1
|
Zhang L, Zhong Y, Fan Q, Li S, Zhu J, Ma X, Zhu Y, Wu R, Zhang Z, Zhou F, Wu Y, Cai M, Ma Y. Coupled Physical-Biogeochemical Dynamics of Polycyclic Aromatic Compounds in the East China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4684-4698. [PMID: 39967058 DOI: 10.1021/acs.est.4c11906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Polycyclic aromatic compounds (PACs), including harmful polycyclic aromatic hydrocarbons (PAHs) and more toxic derivatives, are continuously released contaminants. Their provenance and dynamics in coastal oceans remain poorly understood. This study presents the first comprehensive assessment of PACs in coastal oceans by combining their presence with key hydrological and biogeochemical indicators, and potential microbial degradation. High concentrations of Σ92PACs (48-660 ng/L) were observed in the East China Sea, influenced vertically by upwelling and related sediment resuspension during winter. Spatial heterogeneity reveals distinct distribution patterns: PAHs and alkyl-PAHs were mainly influenced by riverine inputs, horizontal transport via coastal currents, and fronts acting as barriers, in contrast, oxygen-PAHs and nitro-PAHs were primarily shaped by secondary transformations within warm water masses rich in nutrients. The relationship between dissolved PACs and chlorophyll a underscores the dominance of biodegradation over the marginal biological pump effect during wintertime low primary productivity. Metagenomic analysis further highlights microbial degradation as a crucial PAC removal pathway, with enhanced microbial diversity driven by terrigenous advection and upwelling. The methodologies and findings of this research provide valuable insights into PAC cycling in coastal oceans.
Collapse
Affiliation(s)
- Lihong Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Yisen Zhong
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Qilian Fan
- Leibniz Institute for Natural Product Research and Infection Biology─Hans Knöll Institute, 07745 Jena, Germany
| | - Shuangzhao Li
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Jincai Zhu
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Xiao Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Yuanli Zhu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Ruiming Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
| | - Zhiwei Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
| | - Feng Zhou
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Yuehong Wu
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310012 Hangzhou, China
| | - Minghong Cai
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, 200136 Shanghai, China
| | - Yuxin Ma
- School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, 200136 Shanghai, China
| |
Collapse
|
2
|
Li JN, Zhang Y, Wang JX, Hu J, Lu XM, Xie WX, Zhang ZF, Tang ZH. Methylated derivatives of polycyclic aromatic hydrocarbons in road dust, green belt soil and parking lot dust: occurrence, spatial distribution and emission sources. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:162. [PMID: 38592579 DOI: 10.1007/s10653-024-01914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/14/2024] [Indexed: 04/10/2024]
Abstract
Convenient transportation facilities not only bring the higher standard of living to big cities, but also bring some environmental pollution problems. In order to understand the presence and sources of methylated polycyclic aromatic hydrocarbons (Me-PAHs) in environmental samples and their association with total organic carbon (TOC), 49 Me-PAHs were analyzed in road dust, green belt soil and parking lot dust samples in Harbin. The results showed that the ranges of the total Me-PAHs (ΣMe-PAHs) content in road dust were 221-5826 ng/g in autumn and 697-7302 ng/g in spring, and those in green belt soil were 170-2509 ng/g and 155-9215 ng/g in autumn and spring, respectively. And ΣMe-PAHs content in parking lot dust ranged from 269 to 2515 ng/g in surface parking lots and from 778 to 10,052 ng/g in underground parking lots. In these samples, the composition profile of Me-PAHs was dominated by 4-ring Me-PAHs. The results of diagnostic ratios and principal component analysis (PCA) indicated that petrogenic and pyrogenic sources were the main sources of Me-PAHs in the samples. Spearman correlation analysis showed that there was no correlation for Me-PAHs in road dust and green belt soil on the same road. Furthermore, there was a significant positive relationship (0.12 ≤ R2 ≤ 0.67, P < 0.05) between Me-PAHs concentrations and the TOC content. This study demonstrated the presence of Me-PAHs with high concentrations in the road environment samples of Harbin.
Collapse
Affiliation(s)
- Jin-Nong Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Ye Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian-Xin Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jie Hu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xi-Mei Lu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, Heilongjiang, China
| | - Wen-Xi Xie
- Qiqihar Environmental Monitoring Station, No. 571, Bukuinan Street, Longsha DistrictHeilongjiang Province, Qiqihar City, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, Heilongjiang, China.
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Harbin Institute of Technology, Polar Academy, Harbin, 150090, China.
- Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin, 150090, China.
| | - Zhong-Hua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, Heilongjiang, China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
3
|
Mundo R, Matsunaka T, Iwai H, Ochiai S, Nagao S. Environmental processes and fate of PAHs at a shallow and enclosed bay: West Nanao Bay, Noto Peninsula, Japan. MARINE POLLUTION BULLETIN 2022; 184:114105. [PMID: 36115196 DOI: 10.1016/j.marpolbul.2022.114105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
From August 2019 to August 2020, particulate and dissolved polycyclic aromatic hydrocarbons concentrations (PAHs) were analyzed in the water body of West Nanao Bay, Japan, to determinate their levels, environmental pathways, and ecological risks at this remote but shallow and semi-enclosed bay. The 14 targeted PAHs were analyzed by high performance liquid chromatography-fluorescence detector. Even when water column stratifies, the summatory of 14 targeted dissolved PAHs did not follow significantly change with depth. Results agreed with our previous findings in the surface distribution at the bay and can be attributed to long retention time of the water mass of the semi-enclosed bay. Suspended solids start precipitating according to their size; with biggest particles rapidly settling in the proximities of river mouths. Partition coefficients (Kp) varied from 103 to 107, according to molecular weights. In general, highest Kp were found in the nepheloid layer. The risk quotients, RQ∑14 PAHs (NCs) (1.04-174.08), indicated that PAHs represented a very low to low environmental risks.
Collapse
Affiliation(s)
- Rodrigo Mundo
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Tetsuya Matsunaka
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O, Nomi, Ishikawa, 923-1224, Japan.
| | - Hisanori Iwai
- Faculty of science and Engineering, Waseda University, Tokyo, Japan.
| | - Shinya Ochiai
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O, Nomi, Ishikawa, 923-1224, Japan.
| | - Seiya Nagao
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan; Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake O, Nomi, Ishikawa, 923-1224, Japan.
| |
Collapse
|
4
|
Goyal K, Goel H, Baranwal P, Dixit A, Khan F, Jha NK, Kesari KK, Pandey P, Pandey A, Benjamin M, Maurya A, Yadav V, Sinh RS, Tanwar P, Upadhyay TK, Mittan S. Unravelling the molecular mechanism of mutagenic factors impacting human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61993-62013. [PMID: 34410595 DOI: 10.1007/s11356-021-15442-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate multiple physiological, biochemical, and genetic modifications in humans. Most mutagens are having genotoxic effects on the following generation through germ cells. The influence of germinal mutations on health will be determined by their frequency, nature, and the mechanisms that keep a specific mutation in the population. Early prenatal lethal mutations have less public health consequences than genetic illnesses linked with long-term medical and social difficulties. Physical and chemical mutagens are common mutagens found in the environment. These two environmental mutagens have been associated with multiple neurological disorders and carcinogenesis in humans. Thus in this study, we aim to unravel the molecular mechanism of physical mutagens (UV rays, X-rays, gamma rays), chemical mutagens (dimethyl sulfate (DMS), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), 5-chlorocytosine (5ClC)), and several heavy metals (Ar, Pb, Al, Hg, Cd, Cr) implicated in DNA damage, carcinogenesis, chromosomal abnormalities, and oxidative stress which leads to multiple disorders and impacting human health. Biological tests for mutagen detection are crucial; therefore, we also discuss several approaches (Ames test and Mutatox test) to estimate mutagenic factors in the environment. The potential risks of environmental mutagens impacting humans require a deeper basic knowledge of human genetics as well as ongoing research on humans, animals, and their tissues and fluids.
Collapse
Affiliation(s)
- Keshav Goyal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Pritika Baranwal
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Aman Dixit
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, India
| | | | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306, India
| | - Avanish Pandey
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mercilena Benjamin
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Maurya
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rana Suryauday Sinh
- Department of Microbiology and Biotechnology Centre, Maharaja Sayajirao University, Baroda, India
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences & Centre of Research for Development, Parul University, Vadodara, Gujarat, India.
| | - Sandeep Mittan
- Department of Cardiology, Ichan School of Medicine, Mount Sinai Hospital, 1 Gustave L. Levy Place, New York, NY, USA
| |
Collapse
|
5
|
Geochemical Control of PAHs by Inflowing River Water to West Nanao Bay, Japan, and Its Influences on Ecological Risk: Small-Scale Changes Observed under Near-Background Conditions at an Enclosed Bay. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910310. [PMID: 34639613 PMCID: PMC8508535 DOI: 10.3390/ijerph181910310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), even at low concentrations, have been shown to trigger changes in life cycles and provoke abnormal behaviors in numerous marine organisms. From May 2019 to September 2020, particulate and dissolved PAH concentrations were analyzed on the surface water of West Nanao Bay, Japan, to determinate their levels, emission sources, environmental pathways, and ecological risks at this remote but semi-enclosed bay. The 14 targeted PAHs were analyzed by HPLC-fluorescence detector. Mean total PAH concentrations were lower than 20.0 ng L−1 for most samples. Based on fluoranthene (Flu) to pyrene (Pyr) ([Flu]/[Flu + Pyr]) and benzo[a]anthracene (BaA) to chrysene (Chr) ([BaA]/[BaA + Chr]) isomeric ratios and a varimax rotated PCA, it was established that biomass combustion was the principal source in the particulate phase and that liquid fossil fuel combustion was the principal source in the dissolved phase. From salinity and turbidity distribution, riverine discharges were determined to be the major and continuous transportation pathway of particulate PAHs. It was observed that rain events had a role in the transport of dissolved PAHs. The risk quotients (RQ∑14 PAHs (NCs): 0–84.53) indicated that PAHs represented a very low to low acute environmental risk. The results of this study will contribute to filling the paradigm gap of ecotoxicological studies in remote areas, working as a booster for future in-lab studies of non-lethal implications of endocrine disruptors such as PAHs.
Collapse
|
6
|
Krzyszczak A, Czech B. Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147738. [PMID: 34023603 DOI: 10.1016/j.scitotenv.2021.147738] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
In the last years, there is great attention paid to the determination of polycyclic aromatic hydrocarbons (PAHs) in different environmental matrices. Extensive reviews on PAHs presence and toxicity were published recently. However, PAHs formation and transformation in the environment lead to the production of PAHs derivatives containing oxygen (O-PAHs), nitrogen (N-PAHs and aazarenes AZA) or sulfur (PASHs) in the aromatic ring. The development of new analytical methods enabled the determination of these novel contaminants. The presence of oxygen, nitrogen, or sulfur in PAHs aromatic rings increased their toxicity. The most common primary sources of PAHs derivatives are biological processes such as microbial activity (in soil, water, and wastewater treatment plants (O-PAHs)) and all processes involving combustion of fuel, coal, and biomass (O-PAHs, N-PAHs, AZA, PASHs). The secondary resources involved i) photochemical (UV light), ii) radical-mediated (OH, NO3), and iii) reactions with oxidants (O3, NOx) (O-PAHs, N-PAHs, AZA). Furthermore, N-PAHs were able to transform to their corresponding O-PAHs, while other derivatives were not. It indicated that N-PAHs are more vulnerable to photooxidation in the environment. 85% of O- and N-PAHs were detected with particle matter below 2.5 μm suggesting their easier bioaccessibility. More than 90% of compounds with four and more aromatic cycles were present in the particle phase in the air. Although the concentrations of N-PAHs or O-PAHs may be similar to PAHs concentration or even 1000 times lower than parent PAHs, PAHs derivatives accounted for a significant portion of the total mutagenicity. The present review is describing the results of the studies on the determination of PAHs derivatives in different environmental matrices including airborne particles, sediments, soil, and organisms. The mechanisms of their formation and toxicity were assessed.
Collapse
Affiliation(s)
- Agnieszka Krzyszczak
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland
| | - Bożena Czech
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, University of Maria Curie-Sklodowska, Pl. M. Curie-Sklodowskiej 3, 20-031 Lublin, Poland.
| |
Collapse
|
7
|
Determination of Polycyclic Aromatic Hydrocarbons and Their Methylated Derivatives in Sewage Sludge from Northeastern China: Occurrence, Profiles and Toxicity Evaluation. Molecules 2021; 26:molecules26092739. [PMID: 34066594 PMCID: PMC8124507 DOI: 10.3390/molecules26092739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022] Open
Abstract
This paper assesses the occurrence, distribution, source, and toxicity of polycyclic aromatic hydrocarbons (PAHs), and their methylated form (Me-PAHs) in sewage sludge from 10 WWTPs in Northeastern China was noted. The concentrations of ∑PAHs, ∑Me-PAHs ranged from 567 to 5040 and 48.1 to 479 ng.g−1dw, which is greater than the safety limit for sludge in agriculture in China. High and low molecular weight 4 and 2-ring PAHs and Me-PAHs in sludge were prevalent. The flux of sludge PAHs and Me-PAHs released from ten WWTPs, in Heilongjiang province, was calculated to be over 100 kg/year. Principal component analysis (PCA), diagnostic ratios and positive matrix factorization (PMF) determined a similar mixed pyrogenic and petrogenic source of sewage sludge. The average values of Benzo[a]pyrene was below the safe value of 600 ng.g−1 dependent on an incremental lifetime cancer risk ILCR of 10−6. Sludge is an important source for the transfer of pollutants into the environment, such as PAHs and Me-PAHs. Consequently, greater consideration should be given to its widespread occurrence.
Collapse
|
8
|
Fate and Occurrence of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Water and Sediment from Songhua River, Northeast China. WATER 2021. [DOI: 10.3390/w13091196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Songhua River is one of the most populated and oldest industrial areas in Northeast China. To understand the sources and distribution of polycyclic aromatic hydrocarbons and their derivatives, such as 16 priority (PAHs), 33 methylated (Me-PAHs), and 12 nitrated (NPAHs) in river water and sediment, were noticed. The concentrations of ∑PAHs, ∑Me-PAHs, and ∑NPAHs in river water scaled from 135 to 563, 9.36 to 711, and 1.26 to 64.7 ng L−1, with mean values of 286, 310, and 17.9 ng L−1, and those in sediments were from 35.8 to 2000 ng g−1, 0.62 to 394 ng g−1, and 0.28 to 176 ng g−1 (dry weight) with mean values of 283, 103, and 21.7 ng g−1. The compositions proved that two-ring and three-ring compounds of PAHs, NPAHs, and four-ring, six-ring of Me-PAHs were prevalent in water samples; in contrast, four-ring dominated in sediments. Principal components analysis (PCA) and diagnostic ratios confirmed that pollutant source was mixed petrogenic and pyrogenic origin. The fugacity fraction (ƒƒ) was also calculated to explain the trend of sediment–water exchange, high ƒƒ values found in summer, for most HMW PAHs and Me-PAHs that these substances acted as a secondary source of emissions from sediment to water. The risk assessment for water was categorized as high.
Collapse
|
9
|
Honda M, Mukai K, Nagato E, Uno S, Oshima Y. Correlation between Polycyclic Aromatic Hydrocarbons in Wharf Roach ( Ligia spp.) and Environmental Components of the Intertidal and Supralittoral Zone along the Japanese Coast. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E630. [PMID: 33451067 PMCID: PMC7828494 DOI: 10.3390/ijerph18020630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Abstract
Polycyclic aromatic hydrocarbon (PAH) concentrations in wharf roach (Ligia spp.), as an environmental indicator, and in environmental components of the intertidal and supralittoral zones were determined, and the PAH exposure pathways in wharf roach were estimated. Wharf roaches, mussels, and environmental media (water, soil and sand, and drifting seaweed) were collected from 12 sites in Japan along coastal areas of the Sea of Japan. PAH concentrations in wharf roaches were higher than those in mussels (median total of 15 PAHs: 48.5 and 39.9 ng/g-dry weight (dw), respectively) except for samples from Ishikawa (wharf roach: 47.9 ng/g-dw; mussel: 132 ng/g-dw). The highest total PAH concentration in wharf roach was from Akita (96.0 ng/g-dw), followed by a sample from Niigata (85.2 ng/g-dw). Diagnostic ratio analysis showed that nearly all PAHs in soil and sand were of petrogenic origin. Based on a correlation analysis of PAH concentrations between wharf roach and the environmental components, wharf roach exposure to three- and four-ring PAHs was likely from food (drifting seaweed) and from soil and sand, whereas exposure to four- and five-ring PAHs was from several environmental components. These findings suggest that the wharf roach can be used to monitor PAH pollution in the supralittoral zone and in the intertidal zone.
Collapse
Affiliation(s)
- Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Koki Mukai
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (K.M.); (Y.O.)
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Edward Nagato
- Graduate School of Life and Environmental Sciences, Shimane University, 1060 Nishitsugawa-machi, Matsue, Shimane 690-8504, Japan;
| | - Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan;
| | - Yuji Oshima
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (K.M.); (Y.O.)
| |
Collapse
|
10
|
Dey S, Ballav P, Samanta P, Mandal A, Patra A, Das S, Mondal AK, Ghosh AR. Time-Dependent Naphthalene Toxicity in Anabas testudineus (Bloch): A Multiple Endpoint Biomarker Approach. ACS OMEGA 2021; 6:317-326. [PMID: 33458483 PMCID: PMC7807757 DOI: 10.1021/acsomega.0c04603] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/20/2020] [Indexed: 05/23/2023]
Abstract
Polyaromatic compounds are the major, widespread contaminants in the aquatic environment. However, the adverse impacts of these compounds on blood pathophysiology (hematological profiling and serum biochemical responses) are poorly understood. As a consequence, this study was intended to evaluate the toxic effects of naphthalene, one of the polycyclic aromatic hydrocarbons, on the blood pathophysiology of Anabas testudineus using multiple end-point biomarker approach. A. testudineus was exposed to short-term (1 and 5 d) and long-term (10, 15, and 21 d) naphthalene concentrations, that is, T1 (0.71 mg/L indicates 25% of LC50) and T2 (1.42 mg/L indicates 50% of LC50 value). The results disclosed significant decrease in red blood cells, hemoglobin (Hb), packed cell volume, and platelet levels, while other blood parameters, namely, white blood cells, percent lymphocyte, mean cell volume, mean corpuscular Hb, and mean corpuscular Hb concentration showed enhanced levels under naphthalene intoxication. Results were more detrimental under T2 concentration. Cholesterol, glucose, calcium, high-density lipoprotein, and low-density lipoprotein levels gradually increased throughout the different exposure periods under T1 and T2 concentrations, while the triglyceride level gradually decreased during exposure periods. Finally, integrated biomarker responses (IBR) analysis indicated that serum biochemical parameters are more powerful than hematological parameters for determining the naphthalene-induced fish health status. Additionally, the IBR study clearly identified that long-term (>5 d) exposure was more harmful than short-term (<5 d) naphthalene exposure. So, these responses may be derived as biomarkers for monitoring naphthalene pollution in an aquatic ecosystem.
Collapse
Affiliation(s)
- Sukhendu Dey
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Puspita Ballav
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Palas Samanta
- Department
of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri 735210, West Bengal, India
| | - Arghya Mandal
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Atanu Patra
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Subhas Das
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Arnab Kumar Mondal
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| | - Apurba Ratan Ghosh
- Department
of Environmental Science, The University
of Burdwan, Burdwan 713104, West Bengal, India
| |
Collapse
|
11
|
Seo SH, Kwon HO, Park MK, Lee IS, Choi SD. Contamination characteristics of polycyclic aromatic hydrocarbons in river and coastal sediments collected from the multi-industrial city of Ulsan, South Korea. MARINE POLLUTION BULLETIN 2020; 160:111666. [PMID: 33181941 DOI: 10.1016/j.marpolbul.2020.111666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
River and coastal sediments were collected at 17 stations in Ulsan, the largest industrial city in South Korea, to evaluate the levels, profiles, emission sources, and spatial distribution of polycyclic aromatic hydrocarbons (PAHs). The mean concentration of Σ16 PAHs was 722 ng/g, and fluoranthene was a predominant compound. PAHs with 4-6 rings showed higher proportions than PAHs with 2-3 rings. The stations located near industrial complexes showed elevated levels of indicator compounds for petroleum, coal, coke, and fuel combustion. Therefore, petrochemical industries, coal pier, non-ferrous industries, and vehicles were identified as the emission sources. As industrialization and urbanization progressed, an increase in PAH levels and profile changes were observed as a result of the increasing industrial fuel consumption and the increasing number of vehicles. This is the first study that confirmed the change of PAHs in sediment caused by the change of emission sources over time in Ulsan.
Collapse
Affiliation(s)
- Sung-Hee Seo
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States
| | - Hye-Ok Kwon
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min-Kyu Park
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - In-Seok Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Tongyeong 53085, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
12
|
Ozaki N, Kindaichi T, Ohashi A. PAHs emission source analysis for air and water environments by isomer ratios - Comparison by modified Cohen's d. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136831. [PMID: 32006780 DOI: 10.1016/j.scitotenv.2020.136831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Possible emission sources of PAHs in air and water environments were discussed by a comparison between the data sets of emission sources and environmental fields using five isomer ratios. The similarity of a pair of the datasets of different sources or environment fields for each isomer ratio was evaluated by a newly developed modified effect size d, and the mean of those for the five isomer ratios was applied as an index of similarity. From the analysis, diesel emission and/or biomass burning residues were considered to be major emission sources for almost all the datasets of environments. The pollution loading and path to the PAHs loading of coastal sediments in Hiroshima bay area were examined and it was inferred emission sources was consistently assigned by these newly developed indicators of isomer ratios. Diesel and/or biomass burning were considered to be major sources for the west side area of the bay and the biomass burning was considered to be for the east side area. Further, it was evaluated the west side area, which confronts the Hiroshima city downtown area more directly, was more similar to diesel, and the east side area, which is a bit remoted to the urban central was more similar to the biomass burning. This newly developed method would be a promising alternative application of isomer ratio analysis.
Collapse
Affiliation(s)
- Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan.
| | - Tomonori Kindaichi
- Department of Civil and Environmental Engineering, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Faculty of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
| |
Collapse
|
13
|
Honda M, Suzuki N. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1363. [PMID: 32093224 PMCID: PMC7068426 DOI: 10.3390/ijerph17041363] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds that are widely distributed in the air, water, and soil. Recently, the amount of PAHs derived from fuels and from incomplete combustion processes is increasing. In the aquatic environment, oil spills directly cause PAH pollution and affect marine organisms. Oil spills correlate very well with the major shipping routes. Furthermore, accidental oil spills can seriously impact the marine environment toxicologically. Here, we describe PAH toxicities and related bioaccumulation properties in aquatic animals, including invertebrates. Recent studies have revealed the toxicity of PAHs, including endocrine disruption and tissue-specific toxicity, although researchers have mainly focused on the carcinogenic toxicity of PAHs. We summarize the toxicity of PAHs regarding these aspects. Additionally, the bioaccumulation properties of PAHs for organisms, including invertebrates, are important factors when considering PAH toxicity. In this review, we describe the bioaccumulation properties of PAHs in aquatic animals. Recently, microplastics have been the most concerning environmental problem in the aquatic ecosystem, and the vector effect of microplastics for lipophilic compounds is an emerging environmental issue. Here, we describe the correlation between PAHs and microplastics. Thus, we concluded that PAHs have a toxicity for aquatic animals, indicating that we should emphasize the prevention of aquatic PAH pollution.
Collapse
Affiliation(s)
- Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan;
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| |
Collapse
|
14
|
Mundo R, Matsunaka T, Iwai H, Ogiso S, Suzuki N, Tang N, Hayakawa K, Nagao S. Interannual Survey on Polycyclic Aromatic Hydrocarbons (PAHs) in Seawater of North Nanao Bay, Ishikawa, Japan, from 2015 to 2018: Sources, Pathways and Ecological Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030904. [PMID: 32024093 PMCID: PMC7038190 DOI: 10.3390/ijerph17030904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/16/2022]
Abstract
To improve the understanding of the emission sources and pathways of polycyclic aromatic hydrocarbons (PAHs) in the coastal environments of remote areas, their particulate and dissolved concentrations were analyzed on a monthly basis from 2015 to 2018 in surface waters of Nanao Bay, Japan. The concentration of the targeted 13 species of PAHs on the United States Environmental Protection Agency (USEPA) priority pollutant list in dissolved and particle phases were separately analyzed by high-performance liquid chromatography (HPLC) coupled to a fluorescence detector. Particulate and dissolved PAHs had average concentrations of 0.72 ng∙L-1 and 0.95 ng∙L-1, respectively. While most of the samples were lower than 1 ng∙L-1, abnormally high levels up to 10 ng∙L-1 were observed in the winter of 2017-2018 for particulate PAHs. Based on the isomer ratios of Flu to Flu plus Pyr, it was possible to determine that the pyrogenic loads were greater than the petrogenic loads in all but four out of 86 samples. The predominant environmental pathway for PAHs in winter was determined to be long-range atmospheric transportation fed by the East Asian winter monsoon, while for the summer, local sources were more relevant. By the risk quotients method, it was determined that PAHs in surface seawater presented a very low risk to marine life during the interannual survey.
Collapse
Affiliation(s)
- Rodrigo Mundo
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan; (R.M.); (S.N.)
| | - Tetsuya Matsunaka
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan; (R.M.); (S.N.)
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi 923-1224, Japan; (H.I.); (K.H.)
- Correspondence: ; Tel.: +81-76-151-4440
| | - Hisanori Iwai
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi 923-1224, Japan; (H.I.); (K.H.)
| | - Shouzo Ogiso
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho 927-0553, Japan; (S.O.); (N.S.)
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Noto-cho 927-0553, Japan; (S.O.); (N.S.)
| | - Ning Tang
- Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa 920-1192, Japan;
- Institute of Nature and Environmental Technology, Kanazawa University, 920-1192, Japan
| | - Kazuichi Hayakawa
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi 923-1224, Japan; (H.I.); (K.H.)
| | - Seiya Nagao
- Division of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan; (R.M.); (S.N.)
- Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Nomi 923-1224, Japan; (H.I.); (K.H.)
| |
Collapse
|
15
|
Dhar K, Subashchandrabose SR, Venkateswarlu K, Krishnan K, Megharaj M. Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 251:25-108. [PMID: 31011832 DOI: 10.1007/398_2019_29] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of hazardous organic contaminants that are widely distributed in nature, and many of them are potentially toxic to humans and other living organisms. Biodegradation is the major route of detoxification and removal of PAHs from the environment. Aerobic biodegradation of PAHs has been the subject of extensive research; however, reports on anaerobic biodegradation of PAHs are so far limited. Microbial degradation of PAHs under anaerobic conditions is difficult because of the slow growth rate of anaerobes and low energy yield in the metabolic processes. Despite the limitations, some anaerobic bacteria degrade PAHs under nitrate-reducing, sulfate-reducing, iron-reducing, and methanogenic conditions. Anaerobic biodegradation, though relatively slow, is a significant process of natural attenuation of PAHs from the impacted anoxic environments such as sediments, subsurface soils, and aquifers. This review is intended to provide comprehensive details on microbial degradation of PAHs under various reducing conditions, to describe the degradation mechanisms, and to identify the areas that should receive due attention in further investigations.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
- Department of Microbiology, University of Chittagong, Chittagong, Bangladesh
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, India
| | - Kannan Krishnan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
16
|
Hong WJ, Jia H, Sun Y, Liu X, Wang L, Li YF. Distribution, Source and Ecological Risk Assessment of Parent and Alkylated PAHs in Coastal Environment of Dalian, China After Oil Spill. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1517809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wen-Jun Hong
- Zhejiang Scientific Research Institute of Transport, Hangzhou, China
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Dalian Maritime University, Dalian, China
| | - Hongliang Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Dalian Maritime University, Dalian, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Dalian Maritime University, Dalian, China
| | | | - Luo Wang
- Dalian Ocean University, Dalian, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Dalian Maritime University, Dalian, China
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
17
|
Uno S, Kokushi E, Kawano M, McElroy AE, Koyama J. Toxic evaluations of sediments in Tokyo Bay, Japan, using Japanese medaka embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27702-27709. [PMID: 27623855 DOI: 10.1007/s11356-016-7581-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Toxic risks of sediments collected from seven sites in Tokyo Bay were evaluated using Japanese medaka embryos. Those sediments with slight pore water were placed in grass petri dishes without overlying water. The most remarkable effect in the field sediment was to cause hatching delay in embryos, and the longest time until hatching took was 12.5 ± 1.6 days post-fertilization (dpf), although that in control group was 10.1 ± 0.7 dpf. A significant delay in hatching was observed at four sites. Because total carbon concentrations were relatively high in sediments at three of these four sites, several chemicals were expected to be residues in these sites and could cause their delay. Although extreme mortality was not observed at all sites, sediments collected from the site close to Kawasaki city induced 10 % mortality. Polycyclic aromatic hydrocarbon (PAH) concentrations were remarkably high at this site compared with other sites, and thus PAH toxicities could be causing the mortality. Concentration of heavy metals such as cadmium, copper, lead, and zinc in sediments were also determined, but no clear relationship was found between toxicities to embryos and the distribution of their concentrations.
Collapse
Affiliation(s)
- Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan.
| | - Emiko Kokushi
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Machi Kawano
- The United Graduate School of Agricultural Sciences, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Jiro Koyama
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| |
Collapse
|
18
|
Uno S, Tanaka H, Kokushi E, Bacolod ET, Koyama J. Distributions of nitrated polycyclic aromatic hydrocarbons in the sediment of Osaka Bay, Japan. MARINE POLLUTION BULLETIN 2017; 124:1014-1019. [PMID: 28270320 DOI: 10.1016/j.marpolbul.2017.02.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
The distributions of 15 nitrated polycyclic aromatic hydrocarbons (NPAHs) in sediments collected at 44 sites throughout Osaka Bay, Japan were examined. The highest total NPAHs, with a concentration of 1949ng/kg dry weight, were detected near the city of Amagasaki. Some sites near the cities of Osaka, Kishiwada, sand Sakai registered ng/kg levels of NPAHs, but individual NPAH concentrations were relatively lower than those in previous studies. The sources were estimated using principal component analysis, and NPAHs were derived from exhaust gases of automobiles and industries at some sites. However, our results suggest that it is difficult to estimate the source, especially in coastal areas near big cities and large industrial areas, because the generation pathways between parent polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs are slightly different, and the ratio of PAHs and NPAHs could not be accurately reflect the characters of sources in sediments especially at coastal areas with large-scale industrial zones.
Collapse
Affiliation(s)
- Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan.
| | - Hiroyuki Tanaka
- Environment Conservation Division, National Research Institute of Fisheries and Environment of Inland Sea, Hiroshima 739-0452, Japan.
| | - Emiko Kokushi
- Education and Research Center for Marine Resources and Environment, Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan.
| | - Eugene T Bacolod
- Department of Chemistry, School of Arts and Sciences, University of San Carlos, 6000 Cebu City, Philippines
| | - Jiro Koyama
- Education and Research Center for Marine Resources and Environment, Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan.
| |
Collapse
|
19
|
Chen W, Wu X, Zhang H, Sun J, Liu W, Zhu L, Li X, Tsang DCW, Tao S, Wang X. Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:927-935. [PMID: 28738305 DOI: 10.1016/j.envpol.2017.07.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Alkylated PAHs (APAHs) have been shown to be more toxic and persistent than their non-alkylated parent compounds. However, little is known about the extent of soil contamination by these pollutants. To help understand agricultural soil pollution by these compounds at a regional scale, a total of 18 methylated PAHs (MPAHs, a major class of APAHs) in 243 soil samples were analyzed. These soil samples were collected from 11 sites in the Yangtze River Delta (YRD) region, a representative fast developing area in China. The total concentration of MPAHs (∑18MPAHs) ranged from 5.5 to 696.2 ng/g dry soil, with methylnaphthalenes (M-NAPs) and methylphenanthrenes (M-PHEs) accounting for more than 70% of the compositional profile. Relatively high concentrations of ∑18MPAHs were found in Jiaxing and Huzhou areas of Zhejiang province, as well as on the border between the cities of Wuxi and Suzhou. Different MPAH groups showed dissimilar spatial distribution patterns. The spatial distribution of lower molecular weight MPAHs was related to agricultural straw burning and emissions/depositions from industrial activities, whereas that of higher molecular weight MPAHs was much more a function of the total organic carbon (TOC) content of soil. Although coal, biomass (crop straw and wood), and petroleum combustion were identified to be the major emission sources for most of the sampling sites, the areas with relatively severe pollution with ∑18MPAHs resulted from the localized hotspots of petroleum leakage. Isomeric MPAHs with methyl group substituted at 2- (β) position exhibited significantly higher concentrations than those substituted at 1- (α) position. Results of this work help to understand soil pollution by MPAHs, and are useful for designing effective strategies for pollution control so as to ensure food safety in areas with fast economic growth.
Collapse
Affiliation(s)
- Weixiao Chen
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinyi Wu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Haiyun Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenxin Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Tiwari M, Sahu SK, Pandit GG. Distribution of PAHs in different compartment of creek ecosystem: Ecotoxicological concern and human health risk. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:58-66. [PMID: 28131077 DOI: 10.1016/j.etap.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
We report levels of polycyclic aromatic hydrocarbons in sediment, seawater, fish and crab samples from Thane creek, India. Concentrations of sixteen USEPA PAH in sediments varies from 874 to 1925ngg-1, dry weight (dw) in winter, between 219-495ngg-1 in summer. In seawater Σ16 PAHs concentration during winter was recorded 706±193ngL-1, and during summer 337±79ngL-1. Total concentrations of PAHs in consumable portion of lizard fish, bombay duck and crab were found 156.8±18 and 122±24.5ngg-1, 117.4±17.65ngg-1 and 95.8±16.2ngg-1, 348±94.5 and 95.62±31.9ngg-1 wet weight (ww) in summer and winter respectively. PAHs concentration were compared with sediments quality guidelines viz. ERL-ERM, TEL-PEL indexes for finding ecotoxicological risk on marine organism. The ILCR values were above public screening criteria for carcinogens.
Collapse
Affiliation(s)
- M Tiwari
- Environmental Monitoring and Assessment Section, Health Safety and Environment Group, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - S K Sahu
- Environmental Monitoring and Assessment Section, Health Safety and Environment Group, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
| | - G G Pandit
- Environmental Monitoring and Assessment Section, Health Safety and Environment Group, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India.
| |
Collapse
|
21
|
Qian X, Liang B, Fu W, Liu X, Cui B. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the intertidal zone of Bohai Bay, Northeast China: Spatial distribution, composition, sources and ecological risk assessment. MARINE POLLUTION BULLETIN 2016; 112:349-358. [PMID: 27485781 DOI: 10.1016/j.marpolbul.2016.07.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) can enter intertidal zones by various pathways and pose potential threats to intertidal ecosystem. We investigated distribution, composition, sources and risk assessment of PAHs in intertidal surface sediments of Bohai Bay. Total PAH concentrations ranged from 37.2ng·g-1 to 206.6ng·g-1, among which high values occurred near Nanpaishuihe River Estuary and Haihe River Estuary. The composition patterns of PAHs were characterized by the predominance of 3-ring and 4-ring PAHs, and acenaphthylene was the most dominant component. Diagnostic ratios and principal component analysis have confirmed that PAH contaminants originated from mixed sources, and the major was local combustion. The mean benzo(a)pyrene equivalent concentration of total PAHs in intertidal sediments was 15.67ng·g-1, which was mostly contributed by seven carcinogenic PAHs. According to ecological risk assessment, negative effects related to acenaphthylene would occur occasionally in partial survey regions of the study.
Collapse
Affiliation(s)
- Xiao Qian
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Baocui Liang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Wenjun Fu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Xinhui Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
22
|
Lin BS, Lee CL, Brimblecombe P, Liu JT. Transport and fluxes of terrestrial polycyclic aromatic hydrocarbons in a small mountain river and submarine canyon system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 178:30-41. [PMID: 27131955 DOI: 10.1016/j.jenvman.2016.04.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) concentrations in the Gaoping River were investigated in the wet and dry seasons. PAH characteristics allowed us to trace the particulate matter transported in a river-sea system containing a small mountain river, continental shelf, and submarine canyon. PAH signatures of the Gaoping River showed that particles were rapidly transported from the high mountain to the Gaoping coastal areas in the wet season, even arriving at the deep ocean via the Gaoping Submarine Canyon. By contrast, in the dry season, the particles were delivered quite slowly and included mostly pyrogenic contaminants. The annual riverine flux estimates for PAHs were 2241 kg in the Gaoping river-sea system. Only 18.0 kg were associated with the dissolved phase; the rest was bound onto particles. The fluxes caused by typhoons and their effects accounted for 20.2% of the dissolved and 68.4% of the particulate PAH fluxes from the river. Normalized partition coefficients for organic carbon suggested that PAHs were rigid on the particles. Distinct source characteristics were evident for PAHs on riverine suspended particles and coastal surface sediments: the particles in the wet season (as background signals) were similar to petrogenic sources, whereas the particles in the dry season had characteristics of coal burning and vehicular emissions. The sediments in the northwestern shelf were similar to pyrogenic sources (including vehicular emissions and coal and biomass burning), whereas the sediments in the canyon and southeastern shelf arose from mixed sources, although some diesel signature was also evident.
Collapse
Affiliation(s)
- Bing-Sian Lin
- Department of Marine Environment and Engineering, National Sun Yat-sen University, 80424, Kaohsiung, Taiwan, ROC
| | - Chon-Lin Lee
- Department of Marine Environment and Engineering, National Sun Yat-sen University, 80424, Kaohsiung, Taiwan, ROC; Kuroshio Research Group, Asia-pacific Ocean Research Center, National Sun Yat-sen University, 80424, Kaohsiung, Taiwan, ROC; Research Center of Environmental Medicine, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan, ROC; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan, ROC.
| | - Peter Brimblecombe
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - James T Liu
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan, ROC
| |
Collapse
|
23
|
Li S, Tao Y, Yao S, Xue B. Distribution, sources, and risks of polycyclic aromatic hydrocarbons in the surface sediments from 28 lakes in the middle and lower reaches of the Yangtze River region, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4812-4825. [PMID: 26541148 DOI: 10.1007/s11356-015-5705-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
As the largest polycyclic aromatic hydrocarbons (PAHs) emission country, China is suffering from severe PAHs pollution. Twenty-eight lakes in the middle and lower reaches of the Yangtze River region (MLYR), where numerous lakes are located in and play very important roles in the development of the local economy and society, were selected to investigate the levels and sources of the PAHs in this region and the related influence factors. Concentrations of the 16 PAHs (∑PAHs) in the sediments ranged from 221.0 to 2418.8 ng g(-1) (dry weight). The mean ∑PAHs was higher in the lower reaches than in the middle reaches. ∑PAHs in the sediments was positively correlated with the local gross domestic product (GDP), which implies that GDP was the key factor to affect the PAHs level in the sediments of study area. According to the composition of 16 PAHs, the 28 lakes were grouped into 3 clusters. Major PAHs sources for the three types of lakes were significantly different, which were biomass combustion, coal combustion, and vehicle/coal source, respectively. The total toxic benzo(a)pyrene equivalent (TEQ(carc)) of the carcinogenic PAHs in the sediments varied from 12.9 to 472.9 ng TEQ(carc) g(-1). Benzo(a)pyrene (BaP) and dibenzo(a,h)anthracene (DaA) were the two main contributors to total TEQ(carc).
Collapse
Affiliation(s)
- Shanying Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqiang Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shuchun Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
24
|
Sun RX, Lin Q, Ke CL, Du FY, Gu YG, Cao K, Luo XJ, Mai BX. Polycyclic aromatic hydrocarbons in surface sediments and marine organisms from the Daya Bay, South China. MARINE POLLUTION BULLETIN 2016; 103:325-332. [PMID: 26778499 DOI: 10.1016/j.marpolbul.2016.01.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) were investigated in the marine ecosystem of the Daya Bay, South China. The PAH concentrations ranged from 340 to 710 ng/g dry weight in the sediments and from 110 to 520 ng/g wet weight in marine organisms, respectively. The dominant compounds were three- and four-ring PAHs in the sediments (53%-89%) and two- and three-ring PAHs in the marine species (67%-94%), respectively. PAHs mainly originated from both pyrolytic and petrogenic sources. Comparison with the effects-based sediment quality guideline values suggested that the ecological risk caused by the total PAHs was relatively low (less than 25% incidence of adverse effects) in the sedimentary environment. The median cancer risk level via seafood consumption (1.6 × 10(-5) for urban residents and 1.2 × 10(-5) for rural residents, respectively) was slightly higher than the maximum admissible level (10(-5)) set by US EPA, but lower than the priority risk level (10(-4)).
Collapse
Affiliation(s)
- Run-Xia Sun
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment of Guangdong Province, Guangzhou 510300, China; Key Laboratory of Ministry of Agriculture for South China Sea Fishery Resources Exploitation & Utilization, Guangzhou 510300, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qin Lin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment of Guangdong Province, Guangzhou 510300, China; Key Laboratory of Ministry of Agriculture for South China Sea Fishery Resources Exploitation & Utilization, Guangzhou 510300, China.
| | - Chang-Liang Ke
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment of Guangdong Province, Guangzhou 510300, China; Key Laboratory of Ministry of Agriculture for South China Sea Fishery Resources Exploitation & Utilization, Guangzhou 510300, China
| | - Fei-Yan Du
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment of Guangdong Province, Guangzhou 510300, China; Key Laboratory of Ministry of Agriculture for South China Sea Fishery Resources Exploitation & Utilization, Guangzhou 510300, China
| | - Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment of Guangdong Province, Guangzhou 510300, China; Key Laboratory of Ministry of Agriculture for South China Sea Fishery Resources Exploitation & Utilization, Guangzhou 510300, China
| | - Kun Cao
- Center of Fishery Resources and Ecology Environment Research, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
25
|
Rabodonirina S, Net S, Ouddane B, Merhaby D, Dumoulin D, Popescu T, Ravelonandro P. Distribution of persistent organic pollutants (PAHs, Me-PAHs, PCBs) in dissolved, particulate and sedimentary phases in freshwater systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:38-48. [PMID: 26142749 DOI: 10.1016/j.envpol.2015.06.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 05/27/2023]
Abstract
The occurrence of three groups of hazardous organic contaminants (PCBs, PAHs, Me-PAHs) in fifteen watercourses and rivers located in highly urbanized and industrialized zones was studied. The distribution of 62 organic contaminants was determined in three matrices: in the dissolved phase, associated with suspended solid matter (SSM) and in sediment. Their distributions in the aquatic environment depend strongly on their physicochemical properties. Low molecular weight PAHs were predominant in the dissolved phase while those with high molecular weight accumulated preferentially in SSM and sediments. Among the 28 PCBs congeners, only PCB153 was detected. The results showed that the contamination of these areas originated mainly from combustion processes. The three the most polluted sites identified are surrounded by big cities. Ecotoxicological assessment based on the international Sediment Quality Guidelines (SQGs) showed that the toxic effects of the sediment in these watercourses and rivers occurred due to high levels of hydrocarbons.
Collapse
Affiliation(s)
- Suzanah Rabodonirina
- Université de Lille, LASIR-UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Bat. C8, 59655, Villeneuve d'Ascq, France; Faculté des Sciences de l'Université d'Antananarivo, Unité de Recherche en Génie des Procédés et Génie de l'Environnement (URGPGE), BP 906-101, Antananarivo, Madagascar
| | - Sopheak Net
- Université de Lille, LASIR-UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Bat. C8, 59655, Villeneuve d'Ascq, France.
| | - Baghdad Ouddane
- Université de Lille, LASIR-UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Bat. C8, 59655, Villeneuve d'Ascq, France
| | - Dima Merhaby
- Université de Lille, LASIR-UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Bat. C8, 59655, Villeneuve d'Ascq, France; Université Libanaise, Faculté de santé publique section III, Laboratoire des Sciences de l'Eau et de l'Environnement (L.S.E.E), Tripoli, Lebanon
| | - David Dumoulin
- Université de Lille, LASIR-UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Bat. C8, 59655, Villeneuve d'Ascq, France
| | - Tudor Popescu
- Université de Lille, LASIR-UMR CNRS 8516, Equipe Physico-Chimie de l'Environnement, Bat. C8, 59655, Villeneuve d'Ascq, France; Université d'Etat de Moldavie, Faculté de Biologie et de l'Ecologie, Laboratoire Algologie, MD-2009, Chisinau, Republic of Moldova
| | - Pierre Ravelonandro
- Faculté des Sciences de l'Université d'Antananarivo, Unité de Recherche en Génie des Procédés et Génie de l'Environnement (URGPGE), BP 906-101, Antananarivo, Madagascar
| |
Collapse
|
26
|
Li JY, Cui Y, Su L, Chen Y, Jin L. Polycyclic aromatic hydrocarbons in the largest deepwater port of East China Sea: impact of port construction and operation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:12355-12365. [PMID: 25903171 DOI: 10.1007/s11356-015-4402-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/17/2015] [Indexed: 06/04/2023]
Abstract
PAHs were analyzed for samples of seawater, sediment, and oyster (Saccostrea cucullata) collected from Yangshan Port, East China between 2012 and 2013. Concentrations of ∑PAHs in seawater (180-7,700 ng/L) and oyster (1,100-29,000 ng/g dry weight (dw)) fell at the higher end of the global concentration range, while sediment concentrations (120-780 ng/g dw) were generally comparable to or lower than those reported elsewhere. PAHs in the particulate phase accounted for 85% (52-93%) of the total PAHs in seawater. Congener profile analysis revealed that PAHs in waters originate mainly from petrogenic sources, while high-temperature combustion processes are the predominant sources for sediment. ∑PAHs in oyster well correlated with ∑PAHs in the particulate phase, suggesting particle ingestion as an important pathway for bioaccumulation of PAHs. Cancer risk assessment of PAHs in oyster indicated high human health risks posed by these chemicals to the coastal population consuming this seafood.
Collapse
Affiliation(s)
- Juan-Ying Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Pudong, China
| | | | | | | | | |
Collapse
|
27
|
Li P, Cao J, Diao X, Wang B, Zhou H, Han Q, Zheng P, Li Y. Spatial distribution, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface seawater from Yangpu Bay, China. MARINE POLLUTION BULLETIN 2015; 93:53-60. [PMID: 25726067 DOI: 10.1016/j.marpolbul.2015.02.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/31/2015] [Accepted: 02/11/2015] [Indexed: 05/27/2023]
Abstract
The occurrence of 14 polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency was investigated in surface seawater of Yangpu Bay, China in November 2013 (winter) and May 2014 (summer). Seventy-two samples were collected from 12 sampling sites. The total concentrations of PAHs in Yangpu Bay showed obvious variations in different seasons, which varied from 582.8 to 2208.3 ng L(-1) in winter and 952.4 to 1201.7 ng L(-1) in summer, respectively. Two-ring PAHs accounted for more than 91.6% of total PAHs in winter, and three-ring PAHs were dominant with 81.6% of total PAHs in summer. Molecular indices analyses indicated that the main source of PAHs in Yangpu Bay could be petrogenic contamination. The ecological risk assessment by Risk quotients (RQNCs and RQMPCs) showed a potential ecological risk of PAHs in Yangpu Bay, indicating a close attention should be paid to pollution of PAHs in the coastal area of Yangpu.
Collapse
Affiliation(s)
- Ping Li
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China
| | - Jia Cao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoping Diao
- College of Environment and Plant Protection, Hainan University, Haikou 570228, China; College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| | - Baihua Wang
- Petrochemical Analytical and Testing Center, Yangpu Entry-Exit Inspection and Quarantine Bureau Technology Center, Hainan 578101, China
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China.
| | - Qian Han
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Pengfei Zheng
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China
| | - Yuhu Li
- College of Agriculture, Hainan University, Haikou 570228, China
| |
Collapse
|