1
|
Abd Elkader HTAE, Al-Shami AS. Unveiling the impact of bisphenol A on date mussels: Insights into oxidative stress, hormonal imbalance, gonadal atresia, and immune resilience. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107143. [PMID: 40250025 DOI: 10.1016/j.marenvres.2025.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
Sedentary organisms, such as mussels, may be susceptible to environmental estrogenic compounds, including bisphenol A (BPA). This study aimed to evaluate the interplay between BPA exposure and the immune response, hormonal imbalance, tissue damage (specifically in the digestive glands, labial palps, and male gonads), gonadal atresia, and antioxidant mechanisms in the marine mussel, Lithophaga lithophaga. Over a period of 28 days, mussels were exposed to BPA concentrations of 0, 0.25, 1, 2, and 5 μg/L. The exposure resulted in notable morphological alterations in the hemocytes of L. lithophaga, characterized by irregularities in the outer cell membranes of granulocytes and hyalinocytes, with some cells exhibiting filopodia formation. Granulocytes displayed an increased number of granules and vacuoles, while the nuclei of hyalinocytes appeared shrunken. The condition index, along with levels of testosterone and 17β-estradiol, significantly decreased with increasing BPA concentration, except for the 1 and 2 μg/L treatments. BPA exposure led to a marked increase in malondialdehyde (MDA) levels and a reduction in reduced glutathione (GSH) across all tissues at every concentration tested. The activity of antioxidant enzymes varied among the gonads, digestive glands, and labial palps. Notably, there was a significant increase in superoxide dismutase (SOD) activity in the gonads of mussels exposed to 2 μg/L of BPA, as well as in the digestive glands and labial palps of those exposed to 1 μg/L, suggesting a potential alteration in redox homeostasis. Additionally, structural changes in the digestive tubules of BPA-exposed mussels were observed. The observed pathological symptoms were characteristic of an inflammatory response, including hemocyte diapedesis and infiltration, the formation of syncytia, and the sloughing of epithelial tissue, indicated by an increased ratio of mean luminal radius to mean epithelial thickness in a dose-dependent manner. In the BPA-exposed group, testicular follicles exhibited atrophy, deformation, and a reduction in both size and number per area, appearing nearly empty and lacking spermatids and spermatozoa, alongside hypertrophy and hyperplasia of auxiliary cells. Scanning electron microscopy further revealed structural abnormalities in the heads and flagella of spermatids from the BPA-exposed group. Thus, this study demonstrates the risk of long-term exposure to BPA in immune response, tissue, and biochemical responses of date mussel L. lithophaga. The gonad was the most affected tissues followed by the digestive gland and labial palps.
Collapse
Affiliation(s)
| | - Ahmed S Al-Shami
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Montúfar-Romero M, Valenzuela-Miranda D, Valenzuela-Muñoz V, Morales-Rivera MF, Gallardo-Escárate C. Microbiota Dysbiosis in Mytilus chilensis Is Induced by Hypoxia, Leading to Molecular and Functional Consequences. Microorganisms 2025; 13:825. [PMID: 40284661 PMCID: PMC12029581 DOI: 10.3390/microorganisms13040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Bivalve microbiota play a vital role in host health, supporting nutrient processing, immunity, and disease resistance. However, the increasing hypoxia in Chilean coastal waters, caused by climate change and eutrophication, threatens to disrupt this microbial balance, potentially promoting pathogens and impairing essential functions. Mytilus chilensis is vulnerable to hypoxia-reoxygenation cycles, yet the effects on its microbiota remain poorly understood. This study investigates the impact of hypoxia on the structure and functional potential of the microbial communities residing in the gills and digestive glands of M. chilensis. Employing full-length 16S rRNA gene sequencing, we explored hypoxia's effects on microbial diversity and functional capacity. Our results revealed significant alterations in the microbial composition, with a shift towards facultative anaerobes thriving in low oxygen environments. Notably, there was a decrease in dominant bacterial taxa such as Rhodobacterales, while opportunistic pathogens such as Vibrio and Aeromonas exhibited increased abundance. Functional analysis indicated a decline in critical microbial functions associated with nutrient metabolism and immune support, potentially jeopardizing the health and survival of the host. This study sheds light on the intricate interactions between host-associated microbiota and environmental stressors, underlining the importance of managing the microbiota in the face of climate change and aquaculture practices.
Collapse
Affiliation(s)
- Milton Montúfar-Romero
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Instituto Público de Investigación de Acuicultura y Pesca (IPIAP), Guayaquil 090314, Ecuador
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Centro de Biotecnología, Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción 4070409, Chile
| | - María F. Morales-Rivera
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, P.O. Box 160-C, Concepción 4030000, Chile; (M.M.-R.); (V.V.-M.); (M.F.M.-R.)
- Center for Oceanographic Research COPAS COASTAL, Universidad de Concepción, Concepción 4070409, Chile
| |
Collapse
|
3
|
Steeves L, Winterburn K, Coffin MRS, Babarro JMF, Guyondet T, Comeau LA, Filgueira R. The combined effects of temperature and exogenous bacterial sources on mortality in the Eastern oyster ( Crassostrea virginica) under anoxia. MARINE BIOLOGY 2025; 172:57. [PMID: 40110181 PMCID: PMC11913911 DOI: 10.1007/s00227-025-04617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
In aquatic environments, low dissolved oxygen concentrations can result in depressed bivalve defense systems while promoting anaerobic bacterial growth, ultimately leading to increased bivalve mortality rates. Although the relationship between low oxygen availability and bivalve mortality has been previously examined, the mechanisms of mortality remain not well understood, limiting our ability to predict mass mortality events. In this study, the effect of anoxia (< 0.1 mgO2L-1) on adult oyster (Crassostrea virginica) mortality rates was explored experimentally using a factorial design, which included the effect of temperature (20°C vs. 28°C) combined with the presence/absence of an exogenous bacterial source (anoxic sediment vs. sterile sediment). Additionally, the effect on oyster mortality rate of removing vs. not removing deceased oysters from the experimental chambers was assessed. Oyster mortality rates, estimated as the time taken for half of the population to die (LT50) in anoxic conditions were significantly affected by temperature, the presence of anoxic sediment, and experimental execution (removing vs. not removing deceased oysters). Temperature had the greatest effect on mortality overall, with high temperatures resulting in increased mortality rates, whereas the presence of anoxic sediment only increased mortality rates consistently at high temperatures. The results of this study suggest that bacterial sources play a role in the mortality rate of oysters under warm anoxic conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s00227-025-04617-4.
Collapse
Affiliation(s)
- Laura Steeves
- Flødevigen Research Station, Institute of Marine Research, Flødevigen, His Norway
- Biology Department, Dalhousie University, Halifax, NS Canada
| | | | - Michael R. S. Coffin
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | | | - Thomas Guyondet
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Luc A. Comeau
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Ramón Filgueira
- Marine Affairs Program, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
4
|
Mizutani Y, Orita R, Kimura K, Funabara D. Hypoxia-induced changes in the gill and hepatopancreatic bacterial communities of the ark shell Anadara kagoshimensis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:53. [PMID: 39976704 DOI: 10.1007/s10126-025-10430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/06/2025] [Indexed: 04/25/2025]
Abstract
Coastal hypoxia is an increasing environmental concern affecting marine ecosystems globally, particularly impacting benthic organisms such as bivalves. Although previous studies focused on the physiological responses of bivalves to hypoxic stress, the role of resident bacteria in the host response to hypoxia remains poorly understood. This study investigated changes in the resident bacterial communities in the gills and hepatopancreatic tissues of the ark shell (Anadara kagoshimensis) under hypoxic conditions. Specimens were assigned to three treatment groups: untreated control, hypoxia, and hypoxia with chloramphenicol supplementation (5.0 mg/L). After 3 days, specimens exposed to hypoxia exhibited black precipitation in the culture water, whereas antibiotic treatment reduced these effects. Amplicon sequencing revealed distinct bacterial communities between the tissues, with Arcobacteraceae and Alkalispirochaetaceae dominating in the gills and Metamycoplasmataceae being predominant in the hepatopancreas. The hepatopancreas displayed greater bacterial community changes than the gills under hypoxic conditions, including an increase in the abundance of Metamycoplasmataceae. The predicted metabolic functions suggested that these bacteria contribute to iron sulfide precipitation through sulfate reduction and iron respiration. The antibiotic-treated group displayed bacterial communities more similar to those of the control group, confirming the effectiveness of chloramphenicol in suppressing bacterial changes under hypoxia. This study provided new insights into tissue-specific bacterial responses to hypoxia in A. kagoshimensis and highlighted the potential role of Metamycoplasmataceae in the bivalve's response to hypoxic stress.
Collapse
Affiliation(s)
- Yukino Mizutani
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
- Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
| | - Ryo Orita
- Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| | - Kei Kimura
- Faculty of Agriculture, Saga University, 1 Honjo, Saga, 840-8502, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Daisuke Funabara
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
5
|
Gignoux-Wolfsohn S, Garcia Ruiz M, Portugal Barron D, Ruiz G, Lohan K. Bivalve microbiomes are shaped by host species, size, parasite infection, and environment. PeerJ 2024; 12:e18082. [PMID: 39399422 PMCID: PMC11468899 DOI: 10.7717/peerj.18082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/20/2024] [Indexed: 10/15/2024] Open
Abstract
Many factors affect an organism's microbiome including its environment, proximity to other organisms, and physiological condition. As filter feeders, bivalves have highly plastic microbiomes that are especially influenced by the surrounding seawater, yet they also maintain a unique core set of microbes. Using 16S ribosomal RNA sequencing, we characterized the bacterial microbiomes of four species of bivalves native to the Mid-Atlantic East Coast of North America: Crassostrea virginica, Macoma balthica, Ameritella mitchelli, and Ischadium recurvum and assessed the impact of their external environment, internal parasites, and size on their microbial communities. We found significant differences in bacterial amplicon sequence variants (ASVs) across species, with each species harboring a core ASV present across all individuals. We further found that some C. virginica co-cultured with I. recurvum had high abundances of the I. recurvum core ASV. We identified ASVs associated with infection by the parasites Perkinsus marinus and Zaops ostreum as well others associated with bivalve size. Several of these ASV are candidates for further investigation as potential probiotics, as they were found positively correlated with bivalve size and health. This research represents the first description of the microbiomes of A. mitchelli, I. recurvum, and M. balthica. We document that all four species have highly plastic microbiomes, while maintaining certain core bacteria, with important implications for growth, health, and adaptation to new environments.
Collapse
Affiliation(s)
- Sarah Gignoux-Wolfsohn
- Biological Sciences, University of Massachusetts at Lowell, Lowell, MA, United States
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Monserrat Garcia Ruiz
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Diana Portugal Barron
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
- Department of Neurology, Brain Research Institute, Mary S. Easton Center for Alzheimer’s Research and Care, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregory Ruiz
- Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| | - Katrina Lohan
- Coastal Disease Ecology Laboratory, Smithsonian Environmental Research Center, Edgewater, MD, United States
| |
Collapse
|
6
|
Rowley AF, Baker-Austin C, Boerlage AS, Caillon C, Davies CE, Duperret L, Martin SAM, Mitta G, Pernet F, Pratoomyot J, Shields JD, Shinn AP, Songsungthong W, Srijuntongsiri G, Sritunyalucksana K, Vidal-Dupiol J, Uren Webster TM, Taengchaiyaphum S, Wongwaradechkul R, Coates CJ. Diseases of marine fish and shellfish in an age of rapid climate change. iScience 2024; 27:110838. [PMID: 39318536 PMCID: PMC11420459 DOI: 10.1016/j.isci.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
A recurring trend in evidence scrutinized over the past few decades is that disease outbreaks will become more frequent, intense, and widespread on land and in water, due to climate change. Pathogens and the diseases they inflict represent a major constraint on seafood production and yield, and by extension, food security. The risk(s) for fish and shellfish from disease is a function of pathogen characteristics, biological species identity, and the ambient environmental conditions. A changing climate can adversely influence the host and environment, while augmenting pathogen characteristics simultaneously, thereby favoring disease outbreaks. Herein, we use a series of case studies covering some of the world's most cultured aquatic species (e.g., salmonids, penaeid shrimp, and oysters), and the pathogens (viral, fungal, bacterial, and parasitic) that afflict them, to illustrate the magnitude of disease-related problems linked to climate change.
Collapse
Affiliation(s)
- Andrew F Rowley
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | | | - Annette S Boerlage
- Centre for Epidemiology and Planetary Health (CEPH), SRUC School of Veterinary Medicine, Inverness, Scotland, UK
| | - Coline Caillon
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Charlotte E Davies
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Léo Duperret
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | - Guillaume Mitta
- Ifremer, ILM, IRD, UPF, UMR 241 SECOPOL, Tahiti, French Polynesia
| | - Fabrice Pernet
- Université of Brest, Ifremer, CNRS, IRD, LEMAR, Plouzané, France
| | - Jarunan Pratoomyot
- Institute of Marine Science, Burapha University, Chonburi 20131, Thailand
| | - Jeffrey D Shields
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Andrew P Shinn
- INVE Aquaculture (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi 11120, Thailand
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Warangkhana Songsungthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Gun Srijuntongsiri
- School of Information, Computer, and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | - Jeremie Vidal-Dupiol
- IHPE, Université of Montpellier, CNRS, Ifremer, University Perpignan Via Domitia, Montpellier, France
| | - Tamsyn M Uren Webster
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Suparat Taengchaiyaphum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok 10400, Thailand
| | | | - Christopher J Coates
- Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK
- Zoology and Ryan Institute, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
7
|
Donelan SC, Ogburn MB, Breitburg D. Legacy of past exposure to hypoxia and warming regulates an ecosystem service provided by oysters. GLOBAL CHANGE BIOLOGY 2023; 29:1328-1339. [PMID: 36541067 DOI: 10.1111/gcb.16571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 05/26/2023]
Abstract
Climate change is having substantial impacts on organism fitness and ability to deliver critical ecosystem services, but these effects are often examined only in response to current environments. Past exposure to stress can also affect individuals via carryover effects, and whether these effects scale from individuals to influence ecosystem function and services is unknown. We explored within-generation carryover effects of two coastal climate change stressors-hypoxia and warming-on oyster (Crassostrea virginica) growth and nitrogen bioassimilation, an important ecosystem service. Oysters were exposed to a factorial combination of two temperature and two diel-cycling dissolved oxygen treatments at 3-months-old and again 1 year later. Carryover effects of hypoxia and warming influenced oyster growth and nitrogen storage in complex and context-dependent ways. When operating, carryover effects of single stressors generally reduced oyster nitrogen bioassimilation and relative investment in tissue versus shell growth, particularly in warm environments, while early life exposure to multiple stressors generally allowed oysters to perform as well as control oysters. When extrapolated to the reef scale, carryover effects decreased nitrogen stored by modeled oyster reefs in most conditions, with reductions as large as 41%, a substantial decline in a critical ecosystem service. In some scenarios, however, carryover effects increased nitrogen storage by modeled oyster reefs, again highlighting the complexity of these effects. Hence, even brief exposure to climate change stressors early in life may have persistent effects on an ecosystem service 1 year later. Our results show for the first time that within-generation carryover effects on individual phenotypes can impact processes at the ecosystem scale and may therefore be an overlooked factor determining ecosystem service delivery in response to anthropogenic change.
Collapse
Affiliation(s)
- Sarah C Donelan
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Matthew B Ogburn
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Denise Breitburg
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| |
Collapse
|
8
|
Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol 2022; 13:938481. [PMID: 36060788 PMCID: PMC9428492 DOI: 10.3389/fmicb.2022.938481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing degradation, facilitating restoration, and maintaining soil health is fundamental for achieving ecosystem stability and resilience. A healthy soil ecosystem is supported by favorable components in the soil that promote biological productivity and provide ecosystem services. Bio-indicators of soil health are measurable properties that define the biotic components in soil and could potentially be used as a metric in determining soil functionality over a wide range of ecological conditions. However, it has been a challenge to determine effective bio-indicators of soil health due to its temporal and spatial resolutions at ecosystem levels. The objective of this review is to compile a set of effective bio-indicators for developing a better understanding of ecosystem restoration capabilities. It addresses a set of potential bio-indicators including microbial biomass, respiration, enzymatic activity, molecular gene markers, microbial metabolic substances, and microbial community analysis that have been responsive to a wide range of ecosystem functions in agricultural soils, mine deposited soil, heavy metal contaminated soil, desert soil, radioactive polluted soil, pesticide polluted soil, and wetland soils. The importance of ecosystem restoration in the United Nations Sustainable Development Goals was also discussed. This review identifies key management strategies that can help in ecosystem restoration and maintain ecosystem stability.
Collapse
Affiliation(s)
- Debarati Bhaduri
- ICAR-National Rice Research Institute, Cuttack, India
- *Correspondence: Debarati Bhaduri
| | - Debjani Sihi
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Arnab Bhowmik
| | - Bibhash C. Verma
- Central Rainfed Upland Rice Research Station (ICAR-NRRI), Hazaribagh, India
| | | | - Biswanath Dari
- Agriculture and Natural Resources, Cooperative Extension at North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
9
|
Variation in Survival and Gut Microbiome Composition of Hatchery-Grown Native Oysters at Various Locations within the Puget Sound. Microbiol Spectr 2022; 10:e0198221. [PMID: 35536036 PMCID: PMC9241838 DOI: 10.1128/spectrum.01982-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Olympia oyster (Ostrea lurida) of the Puget Sound suffered a dramatic population crash, but restoration efforts hope to revive this native species. One overlooked variable in the process of assessing ecosystem health is association of bacteria with marine organisms and the environments they occupy. Oyster microbiomes are known to differ significantly between species, tissue type, and the habitat in which they are found. The goals of this study were to determine the impact of field site and habitat on the oyster microbiome and to identify core oyster-associated bacteria in the Puget Sound. Olympia oysters from one parental family were deployed at four sites in the Puget Sound both inside and outside of eelgrass (Zostera marina) beds. Using 16S rRNA gene amplicon sequencing of the oyster gut, shell, and surrounding seawater and sediment, we demonstrate that gut-associated bacteria are distinct from the surrounding environment and vary by field site. Furthermore, regional differences in the gut microbiota are associated with the survival rates of oysters at each site after 2 months of field exposure. However, habitat type had no influence on microbiome diversity. Further work is needed to identify the specific bacterial dynamics that are associated with oyster physiology and survival rates. IMPORTANCE This is the first exploration of the microbial colonizers of the Olympia oyster, a native oyster species to the West Coast, which is a focus of restoration efforts. The patterns of differential microbial colonization by location reveal microscale characteristics of potential restoration sites which are not typically considered. These microbial dynamics can provide a more holistic perspective on the factors that may influence oyster performance.
Collapse
|
10
|
Yeh H, Skubel SA, Patel H, Cai Shi D, Bushek D, Chikindas ML. From Farm to Fingers: an Exploration of Probiotics for Oysters, from Production to Human Consumption. Probiotics Antimicrob Proteins 2021; 12:351-364. [PMID: 32056150 DOI: 10.1007/s12602-019-09629-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oysters hold a unique place within the field of aquaculture as one of the only organisms that is regularly shipped live to be consumed whole and raw. The microbiota of oysters is capable of adapting to a wide range of environmental conditions within their dynamic estuarine environments; however, human aquaculture practices can challenge the resilience of this microbial community. Several discrete stages in oyster cultivation and market processing can cause disruption to the oyster microbiota, thus increasing the possibility of proliferation by pathogens and spoilage bacteria. These same pressure points offer the opportunity for the application of probiotics to help decrease disease occurrence in stocks, improve product yields, minimize the risk of shellfish poisoning, and increase product shelf life. This review provides a summary of the current knowledge on oyster microbiota, the impact of aquaculture upon this community, and the current status of oyster probiotic development. In response to this biotechnological gap, the authors highlight opportunities of highest potential impact within the aquaculture pipeline and propose a strategy for oyster-specific probiotic candidate development.
Collapse
Affiliation(s)
- Heidi Yeh
- Haskin Shellfish Research Laboratory, Rutgers State University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA.
| | - Sarah A Skubel
- Department of Plant Biology, Rutgers State University, New Brunswick, NJ, 08904, USA
| | - Harna Patel
- Department of Plant Biology, Rutgers State University, New Brunswick, NJ, 08904, USA
| | - Denia Cai Shi
- Department of Plant Biology, Rutgers State University, New Brunswick, NJ, 08904, USA
| | - David Bushek
- Haskin Shellfish Research Laboratory, Rutgers State University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08904, USA.,Don State Technical University, Rostov-on-Don, 344002, Russia
| |
Collapse
|
11
|
Michán C, Blasco J, Alhama J. High-throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microb Biotechnol 2021; 14:870-885. [PMID: 33559398 PMCID: PMC8085945 DOI: 10.1111/1751-7915.13763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aquatic environments are the recipients of many sources of environmental stress that trigger both local and global changes. To evaluate the associated risks to organisms and ecosystems more sensitive and accurate strategies are required. The analysis of the microbiome is one of the most promising candidates for environmental diagnosis of aquatic systems. Culture-independent interconnected meta-omic approaches are being increasing used to fill the gaps that classical microbial approaches cannot resolve. Here, we provide a prospective view of the increasing application of these high-throughput molecular technologies to evaluate the structure and functional activity of microbial communities in response to changes and disturbances in the environment, mostly of anthropogenic origin. Some relevant topics are reviewed, such as: (i) the use of microorganisms for water quality assessment, highlighting the incidence of antimicrobial resistance as an increasingly serious threat to global public health; (ii) the crucial role of microorganisms and their complex relationships with the ongoing climate change, and other stress threats; (iii) the responses of the environmental microbiome to extreme pollution conditions, such as acid mine drainage or oil spills. Moreover, protists and viruses, due to their huge impacts on the structure of microbial communities, are emerging candidates for the assessment of aquatic environmental health.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| | - Julián Blasco
- Department of Ecology and Coastal ManagementICMAN‐CSICCampus Rio San PedroPuerto Real (Cádiz)E‐11510Spain
| | - José Alhama
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| |
Collapse
|
12
|
Balbi T, Auguste M, Ciacci C, Canesi L. Immunological Responses of Marine Bivalves to Contaminant Exposure: Contribution of the -Omics Approach. Front Immunol 2021; 12:618726. [PMID: 33679759 PMCID: PMC7930816 DOI: 10.3389/fimmu.2021.618726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
The increasing number of data studies on the biological impact of anthropogenic chemicals in the marine environment, together with the great development of invertebrate immunology, has identified marine bivalves as a key invertebrate group for studies on immunological responses to pollutant exposure. Available data on the effects of contaminants on bivalve immunity, evaluated with different functional and molecular endpoints, underline that individual functional parameters (cellular or humoral) and the expression of selected immune-related genes can distinctly react to different chemicals depending on the conditions of exposure. Therefore, the measurement of a suite of immune biomarkers in hemocytes and hemolymph is needed for the correct evaluation of the overall impact of contaminant exposure on the organism's immunocompetence. Recent advances in -omics technologies are revealing the complexity of the molecular players in the immune response of different bivalve species. Although different -omics represent extremely powerful tools in understanding the impact of pollutants on a key physiological function such as immune defense, the -omics approach has only been utilized in this area of investigation in the last few years. In this work, available information obtained from the application of -omics to evaluate the effects of pollutants on bivalve immunity is summarized. The data shows that the overall knowledge on this subject is still quite limited and that to understand the environmental relevance of any change in immune homeostasis induced by exposure to contaminants, a combination of both functional assays and cutting-edge technology (transcriptomics, proteomics, and metabolomics) is required. In addition, the utilization of metagenomics may explain how the complex interplay between the immune system of bivalves and its associated bacterial communities can be modulated by pollutants, and how this may in turn affect homeostatic processes of the host, host–pathogen interactions, and the increased susceptibility to disease. Integrating different approaches will contribute to knowledge on the mechanism responsible for immune dysfunction induced by pollutants in ecologically and economically relevant bivalve species and further explain their sensitivity to multiple stressors, thus resulting in health or disease.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DIBS), University of Urbino, Urbino, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| |
Collapse
|
13
|
Khan B, Ho KT, Burgess RM. Application of Biomarker Tools Using Bivalve Models Toward the Development of Adverse Outcome Pathways for Contaminants of Emerging Concern. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1472-1484. [PMID: 32452040 PMCID: PMC7657996 DOI: 10.1002/etc.4757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 05/24/2023]
Abstract
As contaminant exposures in aquatic ecosystems continue to increase, the need for streamlining research efforts in environmental toxicology using predictive frameworks also grows. One such framework is the adverse outcome pathway (AOP). An AOP framework organizes and utilizes toxicological information to connect measurable molecular endpoints to an adverse outcome of regulatory relevance via a series of events at different levels of biological organization. Molecular endpoints or biomarkers are essential to develop AOPs and are valuable early warning signs of the toxicity of pollutants, including contaminants of emerging concern. Ecological risk-assessment approaches using tools such as biomarkers and AOPs benefit from identification of molecular targets conserved across species. Bivalve models are useful in such approaches and integral to our understanding of ecological and human health risks associated with contaminant exposures. We discuss the value of using biomarker approaches in bivalve models to meet the demands of twenty-first-century toxicology. Environ Toxicol Chem 2020;39:1472-1484. © 2020 SETAC.
Collapse
Affiliation(s)
- Bushra Khan
- ORISE Research Participant at the US Environmental
Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27
Tarzwell Drive, Narragansett, RI 02882, USA
| | - Kay T. Ho
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| |
Collapse
|
14
|
Auguste M, Lasa A, Balbi T, Pallavicini A, Vezzulli L, Canesi L. Impact of nanoplastics on hemolymph immune parameters and microbiota composition in Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105017. [PMID: 32662444 DOI: 10.1016/j.marenvres.2020.105017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Ocean contamination by micro- and nanoplastics represents a potential threat to marine biota, from bacterial communities to higher organisms. In this work, the effect of in vivo exposure of Mytilus galloprovincialis to amino modified nanopolystyrene (PS-NH2) (10 μg/L, 96 h) on hemolymph immune parameters and microbiota composition were investigated. Nanoplastics significantly affected immune parameters (decreased phagocytosis, increased ROS and lysozyme activity, inhibition of NO production). These changes were associated with a shift in hemolymph microbiota composition, with increase in some genera (Arcobacter-like, Psychrobium, Vibrio), and decreases in others (Shewanella, Mycoplasma). The results indicate that exposure to nanoplastics can impact on the microbiome of marine bivalves, and suggest that downregulation of immune defences induced by PS-NH2 may favour potentially pathogenic bacteria. These data underline how exposure to nanoplastics may represent a potential threat to the complex interplay between innate immunity and host microbiota, thus affecting the homeostatic processes involved in maintenance of organism health.
Collapse
Affiliation(s)
- Manon Auguste
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy.
| | - Aide Lasa
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy; Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Teresa Balbi
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | | | - Luigi Vezzulli
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | - Laura Canesi
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| |
Collapse
|
15
|
Barnett AF, Gledhill JH, Griffitt RJ, Slattery M, Gochfeld DJ, Willett KL. Combined and independent effects of hypoxia and tributyltin on mRNA expression and physiology of the Eastern oyster (Crassostrea virginica). Sci Rep 2020; 10:10605. [PMID: 32606384 PMCID: PMC7327041 DOI: 10.1038/s41598-020-67650-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 01/11/2023] Open
Abstract
Oyster reefs are vital to estuarine health, but they experience multiple stressors and globally declining populations. This study examined effects of hypoxia and tributyltin (TBT) on adult Eastern oysters (Crassostrea virginica) exposed either in the laboratory or the field following a natural hypoxic event. In the laboratory, oysters were exposed to either hypoxia followed by a recovery period, or to hypoxia combined with TBT. mRNA expression of HIF1-α and Tβ-4 along with hemocyte counts, biomarkers of hypoxic stress and immune health, respectively, were measured. In field-deployed oysters, HIF1-α and Tβ-4 expression increased, while no effect on hemocytes was observed. In contrast, after 6 and 8 days of laboratory-based hypoxia exposure, both Tβ-4 expression and hemocyte counts declined. After 8 days of exposure to hypoxia + TBT, oysters substantially up-regulated HIF1-α and down-regulated Tβ-4, although hemocyte counts were unaffected. Results suggest that hypoxic exposure induces immunosuppression which could increase vulnerability to pathogens.
Collapse
Affiliation(s)
- Ann Fairly Barnett
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - James H Gledhill
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert J Griffitt
- School of Ocean Science and Engineering, University of Southern Mississippi, 703 East Beach Road, Ocean Springs, MS, 39564, USA
| | - Marc Slattery
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Deborah J Gochfeld
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.,National Center for Natural Products Research, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Kristine L Willett
- Division of Environmental Toxicology, Department of BioMolecular Sciences, University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
16
|
Guibert I, Lecellier G, Torda G, Pochon X, Berteaux-Lecellier V. Metabarcoding reveals distinct microbiotypes in the giant clam Tridacna maxima. MICROBIOME 2020; 8:57. [PMID: 32317019 PMCID: PMC7175534 DOI: 10.1186/s40168-020-00835-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Giant clams and scleractinian (reef-building) corals are keystone species of coral reef ecosystems. The basis of their ecological success is a complex and fine-tuned symbiotic relationship with microbes. While the effect of environmental change on the composition of the coral microbiome has been heavily studied, we know very little about the composition and sensitivity of the microbiome associated with clams. Here, we explore the influence of increasing temperature on the microbial community (bacteria and dinoflagellates from the family Symbiodiniaceae) harbored by giant clams, maintained either in isolation or exposed to other reef species. We created artificial benthic assemblages using two coral species (Pocillopora damicornis and Acropora cytherea) and one giant clam species (Tridacna maxima) and studied the microbial community in the latter using metagenomics. RESULTS Our results led to three major conclusions. First, the health status of giant clams depended on the composition of the benthic species assemblages. Second, we discovered distinct microbiotypes in the studied T. maxima population, one of which was disproportionately dominated by Vibrionaceae and directly linked to clam mortality. Third, neither the increase in water temperature nor the composition of the benthic assemblage had a significant effect on the composition of the Symbiodiniaceae and bacterial communities of T. maxima. CONCLUSIONS Altogether, our results suggest that at least three microbiotypes naturally exist in the studied clam populations, regardless of water temperature. These microbiotypes plausibly provide similar functions to the clam host via alternate molecular pathways as well as microbiotype-specific functions. This redundancy in functions among microbiotypes together with their specificities provides hope that giant clam populations can tolerate some levels of environmental variation such as increased temperature. Importantly, the composition of the benthic assemblage could make clams susceptible to infections by Vibrionaceae, especially when water temperature increases. Video abstract.
Collapse
Affiliation(s)
- Isis Guibert
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, SAR China
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Promenade Roger-Laroque, Sorbonne Université, Noumea Cedex, New Caledonia France
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, Papetoai, Moorea, French Polynesia
| | - Gael Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Promenade Roger-Laroque, Sorbonne Université, Noumea Cedex, New Caledonia France
- UVSQ, Université de Paris-Saclay, 45 Avenue des Etats-Unis, Versailles Cedex, France
| | - Gergely Torda
- ARC, Centre of Excellence for Coral Reef Studies, James Cook University, QLD, Townsville, 4811 Australia
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042 New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth, 0941 New Zealand
| | - Véronique Berteaux-Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Promenade Roger-Laroque, Sorbonne Université, Noumea Cedex, New Caledonia France
| |
Collapse
|
17
|
Gu H, Hu M, Wei S, Kong H, Huang X, Bao Y, Wang Y. Combined effects of toxic Microcystis aeruginosa and hypoxia on the digestive enzyme activities of the triangle sail mussel Hyriopsis cumingii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:241-246. [PMID: 31150951 DOI: 10.1016/j.aquatox.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Nowadays, eutrophication is a very popular environmental problem in numerous waters around the world. The main reason of eutrophication is the enrichment of the nutrient, which results in the excessive growth of phytoplankton and some of them are toxic and harmful. Fortunately, some studies have shown that some bivalves can filter the overgrown phytoplankton in water, which may alleviate water eutrophication. However, the physiological effects of toxic cyanobacteria on filter feeding animal have not been clarified very well. In this experiment, digestive enzyme activities in Hyriopsis cumingii exposed to different concentrations of the toxic Microcystis aeruginosa (0, 5 * 105 and 5 *106 cell ml-1) at two dissolved oxygen (DO) levels (6 and 2 mg l-1) for 14 days were investigated. Toxic M. aeruginosa significantly affected all digestive enzyme activities throughout the experiment. At high toxic M. aeruginosa concentration, the activities of cellulase, amylase and lipase in digestive gland and stomach were significantly increased (P<0.05). However, hypoxia reduced the activities of cellulase, amylase and lipase in digestive gland and stomach. Conflicting effects were observed between toxic M. aeruginosa and DO in most digestive enzyme activities during the exposure period. Therefore, it is not conducive for the digestion and absorption of M. aeruginosa in H. cumingii under hypoxic conditions. H. cumingii is tolerant to toxic M. aeruginosa and may remove toxic cyanobacteria from waters under normal DO conditions.
Collapse
Affiliation(s)
- Huaxin Gu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Shuaishuai Wei
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Kong
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xizhi Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| | - Youji Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
18
|
Auguste M, Lasa A, Pallavicini A, Gualdi S, Vezzulli L, Canesi L. Exposure to TiO 2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:129-137. [PMID: 30903888 DOI: 10.1016/j.scitotenv.2019.03.133] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
It is now recognized that host microbiome, the community of microorganisms that colonize the animal body (e.g. microbiota) and their genomes, play an important role in the health status of all organisms, from nutrient processing to protection from disease. In particular, the complex, bilateral interactions between the host innate immune system and the microbiota are crucial in maintaining whole body homeostasis. The development of nanotechnology is raising concern on the potential impact of nanoparticles-NPs on human and environmental health. Titanium dioxide-nTiO2, one of the most widely NP in use, has been shown to affect the gut microbiota of mammals and fish, as well as to potentially alter microbial communities. In the marine bivalve Mytilus galloprovincialis, nTiO2 has been previously shown to interact with hemolymph components, thus resulting in immunomodulation. However, no information is available on the possible impact of NPs on the microbiome of marine organisms. Bivalves host high microbial abundance and diversity, and alteration of their microbiota, in both tissues and hemolymph, in response to stressful conditions has been linked to a compromised health status and susceptibility to diseases. In this work, the effects of nTiO2 exposure (100 μg/L, 4 days) on Mytilus hemolymph microbiota were investigated by 16S rRNA gene-based profiling. Immune parameters were also evaluated. Although hemolymph microbiota of control and nTiO2-treated mussels revealed a similar core composition, nTiO2 exposure affected the abundance of different genera, with decreases in some (e.g. Shewanella, Kistimonas, Vibrio) and increases in others (e.g. Stenotrophomonas). The immunomodulatory effects of nTiO2 were confirmed by the increase in the bactericidal activity of whole hemolymph. These represent the first data on the effects of NPs on the microbiome of marine invertebrates, and suggest that the shift in hemolymph microbiome composition induced by nTiO2 may result from the interplay between the microbiota and the immune system.
Collapse
Affiliation(s)
- Manon Auguste
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy.
| | - Aide Lasa
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy; Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Stefano Gualdi
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Luigi Vezzulli
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | - Laura Canesi
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| |
Collapse
|
19
|
Fernández Robledo JA, Yadavalli R, Allam B, Pales Espinosa E, Gerdol M, Greco S, Stevick RJ, Gómez-Chiarri M, Zhang Y, Heil CA, Tracy AN, Bishop-Bailey D, Metzger MJ. From the raw bar to the bench: Bivalves as models for human health. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:260-282. [PMID: 30503358 PMCID: PMC6511260 DOI: 10.1016/j.dci.2018.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/24/2018] [Indexed: 05/05/2023]
Abstract
Bivalves, from raw oysters to steamed clams, are popular choices among seafood lovers and once limited to the coastal areas. The rapid growth of the aquaculture industry and improvement in the preservation and transport of seafood have enabled them to be readily available anywhere in the world. Over the years, oysters, mussels, scallops, and clams have been the focus of research for improving the production, managing resources, and investigating basic biological and ecological questions. During this decade, an impressive amount of information using high-throughput genomic, transcriptomic and proteomic technologies has been produced in various classes of the Mollusca group, and it is anticipated that basic and applied research will significantly benefit from this resource. One aspect that is also taking momentum is the use of bivalves as a model system for human health. In this review, we highlight some of the aspects of the biology of bivalves that have direct implications in human health including the shell formation, stem cells and cell differentiation, the ability to fight opportunistic and specific pathogens in the absence of adaptive immunity, as source of alternative drugs, mucosal immunity and, microbiome turnover, toxicology, and cancer research. There is still a long way to go; however, the next time you order a dozen oysters at your favorite raw bar, think about a tasty model organism that will not only please your palate but also help unlock multiple aspects of molluscan biology and improve human health.
Collapse
Affiliation(s)
| | | | - Bassem Allam
- Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY, 11794, USA
| | | | - Marco Gerdol
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Samuele Greco
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Rebecca J Stevick
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, 02882, USA
| | - Marta Gómez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, Kingston, RI, 02881, USA
| | - Ying Zhang
- University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI, 02881, USA
| | - Cynthia A Heil
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Adrienne N Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA; Colby College, Waterville, 4,000 Mayflower Hill Dr, ME, 04901, USA
| | | | | |
Collapse
|