1
|
Vasudevan U, Gantayat RR, Chidambaram S, Prasanna MV, Venkatramanan S, Devaraj N, Nepolian M, Ganesh N. Microbial contamination and its associations with major ions in shallow groundwater along coastal Tamil Nadu. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1069-1088. [PMID: 32940833 DOI: 10.1007/s10653-020-00712-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Microbes in groundwater play a key role in determining the drinking water quality of the water. The study aims to interpret the sources of microbes in groundwater and its relationship to geochemistry. The study was carried out by collecting groundwater samples and analyzed to obtain various cations and anions, where HCO3-, Cl- and NO3- found to be higher than permissible limits in few samples. Microbial analysis, like total coliform (TC), total viable counts (TVC), fecal coliforms (FC), Vibrio cholera (V. cholerae) and total Streptococci (T. streptococci) were analyzed, and the observations reveal that most of the samples were found to be above the permissible limits adopted by EU, BIS, WHO and USEPA standards. Correlation analysis shows good correlation between Mg2+-HCO3-, K+-NO3-, TVC- V. cholerae and T. streptococci-FC. Major ions like Mg+, K+, NO3, Ca2+ and PO4 along with TS and FC were identified to control the geochemical and microbial activities in the region. The magnesium hardness in the groundwater is inferred to influence the TVC and V. cholerae. The mixing of effluents from different sources reflected the association of Cl with TC. Population of microbes T. streptococci and FC was mainly associated with Ca and Cl content in groundwater, depicting the role of electron acceptors and donors. The sources of the microbial population were observed with respect to the land use pattern and the spatial distribution of hydrogeochemical factors in the region. The study inferred that highest microbial activity in the observed in the residential areas, cultivated regions and around the landfill sites due to the leaching of sewage water and fertilizers runoff into groundwater. The concentrations of ions and microbes were found to be above the permissible limits of drinking water quality standards. This may lead to the deterioration in the health of particular coastal region.
Collapse
Affiliation(s)
- U Vasudevan
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
| | - Rakesh Roshan Gantayat
- Department of Applied Geology, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - S Chidambaram
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
- Water Research Centre, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - M V Prasanna
- Department of Applied Geology, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - S Venkatramanan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - N Devaraj
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
| | - M Nepolian
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
| | - N Ganesh
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, India
| |
Collapse
|
2
|
Global Comparison of the Bacterial Communities of Bilge Water, Boat Surfaces, and External Port Water. Appl Environ Microbiol 2019; 85:AEM.01804-19. [PMID: 31585994 DOI: 10.1128/aem.01804-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 01/07/2023] Open
Abstract
In the past, ballast water has been a key vector in the ship-mediated dispersal of invasive species. Here, we evaluate the potential for port microorganisms to enter and colonize the hull and bilge water of ships. Due to the small size and ubiquitous nature of bacteria, they also have the potential to be spread through hull fouling and bilge water discharge. The goal of this study was to identify the extent to which the boat microbial community is shaped by the microbial community in the port water where the boat spends most of its time. Here, we compared the microbial communities of the hull and bilge compartments of 20 boats to those of the port water in 20 different ports in five regions around the world. We found that there was a significant difference in microbial diversity between boat and port microbial communities. Despite these differences, we found that Cyanobacteria were present at high abundances in the bilge water of most vessels. Due to the limited light in the bilge, the presence of Cyanobacteria suggests that port microorganisms can enter the bilge. Using source-tracking software, we found that, on average, 40% of the bilge and 52% of the hull microbial communities were derived from water. These findings suggest that the bilge of a vessel contains a diverse microbial community that is influenced by the port microbial community and has the potential to serve as an underappreciated vector for dispersal of life.IMPORTANCE Invasive species have been a worldwide problem for many years. However, the potential for microorganisms to become invasive is relatively underexplored. As the tools to study bacterial communities become more affordable, we are able to perform large-scale studies and examine bacterial communities in higher resolution than was previously practical. This study looked at the potential for bacteria to colonize both boat surfaces and bilge water. We describe the bacterial communities on boats in 20 shipping ports in five regions around the world, describing how these microorganisms were similar to microorganisms found in port water. This suggests that the water influences the bacterial community of a boat and that microorganisms living on a boat could be moved from place to place when the boat travels.
Collapse
|
3
|
Perera A, Pudasaini S, Ahmed SSU, Phan D, Liu Y, Yang C. Rapid pre‐concentration of
Escherichia coli
in a microfluidic paper‐based device using ion concentration polarization. Electrophoresis 2019; 41:867-874. [DOI: 10.1002/elps.201900303] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 11/08/2022]
Affiliation(s)
- A.T.K. Perera
- Interdisciplinary Graduate ProgrammeNanyang Technological University Singapore
| | - Sanam Pudasaini
- School of Mechanical and Aerospace EngineeringNanyang Technological University Singapore
| | | | - Dinh‐Tuan Phan
- School of Mechanical and Aerospace EngineeringNanyang Technological University Singapore
| | - Yu Liu
- School of Civil and Environmental EngineeringNanyang Technological University Singapore
| | - Chun Yang
- School of Mechanical and Aerospace EngineeringNanyang Technological University Singapore
| |
Collapse
|
4
|
Darling JA, Frederick RM. Nucleic acids-based tools for ballast water surveillance, monitoring, and research. JOURNAL OF SEA RESEARCH 2018; 133:43-52. [PMID: 30147432 PMCID: PMC6104837 DOI: 10.1016/j.seares.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Understanding the risks of biological invasion posed by ballast water-whether in the context of compliance testing, routine monitoring, or basic research-is fundamentally an exercise in biodiversity assessment, and as such should take advantage of the best tools available for tackling that problem. The past several decades have seen growing application of genetic methods for the study of biodiversity, driven in large part by dramatic technological advances in nucleic acids analysis. Monitoring approaches based on such methods have the potential to increase dramatically sampling throughput for biodiversity assessments, and to improve on the sensitivity, specificity, and taxonomic accuracy of traditional approaches. The application of targeted detection tools (largely focused on PCR but increasingly incorporating novel probe-based methodologies) has led to a paradigm shift in rare species monitoring, and such tools have already been applied for early detection in the context of ballast water surveillance. Rapid improvements in community profiling approaches based on high throughput sequencing (HTS) could similarly impact broader efforts to catalogue biodiversity present in ballast tanks, and could provide novel opportunities to better understand the risks of biotic exchange posed by ballast water transport-and the effectiveness of attempts to mitigate those risks. These various approaches still face considerable challenges to effective implementation, depending on particular management or research needs. Compliance testing, for instance, remains dependent on accurate quantification of viable target organisms; while tools based on RNA detection show promise in this context, the demands of such testing require considerable additional investment in methods development. In general surveillance and research contexts, both targeted and community-based approaches are still limited by various factors: quantification remains a challenge (especially for taxa in larger size classes), gaps in nucleic acids reference databases are still considerable, uncertainties in taxonomic assignment methods persist, and many applications have not yet matured sufficiently to offer standardized methods capable of meeting rigorous quality assurance standards. Nevertheless, the potential value of these tools, their growing utilization in biodiversity monitoring, and the rapid methodological advances over the past decade all suggest that they should be seriously considered for inclusion in the ballast water surveillance toolkit.
Collapse
Affiliation(s)
- John A. Darling
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Raymond M. Frederick
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Edison, NJ, USA
| |
Collapse
|
5
|
Lymperopoulou DS, Dobbs FC. Bacterial Diversity in Ships' Ballast Water, Ballast-Water Exchange, and Implications for Ship-Mediated Dispersal of Microorganisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1962-1972. [PMID: 28135081 DOI: 10.1021/acs.est.6b03108] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Using next-generation DNA sequencing of the 16S rRNA gene, we analyzed the composition and diversity of bacterial assemblages in ballast water from tanks of 17 commercial ships arriving to Hampton Roads, Virginia (USA) following voyages in the North Atlantic Ocean. Amplicon sequencing analysis showed the heterogeneous assemblages were (1) dominated by Alpha- and Gammaproteobacteria, Bacteroidetes, and unclassified Bacteria; (2) temporally distinct (June vs August/September); and (3) highly fidelitous among replicate samples. Whether tanks were exchanged at sea or not, their bacterial assemblages differed from those of local, coastal water. Compositional data suggested at-sea exchange did not fully flush coastal Bacteria from all tanks; there were several instances of a genetic geographic signal. Quantitative PCR yielded no Escherichia coli and few instances of Vibrio species. Salinity, but not ballast-water age or temperature, contributed significantly to bacterial diversity. Whether anthropogenic mixing of marine Bacteria restructures their biogeography remains to be tested.
Collapse
Affiliation(s)
- Despoina S Lymperopoulou
- Department of Plant and Microbial Biology, University of California-Berkeley , 331 Koshland Hall, Berkeley, California 94720, United States
| | - Fred C Dobbs
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University , 4600 Elkhorn Avenue, Norfolk, Virginia 23529, United States
| |
Collapse
|
6
|
Ng C, Le TH, Goh SG, Liang L, Kim Y, Rose JB, Yew-Hoong KG. A Comparison of Microbial Water Quality and Diversity for Ballast and Tropical Harbor Waters. PLoS One 2015; 10:e0143123. [PMID: 26575481 PMCID: PMC4648578 DOI: 10.1371/journal.pone.0143123] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/31/2015] [Indexed: 11/19/2022] Open
Abstract
Indicator organisms and antibiotic resistance were used as a proxy to measure microbial water quality of ballast tanks of ships, and surface waters in a tropical harbor. The survival of marine bacteria in ballast tanks appeared to diminish over longer water retention time, with a reduction of cell viability observed after a week based on heterotrophic plate counts. Pyrosequencing of 16S rRNA genes showed distinct differences in microbial composition of ballast and harbor waters. The harbor waters had a higher abundance of operational taxonomic units (OTUs) assigned to Cyanobacteria (Synechococcus spp.) and α-proteobacteria (SAR11 members), while marine hydrocarbon degraders such as γ-proteobacteria (Ocenspirillaes spp., Thiotrchales spp.) and Bacteroidetes (Flavobacteriales spp.) dominated the ballast water samples. Screening of indicator organisms found Escherichia coli (E. coli), Enterococcus and Pseudomonas aeruginosa (P. aeruginosa) in two or more of the ballast and harbor water samples tested. Vibrio spp. and Salmonella spp. were detected exclusively in harbor water samples. Using quantitative PCR (qPCR), we screened for 13 antibiotic resistant gene (ARG) targets and found higher abundances of sul1 (4.13-3.44 x 102 copies/mL), dfrA (0.77-1.80 x10 copies/mL) and cfr (2.00-5.21 copies/mL) genes compared to the other ARG targets selected for this survey. These genes encode for resistance to sulfonamides, trimethoprim and chloramphenicol-florfenicol antibiotics, which are also known to persist in sediments of aquaculture farms and coastal environments. Among the ARGs screened, we found significant correlations (P<0.05) between ereA, ermG, cfr and tetO genes to one or more of the indicator organisms detected in this study, which may suggest that these members contribute to the environmental resistome. This study provides a baseline water quality survey, quantitatively assessing indicators of antibiotic resistance, potentially pathogenic organisms and a broad-brush description of difference in microbial composition and diversity between open oceans and tropical coastal environments through the use of next generation sequencing technology.
Collapse
Affiliation(s)
- Charmaine Ng
- National University of Singapore, Department of Civil and Environmental Engineering, Singapore, Singapore
| | - Thai-Hoang Le
- National University of Singapore, Department of Civil and Environmental Engineering, Singapore, Singapore
| | - Shin Giek Goh
- National University of Singapore, Department of Civil and Environmental Engineering, Singapore, Singapore
| | - Liang Liang
- National University of Singapore, Department of Civil and Environmental Engineering, Singapore, Singapore
| | - Yiseul Kim
- Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, Michigan, United States of America
| | - Joan B. Rose
- Michigan State University, Department of Microbiology and Molecular Genetics, East Lansing, Michigan, United States of America
| | - Karina Gin Yew-Hoong
- National University of Singapore, Department of Civil and Environmental Engineering, Singapore, Singapore
- National University of Singapore Environmental Research Institute (NERI), Singapore, Singapore
- * E-mail:
| |
Collapse
|
7
|
Cohen AN, Dobbs FC. Failure of the public health testing program for ballast water treatment systems. MARINE POLLUTION BULLETIN 2015; 91:29-34. [PMID: 25596892 DOI: 10.1016/j.marpolbul.2014.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 12/14/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Since 2004, an international testing program has certified 53 shipboard treatment systems as meeting ballast water discharge standards, including limits on certain microbes to prevent the spread of human pathogens. We determined how frequently certification tests failed a minimum requirement for a meaningful evaluation, that the concentration of microbes in the untreated (control) discharge must exceed the regulatory limit for treated discharges. In 95% of cases where the result was accepted as evidence that the treatment system reduced microbes to below the regulatory limit, the discharge met the limit even without treatment. This shows that the certification program for ballast water treatment systems is dysfunctional in protecting human health. In nearly all cases, the treatment systems would have equally well "passed" these tests even if they had never been turned on. Protocols must require minimum concentrations of targeted microbes in test waters, reflecting the upper range of concentrations in waters where ships operate.
Collapse
Affiliation(s)
- Andrew N Cohen
- Center for Research on Aquatic Bioinvasions, 5994 McBryde Avenue, Richmond, CA 94805, USA.
| | - Fred C Dobbs
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
8
|
Seiden JM, Rivkin RB. Biological controls on bacterial populations in ballast water during ocean transit. MARINE POLLUTION BULLETIN 2014; 78:7-14. [PMID: 24246652 DOI: 10.1016/j.marpolbul.2013.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 08/29/2013] [Accepted: 09/01/2013] [Indexed: 06/02/2023]
Abstract
Bacteria (and viruses) numerically dominate ballast water communities, but what controls their population dynamics during transit is largely unexplored. Here, bacterial abundance, net and intrinsic growth rates, and grazing mortality were determined during a trans-Atlantic voyage. The effects of grazing pressure by microzooplankton on heterotrophic bacteria during transit were determined for source port, mid-ocean exchange (MOE), and six-day-old source port ballast water. When the grazer component was removed, bacterial abundances significantly increased. Additionally, we determined that the grazer-mediated mortality for ballast water originating from ports was greater than MOE water and that mortality decreased over time for the source port ballast water. This study shows that bacterial populations in transit are controlled by microzooplankton grazing. If these findings are representative of ballast water environments, they suggest that if the grazing component is selectively removed by various treatment methods, bacterial populations may increase; this could have environmental and human health consequences.
Collapse
Affiliation(s)
- Jennica M Seiden
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| | - Richard B Rivkin
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
9
|
Khandeparker L, Anil AC. Association of bacteria with marine invertebrates: implications for ballast water management. ECOHEALTH 2013; 10:268-276. [PMID: 23846742 DOI: 10.1007/s10393-013-0857-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
Bacteria associated with plankton are of importance in marine bioinvasions and the implementation of ship's ballast water treatment technologies. In this study, epibiotic and endobiotic bacteria associated with zooplankton, including barnacle nauplii, veliger larvae, and adults of the copepod Oithona sp., were characterized and quantified. Barnacle nauplius and veliger larva harbored ~4.4 × 10(5)cells ind(-1) whereas Oithona sp. had 8.8 × 10(5)cells ind(-1). Computation of bacterial contribution based on biovolume indicated that despite being the smallest zooplankton tested, veliger larvae harbored the highest number of bacteria, while barnacle nauplii, the largest of the zooplankton, tested in terms of volume contributed the least. Pulverization of zooplankton led to an increase in bacterial numbers; for example, Vibrio cholerae, which was initially 3.5 × 10(3), increased to 5.4 × 10(5)CFU g(-1); Escherichia coli increased from 5.0 × 10(2) to 1.3 × 10(4)CFU g(-1); and Streptococcus faecalis increased from 2.1 × 10(2) to 2.5 × 10(5)CFU g(-1), respectively. Pulverized zooplankton was aged in the dark to assess the contribution of bacteria from decaying debris. Aging of pulverized zooplankton led to emergence of Chromobacterium violaceum, which is an opportunistic pathogen in animals and humans.
Collapse
|
10
|
Lau SCK, Zhang R, Brodie EL, Piceno YM, Andersen G, Liu WT. Biogeography of bacterioplankton in the tropical seawaters of Singapore. FEMS Microbiol Ecol 2013; 84:259-69. [PMID: 23237658 DOI: 10.1111/1574-6941.12057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 01/05/2023] Open
Abstract
Knowledge about the biogeography of marine bacterioplankton on the global scale in general and in Southeast Asia in particular has been scarce. This study investigated the biogeography of bacterioplankton community in Singapore seawaters. Twelve stations around Singapore island were sampled on different schedules over 1 year. Using PCR-DNA fingerprinting, DNA cloning and sequencing, and microarray hybridization of the 16S rRNA genes, we observed clear spatial variations of bacterioplankton diversity within the small area of the Singapore seas. Water samples collected from the Singapore Strait (south) throughout the year were dominated by DNA sequences affiliated with Cyanobacteria and Alphaproteobacteria that were believed to be associated with the influx of water from the open seas in Southeast Asia. On the contrary, water in the relatively polluted Johor Strait (north) were dominated by Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes and that were presumably associated with river discharge and the relatively eutrophic conditions of the waterway. Bacterioplankton diversity was temporally stable, except for the episodic surge of Pseudoalteromonas, associated with algal blooms. Overall, these results provide valuable insights into the diversity of bacterioplankton communities in Singapore seas and the possible influences of hydrological conditions and anthropogenic activities on the dynamics of the communities.
Collapse
Affiliation(s)
- Stanley C K Lau
- Division of Environmental Science and Engineering, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
11
|
Altug G, Gurun S, Cardak M, Ciftci PS, Kalkan S. The occurrence of pathogenic bacteria in some ships' ballast water incoming from various marine regions to the Sea of Marmara, Turkey. MARINE ENVIRONMENTAL RESEARCH 2012; 81:35-42. [PMID: 22998778 DOI: 10.1016/j.marenvres.2012.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/15/2012] [Accepted: 08/18/2012] [Indexed: 06/01/2023]
Abstract
The composition and frequency of antibiotic resistance of pathogenic bacteria, the abundance of heterotrophic aerobic bacteria (HPC) and possible in-situ use of chromogenic agar were investigated in the ships' ballast water coming from different regions of the world to the Sea of Marmara, Turkey for the first time. The samples that were taken from 21 unit ships coming from various marine environments of the Southern China Sea, the Atlantic Ocean, the Mediterranean and the Black Sea to the Sea of Marmara, Turkey in 2009 and 2010 were tested. 38 bacteria species, 27 of them pathogenic bacteria belonging to 17 familia, were detected. Vibrio cholera was not detected in the samples. However, the presence of a high number of HPC, including a cocktail of pathogenic bacteria showed that the ships carry a potential risk for the Sea of Marmara.
Collapse
Affiliation(s)
- Gulsen Altug
- Istanbul University, Department of Marine Biology, Istanbul, Turkey.
| | | | | | | | | |
Collapse
|
12
|
Vignesh S, Muthukumar K, James RA. Antibiotic resistant pathogens versus human impacts: a study from three eco-regions of the Chennai coast, southern India. MARINE POLLUTION BULLETIN 2012; 64:790-800. [PMID: 22321173 DOI: 10.1016/j.marpolbul.2012.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/19/2011] [Accepted: 01/11/2012] [Indexed: 05/31/2023]
Abstract
We assessed the occurrence of pollution indicators and antibiotic resistant bacterial isolates from water and sediment samples of three different eco-regions of the Chennai coast between March - May of 2010. Total of 960 bacterial strains belonging to four genera were isolated which show the highest frequencies of resistance to vancomycin (53.6%) and penicillin (52.6%) (except Enterococcus sp., which is highly resistant to erythromycin) and lowest frequencies of resistance to chloramphenicol (3.43%), ciprofloxacin (3.95%), gentamicin (4.68%), and tetracycline (6.97%). The E. coli, Vibrio sp., Salmonella sp. and Enterococcus sp. show high frequency of resistance to 2-5 antibacterials of 60.4%, 45.83%, 69.16% and 46.6%, respectively. High pollution indices (PI - 6.66-14.06) and antibiotic resistance indices (ARI - 0.29-0.343) indicate that the coastal environment is highly exposed to antibiotic sources that suggesting to avoid direct contact.
Collapse
Affiliation(s)
- Sivanandham Vignesh
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | | | | |
Collapse
|
13
|
Manti A, Boi P, Amalfitano S, Puddu A, Papa S. Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification. J Microbiol Methods 2011; 87:309-15. [PMID: 21963488 DOI: 10.1016/j.mimet.2011.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
Flow cytometry and Fluorescence In Situ Hybridization are common methods of identifying and quantifying bacterial cells. The combination of cytometric rapidity and multi-parametric accuracy with the phylogenetic specificity of oligonucleotide FISH probes has been regarded as a powerful and emerging tool in aquatic microbiology. In the present work, tests were carried out on E. coli pure culture and marine bacteria using an in-solution hybridization protocol revealing high efficiency hybridization signal for the first one and a lower for the second one. Other experiments were conducted on natural samples following the established CARD-FISH protocol on filter performed in a closed system, with the aim of improving cell detachment and detection. The hybridized cells were then subsequently re-suspended from the membrane filters by means of an optimized detachment procedure. The cytometric enumeration of hybridized marine bacteria reached 85.7%±18.1% of total events. The quality of the cytograms suggests that the procedures described may be applicable to the cytometric quantification of phylogenetic groups within natural microbial communities.
Collapse
Affiliation(s)
- Anita Manti
- Department of Earth, Life and Environmental Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| | | | | | | | | |
Collapse
|
14
|
Theron J, Eugene Cloete T, de Kwaadsteniet M. Current molecular and emerging nanobiotechnology approaches for the detection of microbial pathogens. Crit Rev Microbiol 2010; 36:318-39. [DOI: 10.3109/1040841x.2010.489892] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Wright DA, Gensemer RW, Mitchelmore CL, Stubblefield WA, van Genderen E, Dawson R, Orano-Dawson CE, Bearr JS, Mueller RA, Cooper WJ. Shipboard trials of an ozone-based ballast water treatment system. MARINE POLLUTION BULLETIN 2010; 60:1571-1583. [PMID: 20483433 DOI: 10.1016/j.marpolbul.2010.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 04/19/2010] [Accepted: 04/23/2010] [Indexed: 05/29/2023]
Abstract
Legislation introduced by the United Nations International Maritime Organization (IMO) has focused primarily on standards defining successful treatments designed to remove invasive species entrained in ballast water. An earlier shipboard study found that ozone introduced into salt water ballast resulted in the formation of bromine compounds, measured as total residual oxidants (TRO) that were toxic to both bacteria and plankton. However, the diffuser system employed to deliver ozone to the ballast water tanks resulted in patchiness in TRO distribution and toxicity to entrained organisms. In this follow-up study, the shipboard diffuser system was replaced by a single Venturi-type injection system designed to deliver a more homogeneous biocide distribution. Within-tank variability in TRO levels and associated toxicity to zooplankton, phytoplankton and marine bacteria was measured via a matrix of tubes deployed to sample different locations in treated and untreated (control) tanks. Three trials were conducted aboard the oil tanker S/T Prince William Sound in the Strait of Juan de Fuca off Port Angeles, Washington State, USA, between June and December 2007. Mortalities of plankton and bacteria and oxidant concentrations were recorded for treated and untreated ballast water up to 3days following treatment, and residual toxicity beyond this period was measured by bioassay of standard test organisms. Results indicated uniform compliance with current IMO standards, but only partial compliance with other existing and pending ballast water legislation.
Collapse
Affiliation(s)
- David A Wright
- University of Maryland, Center for Environmental Science (UMCES), Chesapeake Biological Laboratory, Solomons, MD 20688, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Aguirre-Macedo ML, Vidal-Martinez VM, Herrera-Silveira JA, Valdés-Lozano DS, Herrera-Rodríguez M, Olvera-Novoa MA. Ballast water as a vector of coral pathogens in the Gulf of Mexico: the case of the Cayo Arcas coral reef. MARINE POLLUTION BULLETIN 2008; 56:1570-7. [PMID: 18639903 DOI: 10.1016/j.marpolbul.2008.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 05/27/2008] [Accepted: 05/29/2008] [Indexed: 05/12/2023]
Abstract
The discharge of nutrients, phytoplankton and pathogenic bacteria through ballast water may threaten the Cayo Arcas reef system. To assess this threat, the quality of ballast water and presence of coral reef pathogenic bacteria in 30 oil tankers loaded at the PEMEX Cayo Arcas crude oil terminal were determined. The water transported in the ships originated from coastal, oceanic or riverine regions. Statistical associations among quality parameters and bacteria were tested using redundancy analysis (RDA). In contrast with coastal or oceanic water, the riverine water had high concentrations of coliforms, including Vibrio cholerae 01 and, Serratia marcescens and Sphingomona spp., which are frequently associated with "white pox" and "white plague type II" coral diseases. There were also high nutrient concentrations and low water quality index values (WQI and TRIX). The presence of V. cholerae 01 highlights the need for testing ballast water coming from endemic regions into Mexican ports.
Collapse
Affiliation(s)
- M Leopoldina Aguirre-Macedo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN Unidad Mérida (CINVESTAV-IPN), Carretera Antigua a Progreso Km. 6, C.P. 97310 Mérida, Yucatán, Mexico.
| | | | | | | | | | | |
Collapse
|
17
|
Jessen A, Randall A, Reinhart D, Daly L. Effectiveness and kinetics of ferrate as a disinfectant for ballast water. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2008; 80:561-569. [PMID: 18686931 DOI: 10.2175/193864708x267423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study examined whether ferrate could meet the international standards for successful ballast water treatment, including final concentrations of less than 1 CFU/mL of Enterococci, less than 2.5 CFU/mL of Escherichia coli, and less than 1 CFU/100 mL of Vibrio cholerae. Pure cultures of E. coli, Klebsiella pneumoniae, and V. cholerae, and a mixed culture of Enterococcus faecium and E. faecilis were grown in saline solution to simulate ballast water and were treated with dosages of ferrate ranging from 0.25 to 5.0 mg/L. A ferrate dose of 5 mg/L resulted in complete disinfection of all organisms tested, and smaller dosages were also very effective. Tailing was consistently observed, and the Hom's model (1972) appeared to most accurately represent the action of ferrate on these organisms. Salinity and pH did not adversely affect results, and regrowth was not a problem. Ferrate shows good potential as an effective disinfectant in the treatment of ballast water.
Collapse
Affiliation(s)
- Andrea Jessen
- University of Central Florida, Orlando, Florida, USA.
| | | | | | | |
Collapse
|
18
|
Binet MT, Stauber JL. Rapid flow cytometric method for the assessment of toxic dinoflagellate cyst viability. MARINE ENVIRONMENTAL RESEARCH 2006; 62:247-60. [PMID: 16740303 DOI: 10.1016/j.marenvres.2006.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 03/08/2006] [Accepted: 03/28/2006] [Indexed: 05/09/2023]
Abstract
The inadvertent transfer and dispersal of non-indigenous marine species via shipping ballast water is of increasing environmental concern. Despite a major global effort to develop new ballast water treatment technologies, their acceptance has been hampered by the lack of suitable indicator species for assessing treatment effectiveness. Resistant dinoflagellate cysts are one proposed test organism, however their use has been limited due to difficulties in assessing their viability after treatment. The paper describes the development of a rapid method to determine the viability of cysts of the dinoflagellate Alexandrium catenella using staining with SYTOX Green and flow-cytometric analysis. The viability of A. catenella cysts was inversely proportional to their ability to take up the stain. There was excellent agreement between cysts measured as viable/non-viable using flow cytometry and cyst viability determined in standard long-term germination tests. Advantages of the flow-cytometric method include high test precision and rapid testing times of < 2 days, compared to > 4 weeks using existing germination methods.
Collapse
Affiliation(s)
- M T Binet
- Centre for Environmental Contaminants Research, CSIRO Energy Technology, Bangor, Sydney, NSW 2234, Australia.
| | | |
Collapse
|
19
|
Stabnikova O, Liu XY, Wang JY, Ivanov V. Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl Microbiol Biotechnol 2006; 73:696-702. [PMID: 16767462 DOI: 10.1007/s00253-006-0490-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/26/2006] [Accepted: 05/02/2006] [Indexed: 11/27/2022]
Abstract
To monitor anaerobic environmental engineering system, new method of quantification for methanogens was tested. It is based on the measurement of specific binding (hybridization) of 16S rRNA-targeted oligonucleotide probe Arc915, performed by fluorescence in situ hybridization (FISH) and quantified by fluorescence spectrometry. Average specific binding of Arc915 probe was 13.4+/-0.5 amol/cell of autofluorescent methanogens. It was 14.3, 13.3, and 12.9 amol/cell at the log phase, at stationary phase and at the period of cell lysis of batch culture, respectively. Specific binding of Arc915 probe per 1 ml of microbial sludge suspension from anaerobic digester linearly correlated with concentration of autofluorescent cells of methanogens. Coefficient of correlation was 0.95. Specific binding of oligonucleotide probe Arc915 can be used for the comparative estimation of methanogens during anaerobic digestion of organic waste. Specific binding of Arc915 probe was linear function of anaerobic sludge concentration when it was between 1.4 and 14.0 mg/ml. Accuracy of the measurements in this region was from 5 to 12%.
Collapse
Affiliation(s)
- O Stabnikova
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | | | | | | |
Collapse
|
20
|
Mohr H, Lambrecht B, Bayer A, Spengler HP, Nicol SB, Montag T, Müller TH. Sterility testing of platelet concentrates prepared from deliberately infected blood donations. Transfusion 2006; 46:486-91. [PMID: 16533294 DOI: 10.1111/j.1537-2995.2006.00747.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND In general the bacterial count in freshly donated blood is low and even lower in the corresponding platelet concentrates (PCs). By use of flow cytometry (FACS) for sterility testing, the reliability of early versus later sampling times was evaluated. STUDY DESIGN AND METHODS Blood donations were spiked with various numbers of Staphylococcus epidermidis, Staphylococcus aureus, Bacillus cereus, and Klebsiella pneumoniae. The corresponding PCs were prepared by the buffy-coat method and stored at 22 degrees C. A 20-mL sample was collected from each PC directly after preparation and after 8 hours. Samples were stored at 35 degrees C. Sterility testing of both PCs and samples was by FACS analysis at different time points. RESULTS All stored PCs were found positive by FACS analysis, with detection times ranging between 8 and 24 hours (K. pneumoniae, B. cereus), 8 and 91 hours (S. aureus), and 144 hours (S. epidermidis). In the samples incubated at 35 degrees C, bacteria were detected after 8 to 19 hours (K. pneumoniae, B. cereus), 8 to 67 hours (S. aureus), and 19 to 43 hours (S. epidermidis). Some of the samples did not contain bacteria. CONCLUSION Detection times for slow-growing bacteria are significantly shortened when PC samples are incubated at 35 degrees C: the numbers of bacteria in freshly prepared PCs may, however, be so low that the samples drawn for sterility testing do not contain a single bacterium. Our results do not support a shortening of the 24-hour or greater sampling time recommended by the manufacturers of established test systems, because also for consistent detection by FACS, bacteria need to grow in the PCs to sufficient numbers.
Collapse
Affiliation(s)
- Harald Mohr
- Blood Center of the German Red Cross Chapters of NSTOB, Institutes Springe and Gera, Springe and Gera, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
|