1
|
Fung CW, Chau KY, Tong DCS, Knox C, Tam SST, Tan SY, Loi DSC, Leung Z, Xu Y, Lan Y, Qian PY, Chan KYK, Wu AR. Parentage influence on gene expression under acidification revealed through single-embryo sequencing. Mol Ecol 2023; 32:6796-6808. [PMID: 37888909 DOI: 10.1111/mec.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The dissolution of anthropogenic carbon dioxide (CO2 ) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA-sequencing (RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single-embryo RNA-seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single-embryo RNA-seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential.
Collapse
Affiliation(s)
- Cheuk Wang Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kin Yung Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Daniel Chun Sang Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Claire Knox
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Danson Shek Chun Loi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ying Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Angela Ruohao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
2
|
Leuchtenberger SG, Daleo M, Gullickson P, Delgado A, Lo C, Nishizaki MT. The effects of temperature and pH on the reproductive ecology of sand dollars and sea urchins: Impacts on sperm swimming and fertilization. PLoS One 2022; 17:e0276134. [PMID: 36454769 PMCID: PMC9714736 DOI: 10.1371/journal.pone.0276134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/29/2022] [Indexed: 12/02/2022] Open
Abstract
In an era of climate change, impacts on the marine environment include warming and ocean acidification. These effects can be amplified in shallow coastal regions where conditions often fluctuate widely. This type of environmental variation is potentially important for many nearshore species that are broadcast spawners, releasing eggs and sperm into the water column for fertilization. We conducted two experiments to investigate: 1) the impact of water temperature on sperm swimming characteristics and fertilization rate in sand dollars (Dendraster excentricus; temperatures 8-38°C) and sea urchins (Mesocentrotus franciscanus; temperatures 8-28°C) and; 2) the combined effects of multiple stressors (water temperature and pH) on these traits in sand dollars. We quantify thermal performance curves showing that sand dollar fertilization rates, sperm swimming velocities, and sperm motility display remarkably wide thermal breadths relative to red urchins, perhaps reflecting the wider range of water temperatures experienced by sand dollars at our field sites. For sand dollars, both temperature (8, 16, 24°C) and pH (7.1, 7.5, 7.9) affected fertilization but only temperature influenced sperm swimming velocity and motility. Although sperm velocities and fertilization were positively correlated, our fertilization kinetics model dramatically overestimated measured rates and this discrepancy was most pronounced under extreme temperature and pH conditions. Our results suggest that environmental stressors like temperature and pH likely impair aspects of the reproductive process beyond simple sperm swimming behavior.
Collapse
Affiliation(s)
- Sara Grace Leuchtenberger
- Biology Department, Carleton College, Northfield, MN, United States of America
- Friday Harbor Laboratories, Friday Harbor, WA, United States of America
| | - Maris Daleo
- Biology Department, Carleton College, Northfield, MN, United States of America
- Friday Harbor Laboratories, Friday Harbor, WA, United States of America
| | - Peter Gullickson
- Biology Department, Carleton College, Northfield, MN, United States of America
| | - Andi Delgado
- Biology Department, Carleton College, Northfield, MN, United States of America
- Friday Harbor Laboratories, Friday Harbor, WA, United States of America
| | - Carly Lo
- Biology Department, Carleton College, Northfield, MN, United States of America
| | - Michael T. Nishizaki
- Biology Department, Carleton College, Northfield, MN, United States of America
- Friday Harbor Laboratories, Friday Harbor, WA, United States of America
- * E-mail:
| |
Collapse
|
3
|
Smith AM, Batson PB, Achilleos K, Tamberg Y. Collecting and Culturing Bryozoans for Regenerative Studies. Methods Mol Biol 2022; 2450:151-177. [PMID: 35359307 PMCID: PMC9761509 DOI: 10.1007/978-1-0716-2172-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Among marine invertebrates, bryozoans are small, not well known, and complex to identify. Nevertheless, they offer unique opportunities for whole-body generation research, because of their colonial, modular mode of growth. Here, we describe detailed methods for collection of bryozoans from a range of environments, sample preparation and identification, culture and feeding, spawning and breeding, marking colonies for growth studies, and histological preparation.
Collapse
Affiliation(s)
- Abigail M Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand.
| | - Peter B Batson
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | | | - Yuta Tamberg
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Lo HKA, Chua VA, Chan KYK. Near future ocean acidification modulates the physiological impact of fluoxetine at environmental concentration on larval urchins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149709. [PMID: 34425440 DOI: 10.1016/j.scitotenv.2021.149709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals found in human wastes are emergent pollutants that are continuously released into aquatic systems. While exposure to pharmaceuticals alone could adversely impact aquatic organisms, few studies have considered the interactive effects of pharmaceuticals and the future environmental conditions, such as decreasing pH due to ocean acidification. Given the bioavailability of many pharmaceuticals is dependent on these physical conditions, we investigated the effect of environmentally-relevant concentrations of fluoxetine (10 and 100 ng L-1) under ambient (pH 8.0) and reduced pH conditions (pH 7.7) on physiology, behavior, and DNA integrity of larval sea urchins (Heliocidaris crassispina). Notably, the negative impacts of fluoxetine exposure were attenuated by reduced pH. Larvae exposed to both reduced pH and fluoxetine exhibited lower levels of DNA damage compared to those exposed to only one of the stressors. Similar antagonistic interactions were observed at the organismal level: for example, fluoxetine exposure at 10 ng L-1 under ambient pH increased the percentage of embryos at later developmental stages, but such effects of fluoxetine were absent at pH 7.7. However, despite the modulation of fluoxetine impacts under ocean acidification, control larvae performed better than those exposed to either stressor, alone or in combination. We also observed that pH alone impacted organismal behaviors, as larvae swam slower at reduced pH regardless of fluoxetine exposure. Our findings highlight the need to consider multi-stressor interactions when determining future organismal performance and that multiple metrics are needed to paint a fuller picture of ecological risks.
Collapse
Affiliation(s)
- Hau Kwan Abby Lo
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong; Biology Department, Swarthmore College, 500 College Ave, Swarthmore, PA 19081, USA.
| |
Collapse
|
5
|
Rosenau NA, Galavotti H, Yates KK, Bohlen CC, Hunt CW, Liebman M, Brown CA, Pacella SR, Largier JL, Nielsen KJ, Hu X, McCutcheon MR, Vasslides JM, Poach M, Ford T, Johnston K, Steele A. Integrating High-Resolution Coastal Acidification Monitoring Data Across Seven United States Estuaries. FRONTIERS IN MARINE SCIENCE 2021; 19:1-679913. [PMID: 35693025 PMCID: PMC9179233 DOI: 10.3389/fmars.2021.679913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Beginning in 2015, the United States Environmental Protection Agency's (EPA's) National Estuary Program (NEP) started a collaboration with partners in seven estuaries along the East Coast (Barnegat Bay; Casco Bay), West Coast (Santa Monica Bay; San Francisco Bay; Tillamook Bay), and the Gulf of Mexico (GOM) Coast (Tampa Bay; Mission-Aransas Estuary) of the United States to expand the use of autonomous monitoring of partial pressure of carbon dioxide (pCO2) and pH. Analysis of high-frequency (hourly to sub-hourly) coastal acidification data including pCO2, pH, temperature, salinity, and dissolved oxygen (DO) indicate that the sensors effectively captured key parameter measurements under challenging environmental conditions, allowing for an initial characterization of daily to seasonal trends in carbonate chemistry across a range of estuarine settings. Multi-year monitoring showed that across all water bodies temperature and pCO2 covaried, suggesting that pCO2 variability was governed, in part, by seasonal temperature changes with average pCO2 being lower in cooler, winter months and higher in warmer, summer months. Furthermore, the timing of seasonal shifts towards increasing (or decreasing) pCO2 varied by location and appears to be related to regional climate conditions. Specifically, pCO2 increases began earlier in the year in warmer water, lower latitude water bodies in the GOM (Tampa Bay; Mission-Aransas Estuary) as compared with cooler water, higher latitude water bodies in the northeast (Barnegat Bay; Casco Bay), and upwelling-influenced West Coast water bodies (Tillamook Bay; Santa Monica Bay; San Francisco Bay). Results suggest that both thermal and non-thermal influences are important drivers of pCO2 in Tampa Bay oxygen, National Estuary Program and Mission-Aransas Estuary. Conversely, non-thermal processes, most notably the biogeochemical structure of coastal upwelling, appear to be largely responsible for the observed pCO2 values in West Coast water bodies. The co-occurrence of high salinity, high pCO2, low DO, and low temperature water in Santa Monica Bay and San Francisco Bay characterize the coastal upwelling paradigm that is also evident in Tillamook Bay when upwelling dominates freshwater runoff and local processes. These data demonstrate that high-quality carbonate chemistry observations can be recorded from estuarine environments using autonomous sensors originally designed for open-ocean settings.
Collapse
Affiliation(s)
- Nicholas A. Rosenau
- Ocean and Coastal Management Branch, Office of Wetlands Oceans and Watersheds, United States Environmental Protection Agency, Washington, DC, United States
| | - Holly Galavotti
- Ocean and Coastal Management Branch, Office of Wetlands Oceans and Watersheds, United States Environmental Protection Agency, Washington, DC, United States
| | - Kimberly K. Yates
- United States Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, United States
| | - Curtis C. Bohlen
- Casco Bay Estuary Partnership, Cutler Institute, University of Southern Maine, Portland, ME, United States
| | - Christopher W. Hunt
- Ocean Process Analysis Laboratory, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, United States
| | - Matthew Liebman
- United States Environmental Protection Agency Region 1, Boston, MA, United States
| | - Cheryl A. Brown
- Pacific Coastal Ecology Branch, Pacific Ecological Systems Division, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, United States
| | - Stephen R. Pacella
- Pacific Coastal Ecology Branch, Pacific Ecological Systems Division, Office of Research and Development, United States Environmental Protection Agency, Newport, OR, United States
| | - John L. Largier
- Coastal and Marine Sciences Institute, University of California, Davis, Bodega Bay, CA, United States
| | - Karina J. Nielsen
- Estuary & Ocean Science Center, San Francisco State University, Tiburon, CA, United States
| | - Xinping Hu
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Melissa R. McCutcheon
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - James M. Vasslides
- Barnegat Bay Partnership, Ocean County College, Toms River, NJ, United States
| | - Matthew Poach
- NOAA Northeast Fisheries Science Center, Milford, CT, United States
| | - Tom Ford
- The Bay Foundation, Los Angeles, CA, United States
| | | | - Alex Steele
- Ocean Monitoring and Research Group, Los Angeles County Sanitation District (LACSD), Whittier, CA, United States
| |
Collapse
|
6
|
Maboloc EA, Chan KYK. Parental whole life cycle exposure modulates progeny responses to ocean acidification in slipper limpets. GLOBAL CHANGE BIOLOGY 2021; 27:3272-3281. [PMID: 33872435 DOI: 10.1111/gcb.15647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Multigenerational exposure is needed to assess the evolutionary potential of organisms in the rapidly changing seascape. Here, we investigate if there is a transgenerational effect of ocean acidification exposure on a calyptraeid gastropod such that long-term exposure elevates offspring resilience. Larvae from wild type Crepidula onyx adults were reared from hatching until sexual maturity for over 36 months under three pH conditions (pH 7.3, 7.7, and 8.0). While the survivorship, growth, and respiration rate of F1 larvae were unaffected by acute ocean acidification (OA), long-term and whole life cycle exposure significantly compromised adult survivorship, growth, and reproductive output of the slipper limpets. When kept under low pH throughout their life cycle, only 6% of the F1 slipper limpets survived pH 7.3 conditions after ~2.5 years and the number of larvae they released was ~10% of those released by the control. However, the F2 progeny from adults kept under the long-term low pH condition hatched at a comparable size to those in medium and control pH conditions. More importantly, these F2 progeny from low pH adults outperformed F2 slipper limpets from control conditions; they had higher larval survivorship and growth, and reduced respiration rate across pH conditions, even at the extreme low pH of 7.0. The intragenerational negative consequences of OA during long-term acclimation highlights potential carryover effects and ontogenetic shifts in stress vulnerability, especially prior to and during reproduction. Yet, the presence of a transgenerational effect implies that this slipper limpet, which has been widely introduced along the West Pacific coasts, has the potential to adapt to rapid acidification.
Collapse
Affiliation(s)
- Elizaldy A Maboloc
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| |
Collapse
|
7
|
Espinel-Velasco N, Agüera A, Lamare M. Sea urchin larvae show resilience to ocean acidification at the time of settlement and metamorphosis. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104977. [PMID: 32662430 DOI: 10.1016/j.marenvres.2020.104977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Extensive research has shown that the early life stages of marine organisms are sensitive to ocean acidification (OA). Less is known, however, on whether larval settlement and metamorphosis may be affected, or by which mechanisms. These are key processes in the life cycle of most marine benthic organisms, since they mark the transition between the free swimming larval stage to benthic life. We investigated whether OA could affect the larval settlement success of the sea urchin Evechinus chloroticus, a key coastal species with ecological, economic and cultural importance in New Zealand. We performed four settlement experiments to test whether reduced seawater pH (ranging from 8.1 to 7.0, at an interval of ~0.2 pH units) alters larval settlement and metamorphosis success. Our results show that settlement success was not significantly reduced when the larvae were exposed to a range of reduced seawater pH treatments (8.1-7.0) at time of settlement (on direct effects). Similarly, when presented with crustose coralline algae (CCA) pre-conditioned in seawater pH of either pH 8.1 or 7.7 for 28 days, larval settlement success remained unaltered (on indirect effects). We conclude that competent larvae in this species are resilient to OA at time of settlement. Further research on a range of taxa that vary in settlement selectivity and behaviour is needed in order to fully understand the effects of OA on the life cycle of marine invertebrates and the consequences it might have for future coastal marine ecosystems.
Collapse
Affiliation(s)
| | - Antonio Agüera
- Institute of Marine Research, Austevoll Research Station, Storebø, 5392, Norway
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin, 9054, New Zealand
| |
Collapse
|
8
|
Lee YH, Jeong CB, Wang M, Hagiwara A, Lee JS. Transgenerational acclimation to changes in ocean acidification in marine invertebrates. MARINE POLLUTION BULLETIN 2020; 153:111006. [PMID: 32275552 DOI: 10.1016/j.marpolbul.2020.111006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The rapid pace of increasing oceanic acidity poses a major threat to the fitness of the marine ecosystem, as well as the buffering capacity of the oceans. Disruption in chemical equilibrium in the ocean leads to decreased carbonate ion precipitation, resulting in calcium carbonate saturation. If these trends continue, calcifying invertebrates will experience difficultly maintaining their calcium carbonate exoskeleton and shells. Because malfunction of exoskeleton formation by calcifiers in response to ocean acidification (OA) will have non-canonical biological cascading results in the marine ecosystem, many studies have investigated the direct and indirect consequences of OA on ecosystem- and physiology-related traits of marine invertebrates. Considering that evolutionary adaptation to OA depends on the duration of OA effects, long-term exposure to OA stress over multi-generations may result in adaptive mechanisms that increase the potential fitness of marine invertebrates in response to OA. Transgenerational studies have the potential to elucidate the roles of acclimation, carryover effects, and evolutionary adaptation within and over generations in response to OA. In particular, understanding mechanisms of transgenerational responses (e.g., antioxidant responses, metabolic changes, epigenetic reprogramming) to changes in OA will enhance our understanding of marine invertebrate in response to rapid climate change.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 36110, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
Nelson KS, Baltar F, Lamare MD, Morales SE. Ocean acidification affects microbial community and invertebrate settlement on biofilms. Sci Rep 2020; 10:3274. [PMID: 32094391 PMCID: PMC7039980 DOI: 10.1038/s41598-020-60023-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
Abstract
Increased atmospheric CO2 is driving ocean acidification (OA), and potential changes in marine ecosystems. Research shows that both planktonic and benthic communities are affected, but how these changes are linked remains unresolved. Here we show experimentally that decreasing seawater pH (from pH 8.1 to 7.8 and 7.4) leads to reduced biofilm formation and lower primary producer biomass within biofilms. These changes occurred concurrently with a re-arrangement of the biofilm microbial communities. Changes suggest a potential shift from autotrophic to heterotrophic dominated biofilms in response to reduced pH. In a complimentary experiment, biofilms reared under reduced pH resulted in altered larval settlement for a model species (Galeolaria hystrix). These findings show that there is a potential cascade of impacts arising from OA effects on biofilms that may drive important community shifts through altered settlement patterns of benthic species.
Collapse
Affiliation(s)
- Katie S Nelson
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Federico Baltar
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.,NIWA/University of Otago Research Centre for Oceanography, PO Box 56, Dunedin, 9054, New Zealand.,Department of Functional and Evolutionary Ecology, University of Vienna, A-1090, Vienna, Austria
| | - Miles D Lamare
- Department of Marine Science, University of Otago, PO Box 56, Dunedin, 9054, New Zealand. .,NIWA/University of Otago Research Centre for Oceanography, PO Box 56, Dunedin, 9054, New Zealand.
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
10
|
Chan KYK, Tong CSD. Temporal variability modulates pH impact on larval sea urchin development: Themed Issue Article: Biomechanics and Climate Change. CONSERVATION PHYSIOLOGY 2020; 8:coaa008. [PMID: 32274060 PMCID: PMC7132065 DOI: 10.1093/conphys/coaa008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/01/2019] [Accepted: 01/22/2020] [Indexed: 05/11/2023]
Abstract
Coastal organisms reside in highly dynamic habitats. Global climate change is expected to alter not only the mean of the physical conditions experienced but also the frequencies and/or the magnitude of fluctuations of environmental factors. Understanding responses in an ecologically relevant context is essential for formulating management strategies. In particular, there are increasing suggestions that exposure to fluctuations could alleviate the impact of climate change-related stressors by selecting for plasticity that may help acclimatization to future conditions. However, it remains unclear whether the presence of fluctuations alone is sufficient to confer such effects or whether the pattern of the fluctuations matters. Therefore, we investigated the role of frequency and initial conditions of the fluctuations on performance by exposing larval sea urchin Heliocidaris crassispina to either constant or fluctuating pH. Reduced pH alone (pH 7.3 vs 8.0) did not affect larval mortality but reduced the growth of larval arms in the static pH treatments. Changes in morphology could affect the swimming mechanics for these small organisms, and geometric morphometric analysis further suggested an overall shape change such that acidified larvae had more U-shaped bodies and shorter arms, which would help maintain stability in moving water. The relative negative impact of lower pH, computed as log response ratio, on larval arm development was smaller when larvae were exposed to pH fluctuations, especially when the change was less frequent (48- vs 24-h cycle). Furthermore, larvae experiencing an initial pH drop, i.e. those where the cycle started at pH 8.0, were more negatively impacted compared with those kept at an initial pH of 7.3 before the cycling started. Our observations suggest that larval responses to climate change stress could not be easily predicted from mean conditions. Instead, to better predict organismal performance in the future ocean, monitoring and investigation of the role of real-time environmental fluctuations along the dispersive pathway is key.
Collapse
Affiliation(s)
- Kit Yu Karen Chan
- Corresponding author: Biology Department, Swarthmore College, Swarthmore, PA, USA. Tel: 610-328-8051.
| | - Chun Sang Daniel Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
11
|
Dorey N, Martin S, Oberhänsli F, Teyssié JL, Jeffree R, Lacoue-Labarthe T. Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 190-191:20-30. [PMID: 29738950 DOI: 10.1016/j.jenvrad.2018.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
The marine organisms which inhabit the coastline are exposed to a number of anthropogenic pressures that may interact. For instance, the accumulation of toxic metals present in coastal waters is expected to be modified by ocean acidification through e.g. changes in physiological performance and/or elements availability. Changes in bioaccumulation due to lowering pH are likely to be differently affected depending on the nature (essential vs. non-essential) and speciation of each element. The Mediterranean is of high concern for possible cumulative effects due to strong human influences on the coastline. The aim of this study was to determine the effect of ocean acidification (from pH 8.1 down to -1.0 pH units) on the incorporation kinetics of six trace metals (Mn, Co, Zn, Se, Ag, Cd, Cs) and one radionuclide (241Am) in the larvae of an economically- and ecologically-relevant sea urchin of the Mediterranean coastline: Paracentrotus lividus. The radiolabelled metals and radionuclides added in trace concentrations allowed precise tracing of their incorporation in larvae during the first 74 h of their development. Independently of the expected indirect effect of pH on larval size/developmental rates, Paracentrotus lividus larvae exposed to decreasing pHs incorporated significantly more Mn and Ag and slightly less Cd. The incorporation of Co, Cs and 241Am was unchanged, and Zn and Se exhibited complex incorporation behaviors. Studies such as this are necessary prerequisites to the implementation of metal toxicity mitigation policies for the future ocean. We discuss possible reasons and mechanisms for the specific effect of pH on each metals.
Collapse
Affiliation(s)
- Narimane Dorey
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, Institut du Littoral et Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Sophie Martin
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco; Laboratoire Adaptation et Diversité en Milieu Marin, Sorbonne Universités, UPMC Univ Paris 06, Station Biologique, Place Georges Teissier, 29688 Roscoff Cedex, France; CNRS, UMR7144, Station Biologique, Place Georges Teissier, 29688 Roscoff Cedex, France
| | - François Oberhänsli
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco
| | - Jean-Louis Teyssié
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco
| | - Ross Jeffree
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco; Life Sciences, C3, Faculty of Science, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Thomas Lacoue-Labarthe
- International Atomic Energy Agency - Environment Laboratories, 4 Quai Antoine Ier, Monaco; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-Université de La Rochelle, Institut du Littoral et Environnement, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
12
|
Maboloc EA, Chan KYK. Resilience of the larval slipper limpet Crepidula onyx to direct and indirect-diet effects of ocean acidification. Sci Rep 2017; 7:12062. [PMID: 28935906 PMCID: PMC5608699 DOI: 10.1038/s41598-017-12253-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/06/2017] [Indexed: 12/03/2022] Open
Abstract
Ocean acidification (OA) is known to directly impact larval physiology and development of many marine organisms. OA also affects the nutritional quality and palatability of algae, which are principal food sources for many types of planktonic larvae. This potential indirect effect of OA via trophic interactions, however, has not been fully explored. In this study, veligers of Crepidula onyx were exposed to different pH levels representing the ambient (as control) and low pH values (pH 7.7 and pH 7.3) for 14 days, and were fed with Isochrysis galbana cultured at these three respective pHs. pH, diet, nor their interactions had no effect on larval mortality. Decrease in pH alone had a significant effect on growth rate and shell size. Structural changes (increased porosity) in larval shells were also observed in the low pH treatments. Interactions between acidification and reduced diet quality promoted earlier settlement. Unlike other calcifying molluscs, this population of slipper limpets introduced to Hong Kong in 1960s appeared to be resilient to OA and decreased algal nutritional value. If this robustness observed in the laboratory applies to the field, competition with native invertebrates may intensify and this non-native snail could flourish in acidified coastal ecosystems.
Collapse
Affiliation(s)
- Elizaldy A Maboloc
- School of Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, SAR, Hong Kong
| | - Kit Yu Karen Chan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, SAR, Hong Kong.
| |
Collapse
|