and TB. Additionally, whether pyroptosis participates in cystic fibrosis (CF) and sarcoidosis or not is largely unknown, though the activation of NLRP3 inflammasome is found in CF and sarcoidosis. In conclusion, pyroptosis may play a role in inflammation-related respiratory diseases, providing new therapeutic targets.
Collapse
Affiliation(s)
- Yuanyu Feng
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming, China
- Clinical Medicine, Innovation Class, 2019 Grade, Kunming Medical University, Kunming, China
| | - Min Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming, China
| | - Xiaoting Yangzhong
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming, China
- Pediatrics, One Class, 2020 Grade, Kunming Medical University, Kunming, China
| | - Xifeng Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming, China
| | - Anju Zu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming, China
| | - Yunjiao Hou
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming, China
| | - Lin Li
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, No.295, Xichang Road, Wuhua District, Kunming, China.
| |
Collapse
|
42
|
[NLRC4 plays a regulatory role in F. nucleatum-induced pyroptosis in macrophages]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1560-1565. [PMID: 36329592 PMCID: PMC9637494 DOI: 10.12122/j.issn.1673-4254.2022.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To explore the mechanism of F.nucleatum-induced pyroptosis in macrophages and the regulatory role of inflammasomes. METHODS Lactate dehydrogenase (LDH) cytotoxicity assay and Hoechst 33342/PI double fluorescence staining were used to analyze cytolysis in F.nucleatum-infected macrophage RAW264.7 cells.The expressions of pyroptosis-related proteins caspase-1, GSDMD and IL-1β were determined using Western blotting.Inflammasome activation in the cells was analyzed by detecting the mRNA expressions of NLRP3, NLRC4, AIM2, and NLRP1 with qRT-PCR.RNA interference technique was used to knock down the key molecules involved in pyroptosis regulation in the macrophages, and the pyroptosis and necrosis rates of the cells following F.nucleatum infection were examined. RESULTS The results of LDH cytotoxicity assay and double-fluorescence staining showed that F.nucleatum infection caused swelling and lytic cell death in RAW264.7 cells.F.nucleatum infection resulted in the activation of caspase-1 and GSDMD and upregulated IL-1β expression in a multiplicity of infection (MOI)-and time-dependent manner (P < 0.05).qRT-PCR revealed significantly increased expression of NLRC4 mRNA in the macrophages after F.nucleatum infection (P < 0.05).NLRC4 silencing by siRNA strongly inhibited the activation of caspase-1/GSDMD pathway and reduced cell death (P < 0.05) and IL-1β expression in F.nucleatum-infected cells. CONCLUSION NLRC4 inflammasome drives caspase-1/GSDMD-mediated pyroptosis and inflammatory signaling in F.nucleatum-infected macrophages, suggesting the potential of NLRC4 inflammasome as a therapeutic target for F.nucleatum infections.
Collapse
|
43
|
Al-Hakim A, Mistry A, Savic S. Improving Diagnosis and Clinical Management of Acquired Systemic Autoinflammatory Diseases. J Inflamm Res 2022; 15:5739-5755. [PMID: 36238769 PMCID: PMC9553278 DOI: 10.2147/jir.s343261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Systemic autoinflammatory diseases (SAID) are conditions caused by dysregulation or disturbance of the innate immune system, with neutrophils and macrophages the main effector cells. Although there are now more than 40 distinct, genetically defined SAIDs, the genetic/molecular diagnosis remains unknown for a significant proportion of patients with the disease onset in adulthood. This review focuses on new developments related to acquired/late onset SAID, including phenocopies of monogenic disorders, Schnitzler's syndrome, Adult onset Still's disease, VEXAS syndrome, and autoinflammatory complications associated with myelodysplastic syndrome.
Collapse
Affiliation(s)
- Adam Al-Hakim
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK
| | - Anoop Mistry
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James’s University Hospital, Leeds, UK,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK,Correspondence: Sinisa Savic, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Clinical Science Building, St James’s University Hospital, Leeds, LS9 7TF, UK, Tel +441132065567, Email
| |
Collapse
|
44
|
Alvarez-Simon D, Ait Yahia S, de Nadai P, Audousset C, Chamaillard M, Boneca IG, Tsicopoulos A. NOD-like receptors in asthma. Front Immunol 2022; 13:928886. [PMID: 36189256 PMCID: PMC9515552 DOI: 10.3389/fimmu.2022.928886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/23/2022] [Indexed: 12/28/2022] Open
Abstract
Asthma is an extremely prevalent chronic inflammatory disease of the airway where innate and adaptive immune systems participate collectively with epithelial and other structural cells to cause airway hyperresponsiveness, mucus overproduction, airway narrowing, and remodeling. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular innate immune sensors that detect microbe-associated molecular patterns and damage-associated molecular patterns, well-recognized for their central roles in the maintenance of tissue homeostasis and host defense against bacteria, viruses and fungi. In recent times, NLRs have been increasingly acknowledged as much more than innate sensors and have emerged also as relevant players in diseases classically defined by their adaptive immune responses such as asthma. In this review article, we discuss the current knowledge and recent developments about NLR expression, activation and function in relation to asthma and examine the potential interventions in NLR signaling as asthma immunomodulatory therapies.
Collapse
Affiliation(s)
- Daniel Alvarez-Simon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Saliha Ait Yahia
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Patricia de Nadai
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Camille Audousset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Mathias Chamaillard
- Laboratory of Cell Physiology, INSERM U1003, University of Lille, Lille, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, INSERM U1306, Unité Biologie et génétique de la paroi bactérienne, Paris, France
| | - Anne Tsicopoulos
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Lille, France
- *Correspondence: Anne Tsicopoulos,
| |
Collapse
|
45
|
Chen X, Zhang Z, Sun N, Li J, Ma Z, Rao Z, Sun X, Zeng Q, Wu Y, Li J, Zhang J, Chen Y. Vitamin D receptor enhances
NLRC4
inflammasome activation by promoting
NAIPs–NLRC4
association. EMBO Rep 2022; 23:e54611. [DOI: 10.15252/embr.202254611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xin Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Zaikui Zhang
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Naishuang Sun
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Jinzhou Li
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Zemeng Ma
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Zebing Rao
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Xiaomeng Sun
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Qiang Zeng
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Yuxuan Wu
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
| | - Jiahuang Li
- School of Biopharmacy China Pharmaceutical University Nanjing China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University Nanjing China
| | - Yunzi Chen
- Key Laboratory of Immune Microenvironment and Disease, Department of Immunology Nanjing Medical University Nanjing China
- Medical Centre for Digestive Diseases Second Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
46
|
Wang J, Ye Q, Zheng W, Yu X, Luo F, Fang R, Shangguan Y, Du Z, Lee PY, Jin T, Zhou Q. Low-ratio somatic NLRC4 mutation causes late-onset autoinflammatory disease. Ann Rheum Dis 2022; 81:1173-1178. [PMID: 35428651 DOI: 10.1136/annrheumdis-2021-221708] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/06/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES We aim to investigate the genetic basis of a case of late-onset autoinflammatory disease characterised by arthritis, recurrent fever and skin rashes. METHODS We performed whole-exome/genome sequencing and digital droplet PCR (ddPCR) to identify the pathogenic somatic mutation. We used single-cell RNA sequencing (scRNA-seq), intracellular cytokine staining, quantitative PCR, immunohistochemistry and western blotting to define inflammatory signatures and to explore the pathogenic mechanism. RESULTS We identified a somatic mutation in NLRC4 (p.His443Gln) with the highest mosaicism ratio in the patient's monocytes (5.69%). The somatic mutation resulted in constitutive NLRC4 activation, spontaneous apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) aggregation, caspase-1 hyperactivation and increased production of interleukin (IL)-1β and IL-18. Moreover, we demonstrated effective suppression of inflammatory cytokine production by targeting gasdermin D, an approach that could be considered as a novel treatment strategy for patients with NLRC4-associated autoinflammatory syndrome. CONCLUSIONS We reported a case of a late-onset autoinflammatory disease caused by a somatic NLRC4 mutation in a small subset of leucocytes. We systemically analysed this condition at a single-cell transcriptomic level and revealed specific enhancement of inflammatory response in myeloid cells.
Collapse
Affiliation(s)
- Jun Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Qiao Ye
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Wenjie Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Yu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Fang Luo
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ran Fang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Yaoyao Shangguan
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Taijie Jin
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
47
|
Chen M, Rong R, Xia X. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases. J Neuroinflammation 2022; 19:183. [PMID: 35836195 PMCID: PMC9281180 DOI: 10.1186/s12974-022-02547-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pyroptosis is a programmed cell death characterized by swift plasma membrane disruption and subsequent release of cellular contents and pro-inflammatory mediators (cytokines), including IL‐1β and IL‐18. It differs from other types of programmed cell death such as apoptosis, autophagy, necroptosis, ferroptosis, and NETosis in terms of its morphology and mechanism. As a recently discovered form of cell death, pyroptosis has been demonstrated to be involved in the progression of multiple diseases. Recent studies have also suggested that pyroptosis is linked to various ocular diseases. In this review, we systematically summarized and discussed recent scientific discoveries of the involvement of pyroptosis in common ocular diseases, including diabetic retinopathy, age-related macular degeneration, AIDS-related human cytomegalovirus retinitis, glaucoma, dry eye disease, keratitis, uveitis, and cataract. We also organized new and emerging evidence suggesting that pyroptosis signaling pathways may be potential therapeutic targets in ocular diseases, hoping to provide a summary of overall intervention strategies and relevant multi-dimensional evaluations for various ocular diseases, as well as offer valuable ideas for further research and development from the perspective of pyroptosis.
Collapse
Affiliation(s)
- Meini Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
48
|
Reprogramming of Cell Death Pathways by Bacterial Effectors as a Widespread Virulence Strategy. Infect Immun 2022; 90:e0061421. [PMID: 35467397 DOI: 10.1128/iai.00614-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The modulation of programmed cell death (PCD) processes during bacterial infections is an evolving arms race between pathogens and their hosts. The initiation of apoptosis, necroptosis, and pyroptosis pathways are essential to immunity against many intracellular and extracellular bacteria. These cellular self-destructive mechanisms are used by the infected host to restrict and eliminate bacterial pathogens. Without a tight regulatory control, host cell death can become a double-edged sword. Inflammatory PCDs contribute to an effective immune response against pathogens, but unregulated inflammation aggravates the damage caused by bacterial infections. Thus, fine-tuning of these pathways is required to resolve infection while preserving the host immune homeostasis. In turn, bacterial pathogens have evolved secreted virulence factors or effector proteins that manipulate PCD pathways to promote infection. In this review, we discuss the importance of controlled cell death in immunity to bacterial infection. We also detail the mechanisms employed by type 3 secreted bacterial effectors to bypass these pathways and their importance in bacterial pathogenesis.
Collapse
|
49
|
Anton-Pampols P, Diaz-Requena C, Martinez-Valenzuela L, Gomez-Preciado F, Fulladosa X, Vidal-Alabro A, Torras J, Lloberas N, Draibe J. The Role of Inflammasomes in Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23084208. [PMID: 35457026 PMCID: PMC9029880 DOI: 10.3390/ijms23084208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
The inflammasome is an immune multiprotein complex that activates pro-caspase 1 in response to inflammation-inducing stimuli and it leads to IL-1β and IL-18 proinflammatory cytokine production. NLRP1 and NLRP3 inflammasomes are the best characterized and they have been related to several autoimmune diseases. It is well known that the kidney expresses inflammasome genes, which can influence the development of some glomerulonephritis, such as lupus nephritis, ANCA glomerulonephritis, IgA nephropathy and anti-GBM nephropathy. Polymorphisms of these genes have also been described to play a role in autoimmune and kidney diseases. In this review, we describe the main characteristics, activation mechanisms, regulation and functions of the different inflammasomes. Moreover, we discuss the latest findings about the role of the inflammasome in several glomerulonephritis from three different points of view: in vitro, animal and human studies.
Collapse
Affiliation(s)
- Paula Anton-Pampols
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Clara Diaz-Requena
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Laura Martinez-Valenzuela
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Francisco Gomez-Preciado
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
| | - Xavier Fulladosa
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Vidal-Alabro
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence:
| | - Núria Lloberas
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Department of Physiological Sciences, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Juliana Draibe
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| |
Collapse
|
50
|
NLRP3, NLRC4 and NLRC5 Gene Polymorphisms Associate with Susceptibility of Pulmonary Aspergillosis in Non-Neutropenic Patients. J Clin Med 2022; 11:jcm11071870. [PMID: 35407478 PMCID: PMC8999807 DOI: 10.3390/jcm11071870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/23/2023] Open
Abstract
Background: Non-neutropenic pulmonary aspergillosis is one of the most common and serious fungal infections. Previous studies have shown that single nucleotide polymorphisms (SNPs) of pattern recognition receptors genes are associated with susceptibility to aspergillosis. NOD-like receptors (NLRs) play an important role in the immunological response against fungal infection. In this study, we investigated the relationship between polymorphisms of three NLRs and susceptibility to pulmonary aspergillosis disease in non-neutropenic patients. Methods: We included 73 patients with proven pulmonary aspergillosis and 103 healthy controls. A total of sixteen SNPs in the NLRP3, NLRC4, and NLRC5 genes were detected by PCR-direct sequencing. Then, we evaluated the association between these polymorphisms and susceptibility to aspergillosis. Results: Fifteen SNPs were consistent with Hardy–Weinberg equilibrium except for NLRP3 rs7525979. A total of eight SNPs (NLRP3 rs3806265, NLRC4 rs212704 and NLRC5 rs1684579, rs12598522, rs3995817, rs3995818, rs34531240, rs28438857) were observed an association with susceptibility of pulmonary aspergillosis. The CC homozygote of NLRP3 rs3806265, TT homozygote of NLRC5 rs1684579 and T allele of NLRC5 rs12598522 were associated with a higher risk of aspergillosis while TT homozygote of NLRC4 rs212704 was associated with a lower risk of aspergillosis. Especially in the invasive pulmonary aspergillosis subgroup, the TT homozygote of NLRC5 rs1684579 and rs3995817, the CC homozygote of NLRC5 rs34531240 and rs28438857, GG homozygote of NLRC5 rs3995818, the C allele and CC homozygote of NLRP3 rs3806265 were associated with higher susceptibility. Conclusions: This study showed an association between polymorphisms of NLRP3, NLRC4, and NLRC5 and susceptibility to pulmonary aspergillosis for the first time. Further investigations in larger populations are needed, and functional studies are also required to investigate the function of these NLRs in aspergillosis, as well as other fungal infection diseases.
Collapse
|