1
|
Zhao M, Ren Z, Wei Z, Shi H, Wang L, Liang Y. The Effect of Polyethylene Microplastics on Growth and Antioxydant Response of Oscillatoria Princeps and Chlorella Pyrenoidosa. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:53. [PMID: 39400598 DOI: 10.1007/s00128-024-03959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
This study investigated the impacts of polyethylene microplastics (PE-MPs) with varying particle sizes (13 μm and 6.5 μm) on the growth and antioxidant responses of two freshwater algae species, Oscillatoria princeps (O. princeps) and Chlorella pyrenoidosa (C. pyrenoidosa). The results revealed a significant reduction in chlorophyll a content in both algal species upon exposure to PE-MPs, indicating a disruption of photosynthesis. Furthermore, Superoxide Dismutase (SOD) activity decreased in O. princeps, while Catalase (CAT) activity increased in both species, indicating complex physiological responses to microplastic stress. Notably, phycotoxin levels in O. princeps decreased with PE-MP exposure, while those in C. pyrenoidosa increased, particularly with 6.5 μm PE-MPs. These findings underscore the potential toxic effects of PE-MPs on freshwater algal growth and metabolism, as well as their influence on toxin production. This study contributes valuable insights into the ecotoxicological impacts of microplastics in freshwater environments, highlighting the need for further research on their biological effects and environmental health implications.
Collapse
Affiliation(s)
- Mengxin Zhao
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| | - Zimu Ren
- Miami College, Henan University, Kaifeng, 475004, China
| | - Zhangdong Wei
- Miami College, Henan University, Kaifeng, 475004, China
| | - Haolin Shi
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| | - Lin Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Henan Key Laboratory of Earth System Observation and Modeling, Kaifeng, 475004, China.
| | - Yixin Liang
- College of Engineering, Zhengzhou Technology and Business University, Zhengzhou, 451400, China.
| |
Collapse
|
2
|
Zhang Q, Li S, Fang J, Hao Y, Lu J, Zhang L, Zhang M, Zhang L, Wang Y, Zhang Y, Du H, Gao Y, Yang Z, Sun W, Yan L, Pan G. The combined effects of polystyrene of different sizes and cadmium in mouse kidney tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116660. [PMID: 38944012 DOI: 10.1016/j.ecoenv.2024.116660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Environmental accumulation of nano- and microplastics pose serious risks to human health. Polystyrene (PS) is a polymer commonly used in the production of plastics. However, PS can adsorb cadmium (Cd), thereby influencing bioavailability and toxicity in vivo. Moreover, PS and Cd can accumulate in the mammalian kidney. Therefore, the aim of the present study was to assess the effects of combined exposure to PS and Cd in the kidney. Kidney damage was evaluated in male mice gavaged with PS (diameter, 100 nm and/or 1 μm) and Cd for 25 days.The results showed that PS at 100 nm caused more severe oxidative damage and cell apoptosis than PS at 1 μm. Combined exposure to PS at both 100 nm and 1 μm caused more severe kidney damage than the single administration groups. The extent of kidney toxicity caused by Cd differed with the combination of PS particles at 100 nm vs. 1 μm. The degree of damage to kidney function, pathological changes, and cell apoptosis induced by Cd+100 nm PS+1μm PS was the most severe. An increase in the Bax/Bcl2 ratio and overexpression of p53 and caspase-3 revealed that renal cell apoptosis might be induced via the mitochondrial pathway. Collectively, these findings demonstrate that the size of PS particles dictates the combined effects of PS and Cd in kidney tissues. Kidney damage caused by the combination of different sizes of PS particle and Cd is more complicated under actual environmental conditions.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Shuting Li
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Jing Fang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Yue Hao
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Junge Lu
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Lu Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Minmin Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Li Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Yihe Wang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Yu Zhang
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Hongying Du
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Yuan Gao
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China
| | - Zuosen Yang
- Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China; Institute of Chronic Diseases, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, People's Republic of China
| | - Wei Sun
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China.
| | - Lingjun Yan
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China.
| | - Guowei Pan
- Research Center for Universal Health, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China; Liaoning Provincial Key Laboratory of Early Warning and Intervention Technology and Countermeasure Research for Major Public Health Events, People's Republic of China; Institute of Preventive Medicine, China Medical University, Shenyang 110122, People's Republic of China.
| |
Collapse
|
3
|
Abbasi S, Turner A, Jędruchniewicz K, Różyło K, Oleszczuk P. Exchangeable versus residual metals in naturally aged plastic litter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24197-24206. [PMID: 38438643 DOI: 10.1007/s11356-024-32683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/24/2024] [Indexed: 03/06/2024]
Abstract
Metals may be associated with plastics as additives arising from manufacture or through acquisition from the environment, but these associations are often poorly defined or referred to synonymously when considering metal availability. In this study, samples of plastic litter (n = 22) have been collected from various environmental and industrial compartments of Lublin Province, Poland, and fractionated according to polymer type (polyethylene, polyethylene terephthalate, nylon, expanded polystyrene, polypropylene, and "mixed") before being micronised to < 2 mm. Composites (n = 89) were subjected to two phases of a standardised and widely employed sequential extraction protocol (Bureau Communautaire de Reference; BCR) in order to define available (acid-soluble and exchangeable) and residual (soluble in boiling aqua regia) concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. For a given metal, total content, calculated by summing available and residual components, was highly variable, both between locations and amongst polymer categories, reflecting the heterogeneous distribution of a multitude of different additives. Overall, however, concentrations were greatest for Fe, with medians of several hundred to several thousand mg kg-1 amongst the different polymers, and lowest for Cd, Co, and Ni, where nearly all concentrations were below 10 mg kg-1. Median percentage metal availabilities were greatest for expanded polystyrene and were above 25% for Mn and Zn and below 10% for Cr and Fe in all polymer types. These observations are largely, but not entirely, attributed to the relative contributions of metals acquired from the environment and metals present as additives and residues. Significantly, the approach employed allows direct comparisons of metal availability in plastics with metal availability in environmental solids in order to evaluate the overall impacts of plastics in metal risk assessments.
Collapse
Affiliation(s)
- Sajjad Abbasi
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland.
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran.
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Katarzyna Jędruchniewicz
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| | - Krzysztof Różyło
- Department of Agricultural Ecology, Faculty of Agrobioengineering, University of Life Sciences, 13 Akademicka Street, 20-950, Lublin, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031, Lublin, Poland
| |
Collapse
|
4
|
Phasukarratchai N. Effects and applications of surfactants on the release, removal, fate, and transport of microplastics in aquatic ecosystem: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121393-121419. [PMID: 37999837 DOI: 10.1007/s11356-023-30926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Microplastics (MPs) and surfactants (STs) are emerging pollutants in the environment. While many studies have focused on the interactions of STs with MPs, there has not been a comprehensive review focusing on the effect of STs on MPs in aquatic ecosystems. This review summarizes methods for removal of MPs from wastewater (e.g., filtration, flotation, coagulation/flocculation, adsorption, and oxidation-reduction) and the interactions and effects of STs with MPs (adsorption, co-adsorption, desorption, and toxicity). STs can modify MPs surface properties and influence their removal using different wastewater treatments, as well as the adsorption-desorption of both organic and inorganic chemicals. The concentration of STs is a crucial factor that impacts the removal or adsorption of pollutants onto MPs. At low concentrations, STs tend to facilitate MPs removal by flotation and enhance the adsorption of pollutants onto MPs. High ST concentrations, mainly above the critical micelle concentrations, cause MPs to become dispersed and difficult to remove from water while also reducing the adsorption of pollutants by MPs. Excess STs form emulsions with the pollutants, leading to electrostatic repulsion between MPs/STs and the pollutant/STs. As for the toxicity of MPs, the addition of STs to MPs shows complicated results, with some cases showing an increase in toxicity, some showing a decrease, and some showing no effect.
Collapse
Affiliation(s)
- Naphatsarnan Phasukarratchai
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
5
|
Esmaeili Nasrabadi A, Eydi M, Bonyadi Z. Utilizing Chlorella vulgaris algae as an eco-friendly coagulant for efficient removal of polyethylene microplastics from aquatic environments. Heliyon 2023; 9:e22338. [PMID: 38045186 PMCID: PMC10692900 DOI: 10.1016/j.heliyon.2023.e22338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Polyethylene (PE) microplastics (MPs) are small particles of plastic made from polyethylene, which is a commonly used type of plastic. These microplastics can be found in water sources, such as rivers, lakes, and oceans. They are typically less than 5 mm in size. Chlorella vulgaris (C. vulgaris) is an excellent, simple and inexpensive biocoagulant that can effectively remove a wide range of pollutants through the coagulation and flocculation mechanism. In this study, C. vulgaris algae were used to remove PE MPs. The experiments were designed using the Behnken Box model. The evaluated parameters were the initial PE concentration (100-400 mg/L), the C. vulgaris dose (50-200), and the pH (4-10). The findings showed that increasing the concentration of polyethylene had a positive effect on the efficiency of removal. In addition, the dose of C. vulgaris and pH parameters were inversely and directly related to removal efficiency, respectively. The highest removal efficiency was observed under alkaline conditions. Overall, the maximum PE removal efficiency was 84 % when the concentration of PE was 250 mg/L, the dose of C. vulgaris was 50 mg/L, and the pH was 10. It can be concluded that algae can be used as an environmentally friendly coagulant for effectively removing MPs from aquatic environments.
Collapse
Affiliation(s)
- Afsaneh Esmaeili Nasrabadi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Eydi
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Turner A, Filella M. The role of titanium dioxide on the behaviour and fate of plastics in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161727. [PMID: 36702284 DOI: 10.1016/j.scitotenv.2023.161727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Although titanium dioxide (TiO2) is the most widely used pigment in plastics, there is limited quantitative information available for consumer goods and environmental samples. Moreover, and despite its photocatalytic activity, the potential impacts of TiO2 on the behaviour and fate of environmental plastics has received little attention. This paper compiles measurements of Ti in plastic samples from aquatic environments and in consumer goods that are known to make important contributions to environmental pollution. These data, along with a critical evaluation of experimental studies using TiO2-pigmented plastics, are used to formulate an understanding of how the pigment modifies the properties and persistence of environmental plastics. Titanium is heterogeneously distributed amongst different categories and sources of plastic, with concentrations ranging from <1 mg kg-1 in transparent-translucent materials to over 50,000 mg kg-1 in brightly coloured samples. Concentrations towards the higher end are sufficient to change positively buoyant polyolefins into negatively buoyant plastics, suggesting that environmental fractionation based on Ti content might occur. Accelerated leaching of TiO2 from aged plastic has been demonstrated empirically, and while mobilised particles are reported within a size range greater than biotically-active titania nanoparticles, modelling studies suggest that the latter could be derived from TiO2 pigments in the environment. Although rutile appears to be the most important polymorph of TiO2 in non-fibrous plastics, the degree and type of engineered surface modification in consumer and environmental plastics are generally unknown. Surface modification is likely to have a significant impact on the photo-oxidative degradation of plastics and the mobilisation of fine (and, possibly, nano-sized) TiO2 particles and requires further research.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland
| |
Collapse
|
7
|
Liu G, Gu X, Wu J, Li H, Su L, Chen M, Chen S, Liu Y. The interaction effects of biodegradable microplastics and Cd on Folsomia candida soil collembolan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57041-57049. [PMID: 36930309 DOI: 10.1007/s11356-023-26213-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
In real-field soil conditions, multiple chemicals exposure may be the real scenario for soil biota. The co-occurrence of microplastics (MPs) and cadmium (Cd) is common in soils, which may pose a potential risk to soil ecosystems. Degradable microplastics are producing more MPs, and the potential effects on soil ecosystems are unknown. Therefore, a standard soil animal collembolan Folsomia candida was used to evaluate the single and interaction effects of biodegradable MPs (PLA) and Cd. The results showed that single and co-biodegradable PLA and Cd all had negative influences on the survival, reproduction, and growth of F. candida, and the effects intensified with PLA concentrations. The survival rate, reproduction rate, adult body length, and juvenile body length decreased by 20.0%, 24.2%, 22.9%, and 32.2% at MPs-100 treatment. But combined PLA and Cd alleviated the toxicity of single Cd on F. candida at lower PLA concentrations. The number of juveniles increased by 29.3%, the survival rate increased by 7.52%, the adult body length increased by 11.7%, and the juvenile body length increased by 19.0% at MPs-1 + Cd than single Cd treatment. Biochemical assays on antioxidant enzymes had the same results. Antioxidant enzymes CAT and POD were more sensitive than SOD. CAT and POD activities were induced quickly at shorter exposure periods, and MP treatment thus may be promising biomarkers on soil collembolan for soil MP exposure. PLA is degraded with time in soils; therefore, the long-term effects of co-MPs and Cd in soils are suggested to be further studied.
Collapse
Affiliation(s)
- Guoqiang Liu
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Xuanzhu Gu
- Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jing Wu
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Haidong Li
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Lianghu Su
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Mei Chen
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Sujuan Chen
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China
| | - Yonghua Liu
- Ministry of Ecology and Environment of China, Nanjing Institute of Environmental Sciences, Nanjing, China.
| |
Collapse
|
8
|
Avazzadeh Samani F, Meunier L. Interactions of microplastics with contaminants in freshwater systems: a review of characteristics, bioaccessibility, and environmental factors affecting sorption. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:222-235. [PMID: 36803513 DOI: 10.1080/10934529.2023.2177458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs), plastic particles of 1 nm to <5 mm, have been identified in the atmosphere, soil, and aquatic environments across the globe. MPs may act as vectors to transport environmental contaminants to sensitive receptors, including humans. In this review, the capability of MPs to sorb persistent organic pollutants (POPs) and metals is investigated, along with how sorption is affected by factors, such as pH, salinity, and temperature. Sensitive receptors may take up MPs through incidental ingestion. In the gastrointestinal tract (GIT), contaminants may desorb from MPs, and this desorbed portion is then considered bioaccessible. Understanding the sorption and bioaccessibility of such contaminants is important in determining potential risks of exposure to MPs. Thus, a review is presented on the bioaccessibility of contaminants sorbed to MPs in the human and avian GIT s. The current state of knowledge on MP-contaminant interactions in freshwater systems is limited; these interactions can differ considerably from those in marine environments. The bioaccessibility of contaminants sorbed to MPs can vary significantly, from near zero to 100%, depending on MP type, contaminant characteristics, and the digestive phase. Further research is needed to characterize the bioaccessibility and the potential risks, especially for POPs associated with MPs.
Collapse
Affiliation(s)
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston, Canada
| |
Collapse
|
9
|
Liang X, Zhou D, Wang J, Li Y, Liu Y, Ning Y. Evaluation of the toxicity effects of microplastics and cadmium on earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155747. [PMID: 35533859 DOI: 10.1016/j.scitotenv.2022.155747] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) and heavy metal pollution have become research hotspots in recent years. This study focused on the comprehensive evaluation of the toxicity effect on Eisenia fetida under combined exposure to MPs and the heavy metal cadmium (Cd). With Cd concentration, MPs concentration and MPs partical size as stress factors, the TOPSIS model was constructed to explore the toxicity levels of the stress factors. A short-term co-exposure test and a long-term co-exposure test were designed by orthogonal combination tests with equivalent toxicity levels. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione peroxidase (GPX), glutathione S transferase (GST), and acetylcholinesterase (AChE) and the contents of protein (TP), glutathione (GSH), and malondialdehyde (MDA) in earthworms were determined. Integrated biological responses version 2 (IBRv2) was used to evaluate the toxicity of MPs and Cd combined exposure on earthworms. The results showed that the toxicity ratio of Cd concentration, MPs concentration and MPs partical size was 46 to 29 to 25. Combined exposure to MPs and Cd enhanced the activities of SOD, POD, CAT, GPX and GST, MDA and GSH contents also increased, while the AChE activities were inhibited. SOD, GPX and GST play important roles in the resistance of earthworms to pollutant stress. During short-term co-exposure, Cd concentration had antagonistic effects with on MPs concentration and MPs partical size, while they showed synergistic effects during long-term co-exposure.
Collapse
Affiliation(s)
- Xiaoyan Liang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dongxing Zhou
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiahao Wang
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yunfei Li
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yu Liu
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yucui Ning
- College of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
10
|
Masset T, Ferrari BJD, Oldham D, Dudefoi W, Minghetti M, Schirmer K, Bergmann A, Vermeirssen E, Breider F. In Vitro Digestion of Tire Particles in a Fish Model ( Oncorhynchus mykiss): Solubilization Kinetics of Heavy Metals and Effects of Food Coingestion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15788-15796. [PMID: 34807574 DOI: 10.1021/acs.est.1c04385] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tire and road wear particles (TRWP) have been shown to represent a large part of anthropogenic particles released into the environment. Nevertheless, the potential ecological risk of TRWP in the different environmental compartments and their potential toxic impacts on terrestrial and aquatic organisms remain largely underinvestigated. Several heavy metals compose TRWP, including Zn, which is used as a catalyst during the vulcanization process of rubber. This study investigated the solubilization potential of metals from cryogenically milled tire tread (CMTT) and TRWP in simulated gastric fluids (SFGASTRIC) and simulated intestinal fluids (SFINTESTINAL) designed to mimic rainbow trout (Oncorhynchus mykiss) gastrointestinal conditions. Our results indicate that the solubilization of heavy metals was greatly enhanced by gastrointestinal fluids compared to that by mineral water. After a 26 h in vitro digestion, 9.6 and 23.0% of total Zn content of CMTT and TRWP, respectively, were solubilized into the simulated gastrointestinal fluids. Coingestion of tire particles (performed with CMTT only) and surrogate prey items (Gammarus pulex) demonstrated that the animal organic matter reduced the amount of bioavailable Zn solubilized from CMTT. Contrastingly, in the coingestion scenario with vegetal organic matter (Lemna minor), high quantities of Zn were solubilized from L. minor and cumulated with Zn solubilized from CMTT.
Collapse
Affiliation(s)
- Thibault Masset
- Ecole Polytechnique Fédérale de Lausanne─EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - Benoit J D Ferrari
- Ecotox Centre─EPFL ENAC IIE, GE, Station 2, CH-1015 Lausanne, Switzerland
- Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Dean Oldham
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, Oklahoma 74078, United States
| | - William Dudefoi
- Department Environmental Toxicology, Eawag─Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Matteo Minghetti
- Department of Integrative Biology, Oklahoma State University, 501 Life Science West, Stillwater, Oklahoma 74078, United States
| | - Kristin Schirmer
- Department Environmental Toxicology, Eawag─Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne 1015, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETHZ, Zurich 8092, Switzerland
| | - Alan Bergmann
- Ecotox Centre, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| | | | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne─EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Turner A, Filella M. Hazardous metal additives in plastics and their environmental impacts. ENVIRONMENT INTERNATIONAL 2021; 156:106622. [PMID: 34030075 DOI: 10.1016/j.envint.2021.106622] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Accepted: 05/01/2021] [Indexed: 05/06/2023]
Abstract
Historically, many additives and catalysts used in plastics were based on compounds of toxic metals (and metalloids), like arsenic, cadmium, chromium(VI), and lead. Despite subsequent restrictions, hazardous additives remain in plastics in societal circulation because of the pervasiveness of many products and the more general contamination of recycled goods. However, little is understood about their presence and impacts in the environment, with most studies focusing on the role of plastics in acquiring metals from their surroundings through, for example, adsorption. Accordingly, this paper provides a review of the uses of hazardous, metal-based additives in plastics, the relevant European regulations that have been introduced to restrict or prohibit usage in various sectors, and the likely environmental impacts of hazardous additives once plastics are lost in nature. Examination of the literature reveals widespread occurrence of hazardous metals in environmental plastics, with impacts ranging from contamination of the waste stream to increasing the density and settling rates of material in aquatic systems. A potential concern from an ecotoxicological perspective is the diffusion of metals from the matrix of micro- and nanoplastics under certain physico-chemical conditions, and especially favorable here are the acidic environments encountered in the digestive tract of many animals (birds, fish, mammals) that inadvertently consume plastics. For instance, in vitro studies have shown that the mobilization of Cd and Pb from historical microplastics can greatly exceed concentrations deemed to be safe according to migration limits specified by the current European Toy Safety Directive (17 mg kg-1 and 23 mg kg-1, respectively). When compared with concentrations of metals typically adsorbed to plastics from the environment, the risks from pervasive, historical additives are far more significant.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland.
| |
Collapse
|
12
|
Sheng Y, Ye X, Zhou Y, Li R. Microplastics (MPs) Act as Sources and Vector of Pollutants-Impact Hazards and Preventive Measures. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:722-729. [PMID: 33988728 DOI: 10.1007/s00128-021-03226-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Currently, people are paying more and more attention to the interaction between microplastics (MPs) and chemical substances (including metals and organic substances), so it is necessary to understand the relationship between MPs and chemical substances. In this review, we explored (1) MPs may become a source of chemical substances. (2) MPs can also be used as a carrier for attaching pollutants. (3) No matter what role MPs play, MPs and the attached chemical substances will have harmful effects on biological systems. However, because the current research is not deep enough, more experimental areas are needed to explore the interaction mechanism and the principle of toxicity. In addition, laws and policies need to be developed that actively promote and strive to develop biodegradable alternative microplastics to reduce the harm of microplastics and their additives to the environment.
Collapse
Affiliation(s)
- Yingfei Sheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xueying Ye
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
- Environmental Microplastic Pollution Research Center, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Ruojia Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
13
|
Zhuang W, Zhou F. Distribution, source and pollution assessment of heavy metals in the surface sediments of the Yangtze River Estuary and its adjacent East China Sea. MARINE POLLUTION BULLETIN 2021; 164:112002. [PMID: 33482501 DOI: 10.1016/j.marpolbul.2021.112002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The geochemical characteristics of heavy metals (Cd, Co, Cr, Cu, Ti, Zn) in 61 surface sediments from the Yangtze River Estuary and its adjacent East China Sea were studied. The high values of Cu, Co and Zn are distributed near the mouth of Hangzhou Bay. The high values of Cr appear near Zhoushan Archipelago. The high values of Cd appear in the Yangtze River Estuary, while Ti and Cd have high values in the open sea eastward. The order of pollution degree is Cr > Cd > Co > Zn > Ti > Cu. The enrichment degree is Cd > Cr > Zn > Co > Ti > Cu. Except for some sites, Cd is moderately enriched, but there is no severe enrichment. The main sources of human activities of the six metals include industry and shipping. Agricultural production may be another important source of human activities for Cd.
Collapse
Affiliation(s)
- Wen Zhuang
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China; Ministry of Justice Hub for Research and Practice in Eco-Environmental Forensics, Qingdao 266237, China.
| | - Fengxia Zhou
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
14
|
Zhou G, Wang Q, Li J, Li Q, Xu H, Ye Q, Wang Y, Shu S, Zhang J. Removal of polystyrene and polyethylene microplastics using PAC and FeCl 3 coagulation: Performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141837. [PMID: 32889273 DOI: 10.1016/j.scitotenv.2020.141837] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 05/22/2023]
Abstract
As a new type of potentially threatening pollutant, microplastics are widely distributed in water and may come into contact with the humans through tap water. The removal behaviors of microplastics in water treatment plants coagulation are not completely clear. In this paper, the removal performance and mechanism of polystyrene (PS) and polyethylene (PE) microplastics using PAC and FeCl3 coagulation were studied. Results showed that PAC was better than FeCl3 in removal efficiency of PS and PE microplastics. Charge neutralization occurred in the coagulation process. The figures of scanning electron microscope (SEM) illustrate that agglomeration adsorption occurred in PS system, and the Fourier transform infrared spectroscope (FTIR) spectra demonstrates that new bonds were formed during the interaction between PS microplastics and coagulants. In addition, the hydrolysis products of coagulants played a major role rather than the hydrolysis process in both PS system and PE system. The removal efficiency of microplastics in alkaline conditions was higher than that in acidic conditions. Cl- had little effect on the removal efficiency of microplastics, while SO42- and CO32- had inhibitory and promoting effects respectively. The increase of stirring speed could improve the removal efficiency of microplastics. This paper can provide a reference for the study of microplastics treated by coagulation.
Collapse
Affiliation(s)
- Guanyu Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Qingguo Wang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Jia Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Qiansong Li
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Hao Xu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Qian Ye
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yunqi Wang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Shihu Shu
- School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jing Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
15
|
Schmid C, Cozzarini L, Zambello E. Microplastic's story. MARINE POLLUTION BULLETIN 2021; 162:111820. [PMID: 33203604 DOI: 10.1016/j.marpolbul.2020.111820] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The problem of microplastic pollution is now the order of the day in front of everyone's eyes affecting the environment and the health of leaving creature. This work aims to retrace the history of microplastics in a critical way through a substantial bibliographic collection, defining the points still unresolved and those that can be resolved. Presence of marine litter in different environments is reviewed on a global scale, focusing in particular on micro and macro plastics definition, classification and characterization techniques.
Collapse
Affiliation(s)
- Chiara Schmid
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| | - Luca Cozzarini
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy.
| | - Elena Zambello
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6A, 34127 Trieste, Italy
| |
Collapse
|
16
|
Wu X, Klerks PL, Bi R, Liu WH, Yuan ZD, Ma X, Zhang GQ, Wang SF, Jia YF. Digestive solubilization of Cd in highly-contaminated sediment by marine deposit feeders: The roles of intestinal surfactants in Cd mobilization and Re-Adsorption processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115149. [PMID: 32652431 DOI: 10.1016/j.envpol.2020.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Marine deposit feeders are of ecological significance in transferring sedimentary Cd along aquatic food chains. A key process for this transfer is these organisms' dietary uptake of Cd via solubilization of Cd present in ingested contaminated sediment. To better understand the bioavailability of sedimentary Cd to deposit feeders, the present study used in vitro extraction experiments to explore the contribution of different digestive agents (proteins, amino acids and surfactants) to the solubilization of Cd from sediment collected in a highly-contaminated Chinese bay. This was done for various commercially-available mimetic digestive agents (the protein BSA, a mixture of amino acids, and the surfactants rhamnolipid and SDS), and for proteins and surfactants collected from the gut juice of a sipunculan worm. The Cd mobilization capacity of BSA was significantly higher than that of the amino acids and the commercial surfactants. In the presence of BSA, > 70% of the released Cd became associated with this protein. In contrast, the digestive proteins from the sipunculan had a lower Cd mobilization capacity than was the case for the other digestive agents and the majority of the released Cd (∼80%) was associated with small molecular weight fractions. The differences in Cd mobilization between the BSA and the digestive proteins were attributed to differences in their sediment-adsorption tendencies and their Cd-complexing capacities. While the digestive surfactants had minor effects on the release of sedimentary Cd, they significantly enhanced Cd mobilization by the digestive proteins when both were present simultaneously. Our results suggest that the characteristics of proteins should be considered when using commercially-available mimetic digestive agents to explore Cd bioavailability in sediments. Furthermore, digestive surfactants seem to have important effects on the solubilization of Cd during gut passage by reducing the adsorption of the digestive proteins to the sediments.
Collapse
Affiliation(s)
- Xing Wu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Paul L Klerks
- Department of Biology, University of Louisiana at Lafayette, P.O. Box 43602, Lafayette, LA, 70504, United States
| | - Ran Bi
- Marine Biology Institute, Shantou University, Daxue Road 243, Shantou City, 515063, China
| | - Wen-Hua Liu
- Marine Biology Institute, Shantou University, Daxue Road 243, Shantou City, 515063, China
| | - Zi-Dan Yuan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xu Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Guo-Qing Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shao-Feng Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Yong-Feng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
17
|
Hossain F. Contaminated aquatic sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1794-1804. [PMID: 33459448 DOI: 10.1002/wer.1436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 06/12/2023]
Abstract
Aquatic sediments are contaminated by different anthropogenic activities and natural deposition. This review manuscript has discussed on published manuscript in 2019 based on monitoring and identification of contaminants, GIS application and isotopic evaluation for monitoring of pollutants, physicochemical and biochemical fate and transport of the pollutants as well as remediation and toxicity analysis so that environmental and ecological impacts due to pollution can be minimized.
Collapse
Affiliation(s)
- Fahim Hossain
- Department of Environmental Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
18
|
Zhou G, Wang Q, Zhang J, Li Q, Wang Y, Wang M, Huang X. Distribution and characteristics of microplastics in urban waters of seven cities in the Tuojiang River basin, China. ENVIRONMENTAL RESEARCH 2020; 189:109893. [PMID: 32979998 DOI: 10.1016/j.envres.2020.109893] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 05/24/2023]
Abstract
Microplastics pollution presents an increasing concern worldwide due to the large amount and potential risks. However, data on microplastics in the freshwater environment are still limited, especially in southwest China. This study investigated the microplastics distribution, characteristics and risks in urban water of different cities in the Tuojiang River basin in southwest China. Microplastics were found in all seven cities of the Tuojiang River basin and the concentrations varied from 911.57 ± 199.73 to 3395.27 ± 707.22 items/m3, among which Ziyang urban water had the highest microplastics concentration. Fiber (34.88-65.85%) was a typical and abundant microplastic type. The small size (0.5-1 mm) (27.27-66.67%) was predominant, and white (23.30-54.29%) was the dominant color among all samples. Polypropylene was identified as the main polymer type by Fourier transform infrared spectroscopy. The morphological analysis by scanning electron microscopy indicated that the surfaces of the microplastics had many cracks and a multitude of particles were adsorbed onto it. According to correlation analysis, there was a significant positive correlation between gross domestic product(P=0.015<0.05) and gross domestic product of the secondary industries(P=0.014<0.05) of cities in the Tuojiang River basin and microplastics concentrations, demonstrating impacts of the secondary industries on the microplastics pollution. In addition, water bodies with lower oxidation-reduction potential tended to have higher microplastics abundance. In the Tuojiang River basin, microplastics pollution was more serious in location where water quality was poor. The polymer risk index (H) was calculated to assess the environmental risk of microplastics in different cities, and the results showed that Fushun sites had the highest risk in regard to microplastics. This study provides a valuable reference for a better understanding of the microplastics level and source identification in southwest China.
Collapse
Affiliation(s)
- Guanyu Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Qingguo Wang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| | - Jing Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Qiansong Li
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yunqi Wang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Meijing Wang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Xue Huang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Smith EC, Turner A. Mobilisation kinetics of Br, Cd, Cr, Hg, Pb and Sb in microplastics exposed to simulated, dietary-adapted digestive conditions of seabirds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:138802. [PMID: 32447075 DOI: 10.1016/j.scitotenv.2020.138802] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Samples of beached plastics and historical and contemporary consumer plastics containing hazardous elements derived from reaction residues or functional additives have been micronised and subject to extraction conditions representative of the digestive environment of seabirds. Mobilisation of Br, Cd, Cr, Hg, Pb and Sb into NaCl solution, an avian physiologically-based extraction test (PBET) and a dietary-adapted PBET (DA-PBET) incorporating fish oil as part of the avian diet was monitored by ICP-MS over a 168-h period. Kinetic data were subsequently fitted using pseudo-first-order and parabolic diffusion models in order to derive rate constants for the release of hazardous elements during avian digestion of microplastics. Rate constants were variable and dependent on the nature and origin of plastic, type of residue or additive, extractant solution employed and model applied. Resulting estimates of bioaccessibility, defined as the equilibrium or maximum concentration of an element mobilised over the time course relative to its total concentration, were variable but considerable in many cases. Specifically, maximum values of about 65% of Cd and 100% of Pb were observed in consumer polycarbonate-acrylonitrile butadiene styrene exposed to the avian PBET and beached polyurethane exposed to the DA-PBET, respectively. The potential health risks of hazardous elements in microplastics are addressed and criteria for classification based on the European Toy Safety Directive migration (mobilisation) limits are proposed.
Collapse
Affiliation(s)
- Elliot C Smith
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
20
|
James E, Turner A. Mobilisation of antimony from microplastics added to coastal sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114696. [PMID: 32388305 DOI: 10.1016/j.envpol.2020.114696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Antimony (Sb) widely occurs in plastics as a pigment and reaction residue and through the use and recycling of electronic material enriched in Sb as a flame retardant synergist. In this study, clean estuarine sediment has been contaminated by different microplastics prepared from pre-characterised samples of different types of plastic (including a rubber) containing a range of Sb concentrations (256-47,600 μg g-1). Sediment-plastic mixtures in a mass ratio of 100:1 were subject to 6-h extractions in seawater and in seawater solutions of a protein (bovine serum albumin; BSA) and a surfactant (taurocholic acid; TA) that mimic the digestive conditions of coastal deposit-feeding invertebrates. Most time-courses for Sb mobilisation could be defined by a second-order diffusion equation, with rate constants ranging from 44.6 to 0.0216 (μg g-1)-1 min-1. Bioaccessibilities, defined as maximum extractable concentrations throughout each time course relative to total Sb content, ranged from <0.01% for a polycarbonate impregnated with Sb as a synergist exposed to all solutions, to >1% for acrylonitrile butadiene styrene containing a Sb-based colour pigment exposed to solutions of BSA and TA and recycled industrial polyethylene exposed to BSA solution. The potential for Sb to bioaccumulate or elicit a toxic effect is unknown but it is predicted that communities of deposit-feeders could mobilise significant quantities of Sb in sediment contaminated by microplastics through bioturbation and digestion.
Collapse
Affiliation(s)
- Elanor James
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|