1
|
Lambre ME, López C, Acha-Araico B, Clemente S. Effects of macroalgae and sea urchin grazing pressure on zoantharians growth under laboratory conditions. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106534. [PMID: 38744166 DOI: 10.1016/j.marenvres.2024.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
In the context of ocean warming, thermophilic organisms such as zoantharians are expanding and altering shallow benthic habitats. Here, a four-month laboratory experiment was performed to examine the influence of three types of macroalgae morphotypes common in the Canary Islands (turf algae, Lobophora spp., and crustose coralline algae) on the growth of two zoantharian species, Palythoa caribaeorum and Zoanthus pulchellus. Additionally, the grazing effects of echinoids Diadema africanum and Paracentrotus lividus were assessed as facilitators of substrate colonization by means of controlling macroalgae cover. Colony and algal coverages were measured at the beginning, middle and end of the experiment, and increments were calculated. Results indicated a general decrease in zoantharian colony sizes in contact with different algal types in the absence of sea urchins. However, P. caribaeorum colonies showed significant growth in the presence of D. africanum, highlighting the ecological importance of sea urchins in zoantharian population proliferation and subsequent community modification. This study represents the first investigation into zoantharian-macroalgae interactions under controlled conditions.
Collapse
Affiliation(s)
- María Elisa Lambre
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
| | - Cataixa López
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Belén Acha-Araico
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Sabrina Clemente
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
2
|
Yan W, Wang Z, Pei Y, Zhou B. Adaptive responses of eelgrass (Zostera marina L.) to ocean warming and acidification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108257. [PMID: 38064900 DOI: 10.1016/j.plaphy.2023.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
Ocean warming (OW) and ocean acidification (OA), driven by rapid global warming accelerating at unprecedented rates, are profoundly impacting the stability of seagrass ecosystems. Yet, our current understanding of the effects of OW and OA on seagrass remains constrained. Herein, we investigated the response of eelgrass (Zostera marina L.), a representative seagrass species, to OW and OA through comprehensive transcriptomic and metabolomic analyses. The results showed notable variations in plant performance under varying conditions: OW, OA, and OWA (a combination of both conditions). Specifically, under average oceanic temperature conditions for eelgrass growth over the past 20 years -from May to November-OA promoted the production of differentially expressed genes and metabolites associated with alanine, aspartate, and glutamate metabolism, as well as starch and sucrose metabolism. Under warming condition, eelgrass was resistant to OA by accelerating galactose metabolism, along with glycine, serine, and threonine metabolism, as well as the tricarboxylic acid (TCA) cycle. Under the combined OW and OA condition, eelgrass stimulated fructose and mannose metabolism, glycolysis, and carbon fixation, in addition to galactose metabolism and the TCA cycle to face the interplay. Our findings suggest that eelgrass exhibits adaptive capacity by inducing different metabolites and associated genes, primarily connected with carbon and nitrogen metabolism, in response to varying degrees of OW and OA. The data generated here support the exploration of mechanisms underlying seagrass responses to environmental fluctuations, which hold critical significance for the future conservation and management of these ecosystems.
Collapse
Affiliation(s)
- Wenjie Yan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, 266003, China.
| | - Zhaohua Wang
- First Institute of Oceanography, MNR, Qingdao, 266061, China
| | - Yanzhao Pei
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China
| | - Bin Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
3
|
Page HN, McCoy S, Spencer RGM, Burnham KA, Hewett C, Johnson M. Effects of ocean acidification on growth and photophysiology of two tropical reef macroalgae. PLoS One 2023; 18:e0286661. [PMID: 37976304 PMCID: PMC10655979 DOI: 10.1371/journal.pone.0286661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 05/21/2023] [Indexed: 11/19/2023] Open
Abstract
Macroalgae can modify coral reef community structure and ecosystem function through a variety of mechanisms, including mediation of biogeochemistry through photosynthesis and the associated production of dissolved organic carbon (DOC). Ocean acidification has the potential to fuel macroalgal growth and photosynthesis and alter DOC production, but responses across taxa and regions are widely varied and difficult to predict. Focusing on algal taxa from two different functional groups on Caribbean coral reefs, we exposed fleshy (Dictyota spp.) and calcifying (Halimeda tuna) macroalgae to ambient and low seawater pH for 25 days in an outdoor experimental system in the Florida Keys. We quantified algal growth, calcification, photophysiology, and DOC production across pH treatments. We observed no significant differences in the growth or photophysiology of either species between treatments, except for lower chlorophyll b concentrations in Dictyota spp. in response to low pH. We were unable to quantify changes in DOC production. The tolerance of Dictyota and Halimeda to near-future seawater carbonate chemistry and stability of photophysiology, suggests that acidification alone is unlikely to change biogeochemical processes associated with algal photosynthesis in these species. Additional research is needed to fully understand how taxa from these functional groups sourced from a wide range of environmental conditions regulate photosynthesis (via carbon uptake strategies) and how this impacts their DOC production. Understanding these species-specific responses to future acidification will allow us to more accurately model and predict the indirect impacts of macroalgae on coral health and reef ecosystem processes.
Collapse
Affiliation(s)
- Heather N. Page
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, United States of America
- Sea Education Association, Woods Hole, MA, United States of America
| | - Sophie McCoy
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | | | - Katherine A. Burnham
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, United States of America
| | - Clay Hewett
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, United States of America
- Jacksonville University, Jacksonville, Fl, United States of America
| | - Maggie Johnson
- Smithsonian Marine Station, Fort Pierce, FL, United States of America
| |
Collapse
|
4
|
Benítez S, Navarro JM, Mardones D, Villanueva PA, Ramirez-Kushel F, Torres R, Lagos NA. Direct and indirect impacts of ocean acidification and warming on algae-herbivore interactions in intertidal habitats. MARINE POLLUTION BULLETIN 2023; 195:115549. [PMID: 37729690 DOI: 10.1016/j.marpolbul.2023.115549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Anthropogenically induced global climate change has caused profound impacts in the world ocean. Climate change related stressors, like ocean acidification (OA) and warming (OW) can affect physiological performance of marine species. However, studies evaluating the impacts of these stressors on algae-herbivore interactions have been much more scarce. We approached this issue by assessing the combined impacts of OA and OW on the physiological energetics of the herbivorous snail Tegula atra, and whether this snail is affected indirectly by changes in biochemical composition of the kelp Lessonia spicata, in response to OA and OW. Our results show that OA and OW induce changes in kelp biochemical composition and palatability (organic matter, phenolic content), which in turn affect snails' feeding behaviour and energy balance. Nutritional quality of food plays a key role on grazers' physiological energetics and can define the stability of trophic interactions in rapidly changing environments such as intertidal communities.
Collapse
Affiliation(s)
- Samanta Benítez
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile.
| | - Jorge M Navarro
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Daniela Mardones
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Paola A Villanueva
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Acuicultura, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Felipe Ramirez-Kushel
- Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Nelson A Lagos
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| |
Collapse
|
5
|
Pansini A, Beca-Carretero P, Berlino M, Sarà G, Stengel DB, Stipcich P, Ceccherelli G. Field development of Posidonia oceanica seedlings changes under predicted acidification conditions. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105946. [PMID: 36917890 DOI: 10.1016/j.marenvres.2023.105946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Ocean acidification has been consistently evidenced to have profound and lasting impacts on marine species. Observations have shown seagrasses to be highly susceptible to future increased pCO2 conditions, but the responses of early life stages as seedlings are poorly understood. This study aimed at evaluating how projected Mediterranean Sea acidification affects the survival, morphological and biochemical development of Posidonia oceanica seedlings through a long-term field experiment along a natural low pH gradient. Future ocean conditions seem to constrain the morphological development of seedlings. However, high pCO2 exposures caused an initial increase in the degree of saturation of fatty acids in leaves and then improved the fatty acid adjustment increasing unsaturation levels in leaves (but not in seeds), suggesting a nutritional compound translocation. Results also suggested a P. oceanica structural components remodelling which may counteract the effects of ocean acidification but would not enhance seagrass seedling productivity.
Collapse
Affiliation(s)
- Arianna Pansini
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy.
| | - Pedro Beca-Carretero
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), 36208, Vigo, Spain; Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, H91 TK33, Ireland
| | - Manuel Berlino
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, 90123, Palermo, Italy
| | - Gianluca Sarà
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università di Palermo, 90123, Palermo, Italy
| | - Dagmar B Stengel
- Botany and Plant Science, School of Natural Sciences, University of Galway, Galway, H91 TK33, Ireland
| | - Patrizia Stipcich
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università degli Studi di Sassari, 07100, Sassari, Italy
| |
Collapse
|
6
|
Influence of ocean warming and acidification on habitat-forming coralline algae and their associated molluscan assemblages. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Rodríguez A, Moreno-Borges S, Brito A. Response of Cymodocea nodosa to ocean acidification and warming in the Canary Islands: Direct and indirect effects. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105603. [PMID: 35325757 DOI: 10.1016/j.marenvres.2022.105603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
As detected in warming and ocean acidification, global change can have profound impact on marine life. Its effects on seagrasses are becoming increasingly well-known, since several studies have focused on the responses of these species to global change conditions. However a few studies have assessed the combined effect of temperature and acidification on seagrasses. Overall in this study, the combined effects of increased ocean temperature and pH levels expected at the end of this century (+5 °C and pH 7.5) on Cymodocea nodosa from Canary Islands, were evaluated for one month through manipulative laboratory experiments. Growth, net production, respiration, gross primary production, chlorophyll-a concentration and its vulnerability to herbivory were quantified. Results showed a positive effect of decreased pH on growth and gross primary production, as well as greater vulnerability to consumption by the sea urchin Paracentrotus lividus. In contrast, increased temperature limited net and gross primary production. This study shows than in future scenarios, C. nodosa from the Canary Islands may be a losing species in the global change stakes.
Collapse
Affiliation(s)
- Adriana Rodríguez
- Departamento de Biología Animal, Edafología y Geología. Grupo de investigación BIOECOMAC. Facultad de Ciencias, Universidad de La Laguna, Spain; Grupo de investigación BIOCON, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Spain.
| | - Sergio Moreno-Borges
- Departamento de Biología Animal, Edafología y Geología. Grupo de investigación BIOECOMAC. Facultad de Ciencias, Universidad de La Laguna, Spain
| | - Alberto Brito
- Departamento de Biología Animal, Edafología y Geología. Grupo de investigación BIOECOMAC. Facultad de Ciencias, Universidad de La Laguna, Spain
| |
Collapse
|
8
|
Vinuganesh A, Kumar A, Prakash S, Alotaibi MO, Saleh AM, Mohammed AE, Beemster GTS, AbdElgawad H. Influence of seawater acidification on biochemical composition and oxidative status of green algae Ulva compressa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150445. [PMID: 34844304 DOI: 10.1016/j.scitotenv.2021.150445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
The sequestration of elevated atmospheric CO2 levels in seawater results in increasing acidification of oceans and it is unclear what the consequences of this will be on seaweed ecophysiology and ecological services they provide in the coastal ecosystem. In the present study, we examined the physiological and biochemical response of intertidal green seaweed Ulva compressa to elevated pCO2 induced acidification. The green seaweed was exposed to control (pH 8.1) and acidified (pH 7.7) conditions for 2 weeks following which net primary productivity, pigment content, oxidative status and antioxidant enzymes, primary and secondary metabolites, and mineral content were assessed. We observed an increase in primary productivity of the acidified samples, which was associated with increased levels of photosynthetic pigments. Consequently, primary metabolites levels were increased in the thalli grown under lowered pH conditions. There was also richness in various minerals and polyunsaturated fatty acids, indicating that the low pH elevated the nutritional quality of U. compressa. We found that low pH reduced malondialdehyde (MDA) content, suggesting reduced oxidative stress. Consistently we found reduced total antioxidant capacity and a general reduction in the majority of enzymatic and non-enzymatic antioxidants in the thalli grown under acidified conditions. Our results indicate that U. compressa will benefit from seawater acidification by improving productivity. Biochemical changes will affect its nutritional qualities, which may impact the food chain/food web under future acidified ocean conditions.
Collapse
Affiliation(s)
- A Vinuganesh
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India
| | - Amit Kumar
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu, India.
| | - S Prakash
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu, India; Sathyabama Marine Research Station, Sallimalai Street, Rameswaram, Tamil Nadu, India
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Ahmed M Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Gerrit T S Beemster
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium
| | - Hamada AbdElgawad
- University of Antwerp, Department of Biology, Integrated Molecular Plant Physiology Research Group, Antwerp, Belgium; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
9
|
Kroeker KJ, Sanford E. Ecological Leverage Points: Species Interactions Amplify the Physiological Effects of Global Environmental Change in the Ocean. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:75-103. [PMID: 34416127 DOI: 10.1146/annurev-marine-042021-051211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems.
Collapse
Affiliation(s)
- Kristy J Kroeker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA;
| | - Eric Sanford
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, California 94923, USA;
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA
| |
Collapse
|
10
|
Porter A, Smith KE, Lewis C. The sea urchin Paracentrotus lividus as a bioeroder of plastic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133621. [PMID: 31634994 DOI: 10.1016/j.scitotenv.2019.133621] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
It is increasingly recognised that plastic pollution of the marine environment is highly dynamic in nature. Larger plastic items are fragmented or eroded into smaller and smaller pieces as its moves through marine ecosystems and small particles can be fouled or flocculate into larger aggregates. Whilst physical processes play a major part in photo- and oxidative degradation of plastic debris, biological process may also contribute to the breakdown of larger plastic items into smaller particulates, yet this has not been studied well to date. Here, we demonstrate the potential for the sea urchin Paracentrotus lividus to act as bioeroders of macroplastics. We found that urchins readily graze on a plastic surface, with this grazing activity generating microplastics, when held in experimental systems together. On average each urchin produced 91.7 (±33.8 pieces) smaller plastic pieces (118-15,797 μm) from one macroplastic item over a ten day period. This plastic fragmentation by the urchins grazing activity was strongly influenced by the additional availability of natural food and by the presence of fouling of the macroplastic surface. Fragmentation of macroplastic by urchins dropped by 97% when urchins were exposed to virgin plastic in the presence of natural food (kelp). However, when macroplastic was biofouled urchins acted to fragment this plastic irrespective of the presence of additional food. The majority of fragments produced were negatively buoyant due to both the biofouling process and indeed the fouling by faecal matter, sinking to the bottom of the exposure systems. This smaller size range of plastic would then bioavailable to a much wider suite of species than the original macroplastic item; hence this bioerosion process has the potential to contribute to the transfer plastic fragments through benthic food webs.
Collapse
Affiliation(s)
- Adam Porter
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom.
| | - Kathryn E Smith
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Ceri Lewis
- College of Life and Environmental Sciences, Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
11
|
Asnaghi V, Collard M, Mangialajo L, Gattuso JP, Dubois P. Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario. MARINE ENVIRONMENTAL RESEARCH 2019; 144:56-61. [PMID: 30591257 DOI: 10.1016/j.marenvres.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly sensitive to a decrease in pH. The biomechanical properties of their skeletal structures are of great importance for their individual fitness, because the skeleton provides the means for locomotion, grazing and protection from predators. Sea urchin skeleton is composed of discrete calcite plates attached to each other at sutures by organic ligaments. The present study addressed the fate of the sea urchin Paracentrotus lividus (Lamarck, 1816) skeleton in acidified oceans, taking into account the combined effect of reduced pH and macroalgal diet, with potential cascading consequences at the ecosystem level. A breaking test on individual plates of juvenile specimens fed different macroalgal diets has been performed, teasing apart plate strength and stiffness from general robustness. Results showed no direct short-term effect of a decrease in seawater pH nor of the macroalgal diet on single plate mechanical properties. Nevertheless, results from apical plates, the ones presumably formed during the experimental period, provided an indication of a possible diet-mediated response, with sea urchins fed the more calcified macroalga sustaining higher forces before breakage than the one fed the non-calcified algae. This, on the long term, may produce bottom-up effects on sea urchins, leading to potential shifts in the ecosystem equilibrium under an ocean acidified scenario.
Collapse
Affiliation(s)
- Valentina Asnaghi
- Department of Earth, Environment and Life Science, DiSTAV, University of Genoa, Italy.
| | - Marie Collard
- Laboratoire de Biologie marine CP160/15, Université Libre de Bruxelles, Av F.D. Roosevelt, 50, B-1050, Bruxelles, Belgium
| | - Luisa Mangialajo
- Université de Nice-Sophia Antipolis, EA 4228 ECOMERS, Nice, France
| | - Jean-Pierre Gattuso
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F 06230, Villefranche-sur-mer, France; Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F75007, Paris, France
| | - Philippe Dubois
- Laboratoire de Biologie marine CP160/15, Université Libre de Bruxelles, Av F.D. Roosevelt, 50, B-1050, Bruxelles, Belgium
| |
Collapse
|