1
|
Hainan L, Peng L, Qingqing L, Fang L, Dong Z, Shenfa H, Jie Y, Zhiheng L. Responses of nitrobenzene removal performance and microbial community by modified biochar supported zerovalent iron in anaerobic soil. Sci Rep 2024; 14:17078. [PMID: 39048602 PMCID: PMC11269609 DOI: 10.1038/s41598-024-67301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Biochar-supported ZVI have received increasing attention for their potential to remove nitrobenzene in groundwater and soil. However, the capacity of this material to enhance the biological reduction of nitrobenzene and alter microbial communities in anaerobic groundwater have not been explored. In this study, the nitrobenzene removal performance and mechanism of modified biochar-supported zerovalent iron (ZVI) composites were explored in anaerobic soil. The results showed that the 700 °C biochar composite enhanced the removal of nitrobenzene and inhibited its release from soil to the aqueous phase. NaOH-700-Fe50 had the highest removal rate of nitrobenzene, reaching 64.4%. However, the 300 °C biochar composite inhibited the removal of nitrobenzene. Microbial degradation rather than ZVI-mediated reduction was the main nitrobenzene removal pathway. The biochar composites changed the richness and diversity of microbial communities. ZVI enhanced the symbiotic relationship between microbial genera and weakened competition between soil microbial genera. In summary, the 700 °C modified biochar composite enhanced the removal of nitrobenzene by increasing microbial community richness and diversity, by upregulating functional genes, and by promoting electron transfer. Overall, the modified biochar-supported ZVI composites could be used for soil remediation, and NaOH-700-Fe50 is a promising composite material for the on-site remediation of nitrobenzene-contaminated groundwater.
Collapse
Affiliation(s)
- Lu Hainan
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Li Peng
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Li Qingqing
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Liu Fang
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Zhou Dong
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Huang Shenfa
- Shanghai Technology Center for Reduction of Pollution and Carbon Emissions, Shanghai, 200235, China
| | - Yang Jie
- Ministry of Ecology and Environment Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
| | - Li Zhiheng
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang Province, China
| |
Collapse
|
2
|
Barssoum R, Al Kassis G, Nassereddine R, Saad J, El Ghoul M, Abboud J, Fayad N, Dupoiron S, Cescut J, Aceves-Lara CA, Fillaudeau L, Awad MK. Biochemical limitations of Bacillus thuringiensis based biopesticides production in a wheat bran culture medium. Res Microbiol 2023; 174:104043. [PMID: 36764472 DOI: 10.1016/j.resmic.2023.104043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Bacillus thuringiensis, a gram-positive sporulating bacteria found in the environment, produces, during its sporulation phase, crystals responsible for its insecticidal activity, constituted of an assembly of pore-forming δ-endotoxins. This has led to its use as a biopesticide, an eco-friendly alternative to harmful chemical pesticides. To minimize production cost, one endemic Bacillus thuringiensis sv. kurstaki (Btk) strain Lip, isolated from Lebanese soil, was cultivated in a wheat bran (WB) based medium (IPM-4-Citrus project EC n° 734921). With the aim of studying the biochemical limitations of Btk biopesticide production in a wheat bran based medium, the WB was sieved into different granulometries, heat treated, inoculated with Btk Lip at flask scale, then filtered and separated into an insoluble and a permeate fractions. Several biochemical analyses, ie. bio performances, starch, elemental composition, total nitrogen and ashes, were then conducted on both fractions before and after culture. On a morphological level, two populations were distinguished, the fine starch granules and the coarse lignocellulosic particles. The biochemical analyses showed that both the raw and sieved WB have a similar proteins content (0.115 g/gdm WB), water content (0.116 g/gdm WB) and elemental composition (carbon: 45%, oxygen: 37%, nitrogen: 3%, hydrogen: 6%, ashes: 5%). The starch content was 17%, 14% and 34% and the fermentable fraction was estimated to 32.1%, 36.1% and 51.1% respectively for classes 2, 3 and 4. Both the elemental composition and Kjeldahl analyses showed that the nitrogen is the limiting nutrient of the culture.
Collapse
Affiliation(s)
- Rita Barssoum
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse- (CNRS UMR5504- INRAE UMR792, INSA), 135 Avenue de Rangueil, 31077 Toulouse, Cedex 04, France.
| | - Gabrielle Al Kassis
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon.
| | - Rayan Nassereddine
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon.
| | - Jihane Saad
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - Meriem El Ghoul
- Pharmacological Laboratory Médis, Route de Tunis Km 7-BP 206, Nabeul 8000, Tunisia.
| | - Joanna Abboud
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - Nancy Fayad
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon; Multi-Omics Laboratory, School of Pharmacy, Lebanese American University, P.O. Box 36, Byblos 1401, Lebanon.
| | - Stéphanie Dupoiron
- Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - Julien Cescut
- Toulouse White Biotechnology (INRAE UMS1337, CNRS UMS3582, INSA), INSA-Toulouse, 135 Avenue de Rangueil 31077, Toulouse Cedex 04, France.
| | - César Arturo Aceves-Lara
- Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse- (CNRS UMR5504- INRAE UMR792, INSA), 135 Avenue de Rangueil, 31077 Toulouse, Cedex 04, France.
| | - Luc Fillaudeau
- Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse- (CNRS UMR5504- INRAE UMR792, INSA), 135 Avenue de Rangueil, 31077 Toulouse, Cedex 04, France.
| | - Mireille Kallassy Awad
- Saint-Joseph University of Beirut, UR- EGP, Functional Genomic and Proteomic Laboratory, Faculty of Sciences, Mar Roukos- Dekwaneh, B.P. 17-5208, Mar Mikhael, Beirut, 1104 2020, Lebanon.
| |
Collapse
|
3
|
Jaiswal VK, Sonwani RK, Singh RS. Construction and performance assessment of Recirculating packed bed biofilm reactor (RPBBR) for effective biodegradation of p-cresol from wastewater. BIORESOURCE TECHNOLOGY 2023:129372. [PMID: 37343800 DOI: 10.1016/j.biortech.2023.129372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Wastewater containing excess phenolic compounds is considered a major environmental concern due to its adverse impacts on the ecosystem. In this work, an effort has been given to treat the p-cresol from wastewater using Recirculating Packed Bed Biofilm Reactor (RPBBR). The process parameters, namely inoculum dose, pH, and NaCl (w/v) concentration were optimized to enhance the specific growth and obtained to be 14 ml, 7.0, and 1% NaCl (w/100 ml), respectively. Maximum p-cresol removal efficiency of 99.36±0.2% was achieved at 100 mg L-1 of p-cresol. First-order rate constants were found to be 0.70 day-1 and 0.96 day-1 for batch and continuous mode, respectively. The intermediates were analysed using FT-IR and GC-MS analysis. Pseudomonas fluorescens was used to assess bacterial toxicity and observed that the toxicity was reduced in case of treated wastewater. Finally, the performance of continuous RPBBR was better than the batch mode.
Collapse
Affiliation(s)
- Vivek Kumar Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India; Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam, Andhra Pradesh 530003, India
| | - Ravi Kumar Sonwani
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India; Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam, Andhra Pradesh 530003, India
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India; Department of Chemical Engineering, Indian Institute of Petroleum and Energy (IIPE), Visakhapatnam, Andhra Pradesh 530003, India.
| |
Collapse
|
4
|
Cui T, Wang P, Li J, Su Y, Liu N, Hong M. Effects of temperature, pH, and salinity on the growth kinetics of Pseudomonas sp. NB-1, a newly isolated cold-tolerant, alkali-resistant, and high-efficiency nitrobenzene-degrading bacterium. ENVIRONMENTAL TECHNOLOGY 2023; 44:2171-2183. [PMID: 35019831 DOI: 10.1080/09593330.2021.2024886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/11/2021] [Indexed: 05/30/2023]
Abstract
ABSTRACTStrain NB-1, which can efficiently degrade nitrobenzene, was identified as Pseudomonas frederiksbergensis. NB-1 was resistant to cold and alkali with the widest temperature (4-35 °C) and pH (5-11) adaptive range, compared with other reported nitrobenzene-degrading microorganisms. Based on the Haldane-Andrews model, the real maximum specific growth rate μm', specific affinity aA, and inhibition coefficient Ki were used in response surface methodology (RSM) simultaneously for the first time to guide NB-1 to treat nitrobenzene wastewater. According to the RSM model, the environmental factors (temperature, pH, salinity) corresponding to the optimal values of μm', aA, and Ki were determined. By comparing the specific growth rates corresponding to the optimal values of μm', aA, and Ki, respectively, the optimum growth conditions of NB-1 were determined under different nitrobenzene concentrations. The study of μm', aA, and Ki by RSM provided a new approach for a more accurate optimization of biological wastewater treatment conditions.
Collapse
Affiliation(s)
- Tingchen Cui
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - Peng Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - Jialu Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| | - YaoMing Su
- South China Institute of Environmental Sciences, MEP, People's Republic of China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
- Institute of Groundwater and Earth Science, Jinan University, Guangzhou City, People's Republic of China
| | - Mei Hong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and Resources, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
5
|
Hadibarata T, Kristanti RA, Bilal M, Yilmaz M, Sathishkumar P. Biodegradation mechanism of chlorpyrifos by halophilic bacterium Hortaea sp. B15. CHEMOSPHERE 2023; 312:137260. [PMID: 36400190 DOI: 10.1016/j.chemosphere.2022.137260] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
For decades, most of the developing nations have relied on chlorpyrifos for insecticidal activity in the agriculture sector. It is a common chlorinated organophosphorus pesticide that has been widely used to control insects to protect plants. This study aimed to investigate the effects of environmental characteristics such as salinity, pH, temperature, and surfactant on Hortaea sp. B15 mediated degradation of chlorpyrifos as well as enzyme activity and metabolic pathway. The highest bacterial growth (4.6 × 1016 CFU/mL) was achieved after 20 h of incubation in a 100 mg/L chlorpyrifos amended culture. The fit model and feasible way to express the chlorpyrifos biodegradation kinetics in normal condition and optimized was a first-order rate equation, with an R2 value of 0.95-0.98. The optimum pH for chlorpyrifos biodegradation was pH 9, which resulted in a high removal rate (91.1%) and a maximum total count of 3.8 × 1016 CFU/mL. Increasing the temperature over 40 °C may inhibit microbial development and biodegradation. There was no significant effect of culture salinity on degradation and bacterial growth. In the presence of non-ionic surfactant Tween 80, the maximum chlorpyrifos degradation (89.5%) and bacterial growth (3.8 × 1016 CFU/mL) was achieved. Metabolites such as 3,5,6-trichloropyridin-2-ol and 2-pyridinol were identified in the Hortaea sp. B15 mediated degradation of chlorpyrifos. According to the findings, Hortaea sp. B15 should be recommended for use in the investigation of in situ biodegradation of pesticides.
Collapse
Affiliation(s)
- Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, CDT 250, Miri, Sarawak, 98009, Malaysia.
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency of Indonesia, Jalan Pasir Putih 1, Jakarta, 14430, Indonesia
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695, Poznan, Poland
| | - Murat Yilmaz
- Department of Chemical Engineering, Faculty of Engineering, Osmaniye Korkut Ata University, 80000, Osmaniye, Turkiye
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India.
| |
Collapse
|
6
|
Deng YD, Wang LJ, Zhang WH, Xu J, Gao JJ, Wang B, Fu XY, Han HJ, Li ZJ, Wang Y, Tian YS, Peng RH, Yao QH. Construction of complete degradation pathway for nitrobenzene in Escherichia coli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:114016. [PMID: 36027713 DOI: 10.1016/j.ecoenv.2022.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Nitrobenzene is widely present in industrial wastewater and soil. Biodegradation has become an ideal method to remediate organic pollutants due to its low cost, high efficiency, and absence of secondary pollution. In the present study, 10 exogenous genes that can completely degrade nitrobenzene were introduced into Escherichia coli, and their successful expression in the strain was verified by fluorescence quantitative polymerase chain reaction and proteomic analysis. The results of the degradation experiment showed that the engineered strain could completely degrade 4 mM nitrobenzene within 8 h. The formation of intermediate metabolites was detected, and the final metabolites entered the E. coli tricarboxylic acid cycle smoothly. This process was discovered by isotope tracing method. Results indicated the integrality of the degradation pathway and the complete degradation of nitrobenzene. Finally, further experiments were conducted in soil to verify its degradation ability and showed that the engineered strain could also degrade 1 mM nitrobenzene within 10 h. In this study, engineered bacteria that can completely degrade nitrobenzene have been constructed successfully. The construction of remediation-engineered bacteria by synthetic biology laid the foundation for the industrial application of biological degradation of organic pollutants.
Collapse
Affiliation(s)
- Yong-Dong Deng
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Li-Juan Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Wen-Hui Zhang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Jian-Jie Gao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Bo Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xiao-Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Hong-Juan Han
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Zhen-Jun Li
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yu Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Ri-He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Quan-Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, 2901, Beidi Road, Shanghai, China; Key Laboratory for Safety Assessment (Enviornment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
7
|
Zhu C, Huang H, Chen Y. Recent advances in biological removal of nitroaromatics from wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119570. [PMID: 35667518 DOI: 10.1016/j.envpol.2022.119570] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Collapse
Affiliation(s)
- Cuicui Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Yahya RO. Magnetic Graphene Oxide/Carboxymethyl-Imidazolium-Grafted Chitosan Schiff Base Nanocomposite: A New PdNPs Support for Efficient Catalytic Reduction of Hazardous Nitroarenes. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Wang Y, Hou Y, Wang Y, Zhang A, Wang Q. Immobilization of psychrophile Psychrobacter sp. ANT206 onto novel reusable magnetic nanoparticles and its application for nitro-aromatic compounds biodegradation under low temperature. Biodegradation 2022; 33:223-237. [PMID: 35419646 DOI: 10.1007/s10532-022-09978-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
Abstract
Efficient biodegradation may offer a solution for the treatment of nitro-aromatic compounds (NACs) with toxicity, mutagenicity and persistence in the environment. In this study, dopamine (DA) functionalized magnetic nanoparticles with biocompatibility and hydrophilicity were synthesized and utilized for the immobilization of nitro-aromatic compounds degrading psychrophile Psychrobacter sp. ANT206 harboring the cold-adapted nitroreductase. The prepared nanocarriers were characterized using multiple methods. The highest immobilization yield of cells immobilized by Fe3O4@SiO2@DA was 90.67% under the optimized conditions of 10 °C, pH 7.5, 2 h and cell/support 1.2 mg/mg, and the activity recovery was 89.41%. In addition, the obtained immobilized cells displayed excellent salinity stability and reusability. Moreover, immobilized P. sp. ANT206 strains showed remarkable biodegradation capability on nitrobenzene and p-nitrophenol. This study introduced those novel Fe3O4@SiO2@DA nanoparticles could be applied as ideal and low-cost nanocarriers for the immobilization of cells and large-scale bioremediation of hazardous NACs with perspective applications under low temperature.
Collapse
Affiliation(s)
- Yifan Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Yanhua Hou
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, Shandong, China
| | - Yatong Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Ailin Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Quanfu Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, Shandong, China.
| |
Collapse
|
10
|
Khanpour-Alikelayeh E, Partovinia A, Talebi A, Kermanian H. Enhanced biodegradation of light crude oil by immobilized Bacillus licheniformis in fabricated alginate beads through electrospray technique. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:328. [PMID: 33956244 DOI: 10.1007/s10661-021-09104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Petroleum contamination of marine environments due to exploitation and accidental spills causes serious harm to ecosystems. Bioremediation with immobilized microorganisms is an environmentally friendly and cost-effective emerging technology for treating oil-polluted environments. In this study, Bacillus licheniformis was entrapped in Ca alginate beads using the electrospray technique for light crude oil biodegradation. Three important process variables, including inoculum size (5-15% v/v), initial oil concentration (1500-3500 ppm), and NaCl concentration (0-30 g/L), were optimized to obtain the best response of crude oil removal using response surface methodology (RSM) and Box-Behnken design (BBD). The highest crude oil removal of 79.58% was obtained for 1500 ppm of crude oil after 14 days using immobilized cells, and it was lower for freely suspended cells (64.77%). Our result showed similar trends in the effect of variables on the oil biodegradation rate in both free cell (FC) and immobilized cell (IC) systems. However, according to the analysis of variance (ANOVA) results, the extent of the variables' effectiveness was different in FC and IC systems. In the immobilized cell system, all variables had a greater effect on the rate of light crude oil degradation. Moreover, to evaluate the effectiveness of free and immobilized B. licheniformis in bioremediation of an actual polluted site, the crude oil spill in natural seawater was investigated. The results suggested the stability of beads in the seawater, as well as high degradation of petroleum hydrocarbons by free and immobilized cells in the presence of indigenous microorganisms.
Collapse
Affiliation(s)
- Elham Khanpour-Alikelayeh
- Department of Environment, College of Environment, Karaj, Iran
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Ali Partovinia
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran.
| | - Ahmad Talebi
- Department of Environment, College of Environment, Karaj, Iran
| | - Hossein Kermanian
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
11
|
Khanpour-Alikelayeh E, Partovinia A, Talebi A, Kermanian H. Investigation of Bacillus licheniformis in the biodegradation of Iranian heavy crude oil: A two-stage sequential approach containing factor-screening and optimization. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111103. [PMID: 32818878 DOI: 10.1016/j.ecoenv.2020.111103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Oil pollution is a serious international concern due to its harmful effect on human health and the environment. This study aims to investigate the effective factors on the biodegradation of Iranian heavy crude oil by Bacillus licheniformis. For this purpose, oil removal from the artificial seawater was studied by response surface methodology (RSM). After the screening experiments, pH (4-10), NaCl concentration (0-10 g/L), and oil concentration (500-4500 ppm) were selected as influential factors. Moreover, to evaluate the bacterial capability in bioremediation of an actual polluted site, crude oil spill with a salinity of 35 g/L was experimentally simulated. The proposed model in this study clearly shows that both selected individual factors and their interactions are significantly effective on the crude oil biodegradation capacity. The results showed that Bacillus licheniformis was able to degrade crude oil at different concentrations of oil, especially at low concentrations, which are challenging in actual polluted sites. 15%-66% removal was achieved for 500-4500 ppm of crude oil after 14 days. Furthermore, according to the obtained results, this bacterium can tolerate the salinity up to 3.5%. At this salinity level, crude oil removal was 23.43 and 25.64% in neutral and alkaline conditions, respectively. Process factors were optimized, and 54.8% of crude oil was removed at optimum conditions i.e., 3500 ppm crude oil concentration, 2.5 g/L of NaCl and pH equal to 8.5. Finally, it can be concluded that the selected bacterium of this study can be more effective in harsh environments such as hypersaline and alkaline conditions.
Collapse
Affiliation(s)
- Elham Khanpour-Alikelayeh
- Department of Environment, College of Environment, Karaj, Iran; Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Ali Partovinia
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran.
| | - Ahmad Talebi
- Department of Environment, College of Environment, Karaj, Iran
| | - Hossein Kermanian
- Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
12
|
Optimizing Suitable Conditions for the Removal of Ammonium Nitrogen by a Microbe Isolated from Chicken Manure. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractStrain C was isolated from chicken manure, and its phenotypic characteristics were gram-stain negative, yellow-pigmented, aerobic bacterium, heterotrophic, non-motile, chemoorganotrophic, non-gliding as well as non-spore-forming. A 16S rRNA gene sequence analysis showed that strain C occupied a distinct lineage within the family of the genus Chryseobacterium, and it shared highest sequence similarity with Chryseobacterium solincola strain 1YB-R12 (80%). The new isolate has been studied for removing ammonium-nitrogen (NH4-N) and the optimization of suitable conditions. The strain C was able to degrade over 42.8% of NH4-N during its active growth cycle. Experimental study of the effect of temperature and pH on NH4-N removal showed that the temperature and pH optima for NH4-N removal were 30–35℃ and 4–8, respectively. The results indicated that strain C shows a potential application for wastewater treatment.
Collapse
|
13
|
Strengthening of aerobic sludge granulation by the endogenous acylated homoserine lactones-secreting strain Aeromonas sp. A-L3. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Tiwari J, Tarale P, Sivanesan S, Bafana A. Environmental persistence, hazard, and mitigation challenges of nitroaromatic compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28650-28667. [PMID: 31388957 DOI: 10.1007/s11356-019-06043-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/22/2019] [Indexed: 05/15/2023]
Abstract
Nitroaromatic compounds (NACs) are extensively used in different industries and are synthesized in large quantity due to their heavy demand worldwide. The broad use of NACs poses a serious pollution threat. The treatment processes used for the removal of NACs are not effective and sustainable, leading to their release into the environment. The nitro group attached to benzene ring makes the compounds recalcitrant due to which they persist in the environment. Being hazardous to human as well as other living organisms, NACs are listed in the USEPA's priority pollutant group. This review provides updated information on the sources of NACs, prevalence in different environmental matrices, and recent developments in methods of their detection, with emphasis on current trends as well as future prospects. The harmful effects of NACs due to exposure through different routes are also highlighted. Further, the technologies reported for the treatment of NACs, including physico-chemical and biological methods, and the challenges faced for their effective implementation are discussed. Thus, the review discusses relevant issues in detail making suitable recommendations, which can be helpful in guiding further research in this subject.
Collapse
Affiliation(s)
- Jyoti Tiwari
- AcSIR (Academy of Scientific and Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute) Campus, Nagpur, 440020, India
- Director's Research Cell, CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, 440020, Maharashtra, India
| | - Prashant Tarale
- Health and Toxicity Cell, CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, 440020, India
- Blood Research Institute, Versiti Wisconsin, 8727 Watertown Plank Road, Milwaukee, WI, 53213, USA
| | - Saravanadevi Sivanesan
- AcSIR (Academy of Scientific and Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute) Campus, Nagpur, 440020, India
- Health and Toxicity Cell, CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, 440020, India
| | - Amit Bafana
- AcSIR (Academy of Scientific and Innovative Research), CSIR-NEERI (National Environmental Engineering Research Institute) Campus, Nagpur, 440020, India.
- Director's Research Cell, CSIR-NEERI (National Environmental Engineering Research Institute), Nagpur, 440020, Maharashtra, India.
| |
Collapse
|
15
|
Preparation of Ag-MnFe2O4-bentonite Magnetic Composite for Pb(II)/Cd(II) Adsorption Removal and Bacterial Inactivation in Wastewater. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7372-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Gao YC, Guo SH, Wang JN, Zhang W, Chen GH, Wang H, Du J, Liu Y, Naidu R. Novel Bacillus cereus strain from electrokinetically remediated saline soil towards the remediation of crude oil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26351-26360. [PMID: 29981021 DOI: 10.1007/s11356-018-2495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
A new strain SWH-15 was successfully isolated after initial electrokinetic remediation experiment using the same saline soil sampled from Shengli Oilfield, China. Four methods (morphological and biochemical characteristics, whole-cell fatty acid methyl esters (FAMEs) analysis, 16S rRNA sequence analysis and DNA G + C content and DNA-DNA hybridization analysis) were used to identify the taxonomic status of SWH-15 and confirmed that SWH-15 was a novel species of the Bacillus (B.) cereus group. Then, we assessed the degrading ability of the novel strain SWH-15 to crude oil through a microcosm experiment with four treatments, including control (CK), bioremediation using SWH-15 (Bio), electrokinetic remediation (EK), and combined bioremediation and electrokinetic remediation (Bio + EK). The results showed that the Bio + EK combined remediation treatment was more effective than the CK, Bio, and EK treatments in degrading crude oil contaminants. Bioaugmentation, by addition of the strain SWH-15 had synergistic effect with EK in Bio + EK treatment. Bacterial community analysis showed that electrokinetic remediation alone significantly altered the bacterial community of the saline soil. The addition of the strain SWH-15 alone had a weak effect on the bacterial community. However, the strain SWH-15 boosted the growth of other bacterial species in the metabolic network and weakened the impact of electrical field on the whole bacterial community structure in the Bio + EK treatment.
Collapse
Affiliation(s)
- Yong-Chao Gao
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Shu-Hai Guo
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China.
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China.
| | - Jia-Ning Wang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Wen Zhang
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Guan-Hong Chen
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Applied Microbiology, 28789 East Jingshi Road, Jinan, 250103, China
| | - Hui Wang
- School of Resources and Environment, University of Jinan, Jinan, 250022, China
| | - Jianhua Du
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
17
|
Hongwei Y, Liang C, Fanglin L. Effects of adding betaine on biological nitrogen and phosphorus removal from simulated pickled vegetables wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:2537-2544. [PMID: 29893743 DOI: 10.2166/wst.2018.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Laboratory-scale sequencing batch reactors (SBR) were used to examine the effects of adding dosage and ways of adding betaine on nitrogen and phosphorus removal from simulated pickled vegetables wastewater under two different concentrations of salt. The activated sludge was pre-acclimated in a salt environment prior to the experiment. Adding 0.5-2.0 mM betaine to the synthetic wastewater, all the levels were found to be effective at improving the ammonium nitrogen (NH4+-N) removal with increased salt concentrations from 8 to 16 g/L, in which 1.0 mM betaine was found to be the most effective. Rapid increase of salt concentration, however, showed to have a more pronounced negative effect on total phosphorus (TP) removal. Nevertheless, betaine-added enhanced TP removal was superior to that of NH4+-N in high salt content conditions compared with the absence of betaine. Both NH4+-N and TP removal rate were not significantly influenced by the ways of betaine-adding. Interestingly, the dynamic process on phosphate removal in a single cycle of SBR operation, was showed to have anomalous aerobic phosphorus desorption and anaerobic phosphorus absorption, the former could be caused by insufficiency of biodegradable organic matters and/or longer aeration time, and the latter may be attributed to the function of denitrifying phosphorus-accumulating bacteria in the sludge. As a result, a moderate betaine dosage can obtain a sufficient improvement effect for biological nitrogen and phosphorus removal even under high salt stress.
Collapse
Affiliation(s)
- Yang Hongwei
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Chen Liang
- School of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China
| | - Luo Fanglin
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| |
Collapse
|
18
|
Complete genome sequence of Bacillus licheniformis BL-010. Microb Pathog 2018; 118:199-201. [DOI: 10.1016/j.micpath.2018.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 11/22/2022]
|
19
|
Enrichment and characterization of a bacterial mixture capable of utilizing C-mannosyl tryptophan as a carbon source. Glycoconj J 2018; 35:165-176. [PMID: 29335800 DOI: 10.1007/s10719-017-9807-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Abstract
C-Mannosylation, a protein-modification found in various eukaryotes, involves the attachment of a single mannose molecule to selected tryptophan residues of proteins. Since C-mannosyl tryptophan (CMW) was detected in human urine, it is generally thought that CMW is not catabolized inside our body and instead is excreted via the urine. This paper reports enrichment of a bacterial consortium from soil that degrades CMW. The bacteria grew in minimal medium supplemented with CMW as the carbon source. Interestingly, even after successive clonal picks of individual colonies, several species were still present in each colony as revealed by 16S rRNA gene sequence analysis, indicating that a single species may not be responsible for this activity. A next generation sequencing (NGS) analysis was therefore carried out in order to determine which bacteria were responsible for the catabolism of CMW. It was found that a species of Sphingomonadaceae family, but not others, increased with simultaneous decrease of CMW in the media, suggesting that this species is most likely the one that is actively involved in the degradation of CMW.
Collapse
|
20
|
Li T, Zhang TC, He L. A Novel Method for Enhancing Strains' Biodegradation of 4-Chloronitrobenzene. J Biotechnol 2017; 264:8-16. [PMID: 29050880 DOI: 10.1016/j.jbiotec.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
This paper introduces a novel approach to enhance the strains' biodegradation of 4-chloronitrobenzene by utilizing the synergistic effect of the organic reductant mannitol and the substrate beef extraction. Our results demonstrate that 4-chloronitrobenzene could not be an available nitrogen source to support target strains' growth, which induced the limited 4-chloronitrobenzene biodegradation. In addition, the organic reducing agent and substrate had a better synergistic effect than inorganic reducing agent and substrate to enhance the strains' 4-chloronitrobenzene cometabolic biodegradation. Employing the synergistic effect of the optimal mixture (mannitol and beef extraction), the biodegradation rates of 50mgL-1 4-chloronitrobenzene by seven of the ten target strains were enhanced up to 100% from previous removals of no more than 19.1% after 7days. Three of the strains could even completely degrade 100mgL-1 4-chloronitrobenzene while five strains degraded over 91.4%. The method has good potential to enhance bioremediation of various 4-Chloronitrobenzene-contaminated environments as mannitol and beef extraction are non-toxic to the environment.
Collapse
Affiliation(s)
- Tian Li
- Southwest University, Chongqing 400715, PR China.
| | - Tian C Zhang
- Civil Engineering Department, University of Nebraska-Lincoln, Omaha, NE, USA
| | - Lin He
- Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
21
|
Zhai J, Wang Z, Shi P, Long C. Microbial Community in a Biofilter for Removal of Low Load Nitrobenzene Waste Gas. PLoS One 2017; 12:e0170417. [PMID: 28114416 PMCID: PMC5256912 DOI: 10.1371/journal.pone.0170417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
To improve biofilter performance, the microbial community of a biofilter must be clearly defined. In this study, the performance of a lab-scale polyurethane biofilter for treating waste gas with low loads of nitrobenzene (NB) (< 20 g m-3 h-1) was investigated when using different empty bed residence times (EBRT) (64, 55.4 and 34 s, respectively). In addition, the variations of the bacterial community in the biofilm on the longitudinal distribution of the biofilters were analysed by using Illumina MiSeq high-throughput sequencing. The results showed that NB waste gas was successfully degraded in the biofilter. High-throughput sequencing data suggested that the phylum Actinobacteria and genus Rhodococcus played important roles in the degradation of NB. The variations of the microbial community were attributed to the different intermediate degradation products of NB in each layer. The strains identified in this study were potential candidates for purifying waste gas effluents containing NB.
Collapse
Affiliation(s)
- Jian Zhai
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, PR China
- Department of Applied Chemistry, Nanjing Polytechnic Institute, Nanjing, PR China
| | - Zhu Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, PR China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, PR China
- * E-mail:
| |
Collapse
|
22
|
Ma X, Li X, Li W, Wang D, Xu C, Meng X. Identification and characterization of a cold-adapted and halotolerant nitrobenzene-degrading bacterium. RSC Adv 2015. [DOI: 10.1039/c5ra14280f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
According to strain X7's morphological, physiological and biochemical characteristics and 16S rDNA gene sequence, the result showed that strain X7 was Myroides odoratus.
Collapse
Affiliation(s)
- Xiping Ma
- School of Environmental Science
- Liaoning University
- Shenyang 110036
- China
| | - Xianzhu Li
- School of Environmental Science
- Liaoning University
- Shenyang 110036
- China
| | - Wanlong Li
- School of Environmental Science
- Liaoning University
- Shenyang 110036
- China
| | - Di Wang
- School of Environmental Science
- Liaoning University
- Shenyang 110036
- China
| | - Chengbin Xu
- School of Environmental Science
- Liaoning University
- Shenyang 110036
- China
| | - Xuelian Meng
- School of Pharmacy
- Liaoning University
- Shenyang 110036
- China
| |
Collapse
|