1
|
Almeida CMR, Perdigão R, Correia BR, Van Der Gracht H, Dias S, Magalhães C, Carvalho MF, Mucha AP, Espincho F, Ramos S. Potential of fishing nets for adsorption of inorganic (Cu and Pb) and organic (PAHs) pollutants. MARINE POLLUTION BULLETIN 2024; 209:117291. [PMID: 39571335 DOI: 10.1016/j.marpolbul.2024.117291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
This study aimed to evaluate metals and polycyclic aromatic hydrocarbons (PAHs) adsorption on new plastic fishing nets in both laboratory and quasi-real scenario (nets submersed in marina seawater) experiments as well as in situ monitoring of these contaminants in water and sediments in lost fishing gears hotspots. The latter was inconclusive as environmental contaminants levels were very low. Laboratory experiments showed metals (copper and lead) and PAHs adsorption depended on the thickness and polymeric composition of the net, being lower in thinner nylon nets. Experiments in the marina, also showed significant contaminants adsorption, which increased over time, probably due to biofilm formation on net surface. This work showed the potential role of fishing gears as skins of pollutants, increasing organisms' exposition to contaminants present in the environment. So, initiatives to prevent the loss of fishing gear and to retrieve them are needed to reduce and/or eliminate their environmental impact.
Collapse
Affiliation(s)
- C Marisa R Almeida
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Departamento de Química e Bioquímica, FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
| | - Rafaela Perdigão
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bárbara Ribeiro Correia
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Departamento de Química e Bioquímica, FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Henry Van Der Gracht
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Departamento de Química e Bioquímica, FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Sofia Dias
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Departamento de Química e Bioquímica, FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Catarina Magalhães
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Departamento de Biologia, FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Maria F Carvalho
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; ICBAS - Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana P Mucha
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Departamento de Biologia, FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Francisca Espincho
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal
| | - Sandra Ramos
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av, General Norton de Matos s/n, P 4450-208 Matosinhos, Portugal; Departamento de Biologia, FCUP - Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
2
|
Xie Y, Irshad S, Jiang Y, Sun Y, Rui Y, Zhang P. Microplastic-mediated environmental behavior of metal contaminants: mechanism and implication. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43524-43539. [PMID: 38904875 DOI: 10.1007/s11356-024-34042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Microplastics (MPs) and metals are currently two of the most concerning environmental pollutants due to their persistent nature and potential threats to ecosystems and human health. This review examines the intricate interactions between MPs and metals in diverse environmental compartments, including aquatic, terrestrial, and atmospheric environments by focusing on the complex processes of adsorption and desorption and the mechanisms that govern these interactions. MPs act as carriers and concentrators of metals in aquatic and terrestrial environments, affecting the bioavailability and toxicity of these contaminants to aquatic and terrestrial organisms. This review highlights the existing challenges and constraints associated with current analytical methods, including microscopy, spectroscopy, and isotherm models in studying microplastic-heavy metal interactions. Moreover, we identified the knowledge gaps and future research directions that can enhance our understanding of the dynamic interplay between MPs and metals in various environmental settings.
Collapse
Affiliation(s)
- Yu Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Samina Irshad
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaqi Jiang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Yi Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100093, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
Turner A, Cundell AL. Cigarette filter fibres as a source and sink of trace metals in coastal waters. CHEMOSPHERE 2024; 349:140845. [PMID: 38043613 DOI: 10.1016/j.chemosphere.2023.140845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Cellulose acetate fibres from cigarette filters represent a form of microplastic that has received little attention in the environment. In this study, a ground composite of spent, smoked filter material (FM) has been used to investigate the role of cellulose acetate fibres as a source and a sink of trace metals (Cd, Co, Cu, Ni, Pb and Zn) in coastal waters. FM suspended in river water and seawater and mixtures thereof representative of an estuarine gradient resulted in the leaching of pre-existent metals derived from the combustion of tobacco, with mean percentages of release ranging from about 40 for Pb to nearly 90 for Cd, Co and Zn. Addition of 40 μg L-1 of each metal to FM suspensions incubated for 48 h yielded mean partition coefficients (KDs) ranging from <10 L kg-1 for Co to > 100 L kg-1 for Cu, Pb and Zn, with Cu and Ni displaying a net increase in KD with increasing salinity. Adsorption is interpreted in terms of hydrophobic interactions between metal-organic complexes and the cellulose acetate surface, and in support of this assertion KDs exhibited a significant, positive relationship with published metal-humic acid binding constants. The findings of this study improve our understanding of the role of cellulosic microfibres more generally in transporting trace metals in aquatic systems.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| | - Abigail Louise Cundell
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
4
|
Rozman U, Klun B, Kuljanin A, Skalar T, Kalčíková G. Insights into the shape-dependent effects of polyethylene microplastics on interactions with organisms, environmental aging, and adsorption properties. Sci Rep 2023; 13:22147. [PMID: 38092860 PMCID: PMC10719240 DOI: 10.1038/s41598-023-49175-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
The shape-dependent effects of microplastics have been studied in the context of ingestion but have not been considered in other environmental processes. Therefore, we investigated how the shape of polyethylene microplastics (spheres, fragments, and films) affects interactions with plants, aging, and their adsorption properties. The shape had no effect on the growth rate and chlorophyll content of duckweed Lemna minor, but the fragments strongly adhered to the plant biomass and reduced the root length. The adsorption process of the model organic compound (methylene blue dye) was described by the same kinetic model for all shapes-the experimental data best fit the pseudo-second order model. However, twice as much methylene blue was adsorbed on films as on fragments and spheres. During environmental aging, most biofilm developed on films. The biofilm on spheres contained significantly less photosynthetic microorganisms, but twice as much extracellular polymeric substances (EPS) as on fragments and films. This suggests that the attachment of microorganisms to spherical particles is limited and therefore more intensive production of EPS is required for stable biofilm formation. From the results of this study, it is evident that the shape of microplastics significantly affects not only ecotoxicity but also other environmentally relevant processes.
Collapse
Affiliation(s)
- Ula Rozman
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Barbara Klun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Aleksandra Kuljanin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Tina Skalar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Yu X, Wang B, Han C, Liu L, Han X, Zheng B, Zhang B, Sun J, Zhang Z, Ma W, Zhai L, Lu X. Physicochemical and biological changes on naturally aged microplastic surfaces in real environments over 10 months. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122522. [PMID: 37683760 DOI: 10.1016/j.envpol.2023.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Microplastics (MPs) undergo aging over time, which can influence their behavior in the environment. While laboratory-simulated studies have investigated MP aging, research on natural aging in various real environments remains limited. This study aims to investigate the physical, chemical and biological changes that occur in five types of MPs after more than 10 months of natural aging in three different real environments: seawater, air and soil. Results are compared with previous laboratory experiments. The surface roughness of all types of aged MPs was found to be higher in seawater than in air and soil, which differed from previous simulated studies that showed the highest roughness in air. All aged MPs exhibited the occurrence of hydroxyl and carbonyl groups due to the oxidation processes. Interestingly, the MPs aged in soil showed the lowest level of these functional groups, while in seawater or air, some MPs demonstrated the highest. This contrasts with previous studies indicating the highest level of oxygen-containing functional groups in aged MPs in air. Bacterial analysis identified fourteen bacterial phyla on the surface of aged MPs in all three real environments, with varying abundance in specific environments. Notably, the composition of bacterial communities in the microplastisphere was determined by the surrounding environments, independent of MP types. Natural aging is more complex than laboratory simulations, and the degree of MP aging increases with the complexity of environmental factors. These findings enhance our understanding of the natural aging of MPs in different real environments.
Collapse
Affiliation(s)
- Xue Yu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Bing Wang
- Tianjin Marine Environmental Monitoring Central Station of SOA and Tianjin Marine Environmental Monitoring and Forecasting Center, Tianjin, 300457, China
| | - Chenglong Han
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ling Liu
- Tianjin Marine Environmental Monitoring Central Station of SOA and Tianjin Marine Environmental Monitoring and Forecasting Center, Tianjin, 300457, China
| | - Xiaoxin Han
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Changchun Bureau of Ecology and Environment, Changchun, 130022, China
| | - Boyang Zheng
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Nanchang City Development and Reform Commission, Jiangxi, 330038, China
| | - Bo Zhang
- R&D Department, FS Ltd., Katikati, 3129, New Zealand
| | - Jiawei Sun
- Tianjin Marine Environmental Monitoring Central Station of SOA and Tianjin Marine Environmental Monitoring and Forecasting Center, Tianjin, 300457, China
| | - Zhiyin Zhang
- Tianjin Marine Environmental Monitoring Central Station of SOA and Tianjin Marine Environmental Monitoring and Forecasting Center, Tianjin, 300457, China
| | - Weiqi Ma
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lifang Zhai
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Priya AK, Muruganandam M, Imran M, Gill R, Vasudeva Reddy MR, Shkir M, Sayed MA, AlAbdulaal TH, Algarni H, Arif M, Jha NK, Sehgal SS. A study on managing plastic waste to tackle the worldwide plastic contamination and environmental remediation. CHEMOSPHERE 2023; 341:139979. [PMID: 37659517 DOI: 10.1016/j.chemosphere.2023.139979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Over the past 50 years, the emergence of plastic waste as one of the most urgent environmental problems in the world has given rise to several proposals to address the rising levels of contaminants associated with plastic debris. Worldwide plastic production has increased significantly over the last 70 years, reaching a record high of 359 million tonnes in 2020. China is currently the world's largest plastic producer, with a share of 17.5%. Of the total marine waste, microplastics account for 75%, while land-based pollution accounts for responsible for 80-90%, and ocean-based pollution 10-20% only in overall pollution problems. Even at small dosages (10 μg/mL), microplastics have been found to cause toxic effects on human and animal health. This review examines the sources of microplastic contamination, the prevalent reaches of microplastics, their impacts, and the remediation methods for microplastic contamination. This review explains the relationship between the community composition and the presence of microplastic particulate matter in aquatic ecosystems. The interaction between microplastics and emerging pollutants, including heavy metals, has been linked to enhanced toxicity. The review article provided a comprehensive overview of microplastic, including its fate, environmental toxicity, and possible remediation strategies. The results of our study are of great value as they illustrate a current perspective and provide an in-depth analysis of the current status of microplastics in development, their test requirements, and remediation technologies suitable for various environments.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India; Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India.
| | - M Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India
| | - Muhammad Imran
- Saudi Basic Industries Corporation (SABIC) Technology and Innovation Center, Riyadh 11551, Saudi Arabia
| | - Rana Gill
- University Centre for Research & Development, Electronics & Communication Department Chandigarh University Gharuan, Mohali, Punjab, India
| | | | - Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - M A Sayed
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - T H AlAbdulaal
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - H Algarni
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohd Arif
- Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India.
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
7
|
Wang L, Guo C, Qian Q, Lang D, Wu R, Abliz S, Wang W, Wang J. Adsorption behavior of UV aged microplastics on the heavy metals Pb(II) and Cu(II) in aqueous solutions. CHEMOSPHERE 2023; 313:137439. [PMID: 36460154 DOI: 10.1016/j.chemosphere.2022.137439] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
As the "vector" of heavy metals in the aquatic environment, microplastics (MPs) have a great influence on the migration and transformation of heavy metals. In this study, the adsorption of polypropylene (PP), polyethylene (PE) and polystyrene (PS) on two models of heavy metals after UV aging and environmental variables (ionic coexistence, pH, salinity, and fulvic acid) were comprehensively explored on adsorption. The results show that new oxidation functional groups are formed and their hydrophilicity is enhanced after MPs aging. As a result, the adsorption experiments showed that the adsorption of contaminants by UV aged MPs exceeds that of pristine MPs. The adsorption amounts of Pb(II) and Cu(II) by PP, PE and PS increased by 1.45, 1.46, 1.25 and 1.63, 1.39, 1.22 times, respectively. Adsorption kinetic data were more consistent with the pseudo-second-order kinetic model, proving chemisorption to be the mechanism governing the interaction between metal ions and MPs. The Freundlich model could accurately predict the heavy metal adsorption isotherms on MPs, showing that non-homogeneous multilayer adsorption dominates the process. In Pb(II)-Cu(II) binary composite system, metal ion adsorption capacity on MPs is less than that of the single system adsorption capacity, which proves that there is a specific inhibitory effect between coexisting ions. Additionally, external factors like pH, salinity, and fulvic acid content have a big impact on adsorption behavior. According to mechanism analysis, the adsorption process mainly relies on electrostatic interaction, surface complexation, and van der Waals force.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Chengxin Guo
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Qianqian Qian
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Daning Lang
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| | - Ronglan Wu
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Shawket Abliz
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China.
| | - Wei Wang
- Institute of Chemistry and Center for Pharmacy,University of Bergen, 5020, Bergen, Norway.
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, China
| |
Collapse
|
8
|
Pereira R, Rodrigues SM, Silva D, Freitas V, Almeida CMR, Ramos S. Microplastic contamination in large migratory fishes collected in the open Atlantic Ocean. MARINE POLLUTION BULLETIN 2023; 186:114454. [PMID: 36493521 DOI: 10.1016/j.marpolbul.2022.114454] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Fishes are one of the most important components of the oceans and are exposed to several anthropogenic pressures, namely microplastic (MP), contaminants that are now ubiquitous worldwide. Taking advantage of the 2020 Circumnavigation Expedition carried by the NRP Sagres tall ship of the Portuguese Navy, fish samples from the southern Atlantic ocean were collected to evaluate possible MP contamination. In a total of 14 weeks of campaign, seven large migratory fishes of commercial interest were collected across the middle Atlantic Ocean and along the South American Atlantic coast. All individuals were contaminated with MPs, with an average of 18 ± 11 MPs/fish. In all fish sampled, both the gastrointestinal tract and gills presented MPs, indicating different contamination pathways including via their preys and from surrounding water, respectively. A total of 124 MPs were observed, where 72 % were fibers and 28 % particles, mostly of blue color (85 %), and with rayon and nylon as the most abundant polymers. This study is an important contribution to increase the scientific knowledge of MP contamination in mesopelagic fishes used for human consumption and collected in the open waters, reinforcing the need for further research regarding MP contamination in top predatory species from high trophic levels.
Collapse
Affiliation(s)
- Rúben Pereira
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; ICBAS, Abel Salazar Institute of Biomedical Sciences, University of Porto, Portugal.
| | - Sabrina M Rodrigues
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; ICBAS, Abel Salazar Institute of Biomedical Sciences, University of Porto, Portugal
| | - Diogo Silva
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; ICBAS, Abel Salazar Institute of Biomedical Sciences, University of Porto, Portugal
| | - Vânia Freitas
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal; Chemistry and Biochemistry Department, Faculty of Sciences of University of Porto, Portugal
| | - Sandra Ramos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal
| |
Collapse
|
9
|
Tang N, Li X, Gao X, Liu X, Xing W. The adsorption of arsenic on micro- and nano-plastics intensifies the toxic effect on submerged macrophytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119896. [PMID: 35981641 DOI: 10.1016/j.envpol.2022.119896] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Currently little is known about the adsorption behaviors of metalloids on microplastics (MPs) and their complex toxic effects on aquatic plants. Herein, we investigated the adsorption behaviors of arsenic (As(III) and As(V)) on three types of MPs (polystyrene, polyvinyl chloride, and polyethylene) with four different particle sizes (100, 10, 1, and 0.1 μm). Compared with the short-term exposure experiment, co-toxicity of polystyrene nanoplastics (PS-NPs) and As on two submerged macrophytes (Vallisneria denseserrulata and Potamogeton crispus) were explored through two relatively longer 14-day-cultivation experiments in summer and spring, respectively. The adsorption results showed that As entered the internal surface adsorption site of MPs at 24 h and fully combined to reach equilibrium. The adsorption capacity also enhanced with the increase of MPs concentrations, which generated more adsorption sites for binding with MPs. The presence of PS-NPs increased the absorption of As on macrophytes by 36.2-47.2%. More serious damage of leaf structure by combined PS-NPs and As was observed by transmission electron microscope. The larger harms by the co-toxicity of MPs and As were also reflected by the changes in physiochemical characteristics (e.g. photosynthesis) and the enhancement of oxidative damage of macrophytes. This work provides a clear theoretical basis for the behavior of PS-NPs as carrier with other contaminants on submerged macrophytes, and clearly evaluates the co-toxicity of NPs and metalloids in complex aquatic environments.
Collapse
Affiliation(s)
- Na Tang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueyuan Gao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan, 430074, China.
| |
Collapse
|
10
|
Yu X, Zhang Y, Tan L, Han C, Li H, Zhai L, Ma W, Li C, Lu X. Microplastisphere may induce the enrichment of antibiotic resistance genes on microplastics in aquatic environments: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119891. [PMID: 35934152 DOI: 10.1016/j.envpol.2022.119891] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastics have been proven to be hotspots of bacterial pathogens and antibiotic resistance genes (ARGs). The enrichment of ARGs in microplastisphere, the specific niche for diverse microbial communities attached to the surface of microplastic, has attracted worldwide attention. By collecting 477 pairs of ARG abundance data belonging to 26 ARG types, based on the standardized mean difference (SMD) under the random effect model, we have performed the first meta-analysis of the ARG enrichment on microplastics in aquatic environments in order to quantitatively elucidate the enrichment effect, with comparison of non-microplastic materials. It was found that ARGs enriched on the microplastics were more abundant than that on the inorganic substrates (SMD = 0.26) and natural water environments (SMD = 0.10), but lower abundant than that on the natural organic substrates (SMD = -0.52). Furthermore, microplastics in freshwater tended to have a higher degree of ARG enrichment than those in saline water and sewage. The biofilm formation stage, structure, and component of microplastisphere may play a significant role in the enrichment of ARGs.
Collapse
Affiliation(s)
- Xue Yu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chenglong Han
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Haixiao Li
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lifang Zhai
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Weiqi Ma
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chengtao Li
- College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xueqiang Lu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
11
|
Oliveira YM, Vernin NS, Maia Bila D, Marques M, Tavares FW. Pollution caused by nanoplastics: adverse effects and mechanisms of interaction via molecular simulation. PeerJ 2022; 10:e13618. [PMID: 35910776 PMCID: PMC9336610 DOI: 10.7717/peerj.13618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/01/2022] [Indexed: 01/17/2023] Open
Abstract
The continuous increase in the production of synthetic plastics for decades and the inadequate disposal of plastic waste have resulted in a considerable increase of these materials in aquatic environments, which has developed into a major environmental concern. In addition to conventional parameters, the relevance of the environmental monitoring of microplastics (MPs) and nanoplastics (NPs) has been highlighted by the scientific community due to the potential adverse effects these materials pose to the ecosystem as well as to human health. The literature has registered an increasing interest in understanding the mechanisms, at the molecular level, of the interaction between NPs and other compounds using molecular simulation techniques. The present review aims to: (i) summarize the force fields conventionally used to describe NPs by molecular simulations; (ii) discuss the effects of NPs in the structural and dynamical properties of biological membranes; (iii) evaluate how NPs affect the folding of proteins; (iv) discuss the mechanisms by which NPs adsorb contaminants from the environment. NPs can affect the secondary structure of proteins and change the lateral organization and diffusion of lipid membranes. As a result, they may alter the lipid digestion in the gastrointestinal system representing a risk to the assimilation of the nutrients by humans. The adsorption of contaminants on MPs and NPs can potentiate their harmful effects on human health, due to a possible synergism. Therefore, understanding the mechanisms involved in these interactions is crucial to predict dangerous combinations and outline action strategies that reduce negative impacts on ecosystems and human health. Depending on the chemical properties of contaminants and NPs, electrostatic and/or van der Waals interactions can be more relevant in explaining the adsorption process. Finally, we conclude by highlighting gaps in the literature and the critical aspects for future investigations.
Collapse
Affiliation(s)
- Yamara Matos Oliveira
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Nathalia Salles Vernin
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Daniele Maia Bila
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Frederico Wanderley Tavares
- Chemical Engineering Program, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil,School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Shan E, Zhang X, Li J, Sun C, Teng J, Yang X, Chen L, Liu Y, Sun X, Zhao J, Wang Q. Incubation habitats and aging treatments affect the formation of biofilms on polypropylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154769. [PMID: 35339544 DOI: 10.1016/j.scitotenv.2022.154769] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Microbial colonization and biofilm formation associated with microplastics (MPs) have recently attracted wide attention. However, little is known about the effect of MP aging and different exposed habitats on biofilm formation and associated microbial community characteristics. To obtain a comprehensive understanding, virgin and aged polypropylene MPs were selected as attachment substrates and exposed to different aquatic habitats (marine, estuary, and river). The results showed that the aging process could destroy surface structure and increase oxygen-containing groups of MPs. The total biomass of the biofilms, attached-bacterial OTU numbers, and α diversities increased with exposure time. The biofilms biomass and α diversity of MPs in the river were significantly higher than those in the marine and estuary habitats, and temperature and salinity were primary factors affecting microbial colonization. Bacterial communities in MP-attached biofilms were significantly different from those in surrounding water. Microorganisms tend to adhere to aged MPs, and especially, genes related to human pathogens were significantly expressed on aged MPs, suggesting a potential ecological and health risk of aged MPs in aquatic ecosystems. Our results showed that aged MPs and different habitats have an important influence on microbial colonization, and the weathering process can accelerate biofilm formation on MPs.
Collapse
Affiliation(s)
- Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoli Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jiasen Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Yang
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Liang Chen
- School of Civil Engineering and Construction and Environment of Xihua University, Chengdu 610039, PR China
| | - Yongliang Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiyan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
13
|
Wang X, Zhang R, Li Z, Yan B. Adsorption properties and influencing factors of Cu(II) on polystyrene and polyethylene terephthalate microplastics in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152573. [PMID: 34954173 DOI: 10.1016/j.scitotenv.2021.152573] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
As an emerging contamination in the ocean, microplastics can act as effective vectors of pollutants, the ecological risks caused by the combined pollution of microplastics and other pollutants have attracted growing attention. In this work, Copper (Cu(II)) was chosen as the classic pollutant, polystyrene (PS) and polyethylene terephthalate (PET) pellets were used as the typical marine microplastics, the adsorption performance of Cu(II) on PS and PET beads was investigated by adsorption kinetics and isotherm experiments, and other influencing conditions, such as pH, salinity, coexisting heavy metals ions and aging treatment, were evaluated. The results indicated that the adsorption behavior of Cu(II) on PS and PET was spontaneous and endothermic in the simulated seawater environment, and the batch experimental data can be effectively described by pseudo-second-order model and Freundlich isothermal model. Besides, the adsorption capacity of microplastics for Cu(II) was the best at pH 7, the change of salinity had no obvious effect on the adsorption in the natural marine environment. Moreover, co-existence of lead (Pb(II)) exhibited evident impacts on Cu(II) sorption onto PS and PET, which confirmed the adsorption competition effect between them. Additionally, high temperature aging treatment of microplastics in different environments for different duration time could obviously affect the properties of microplastics. It was found that the microplastics after being exposed to high temperature environment in the air for 168 h showed relatively stronger adsorption amount for Cu(II). In summary, these findings suggested that electrostatic interaction and distributed diffusion mechanisms may be the main mechanisms of adsorption, while no new functional groups were generated after the adsorption, indicating that physisorption may dominate the adsorption performance of PS and PET pellets for Cu(II). This study provides supplementary insights into the role of microplastics as carriers of heavy metals in the marine environment.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ruixin Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhaoying Li
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bo Yan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin 300457, PR China; Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin 300457, PR China; Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin 300457, PR China.
| |
Collapse
|
14
|
Kinigopoulou V, Pashalidis I, Kalderis D, Anastopoulos I. Microplastics as carriers of inorganic and organic contaminants in the environment: A review of recent progress. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Chen G, Fu Q, Tan X, Yang H, Luo Y, Shen M, Gu Y. Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118695. [PMID: 34921945 DOI: 10.1016/j.envpol.2021.118695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The negative impact of microplastics (MPs) act as metals vectors to environment and ecosystem have been paid more and more attention, and the accumulation risk of them to human body through the food chains and food webs needs to attract attention. In addition, the MPs bonded with heavy metals transport from river into the sea with high salinity may also have metals release risk. Herein, natural aged microplastics prepared from artificially broken macroplastics adsorbed with heavy metals accumulated from the natural environment were tested for their states and release risk in several simulated solution (NaCl and gastrointestinal solutions) to understand their effects on environment and human health. The adsorption capacity of different heavy metals on MPs was different during natural aging process proved by four-acid digestion method. Metals with high accumulation (including Pb, As, Cr, Mn, Ni, Zn, Co, Cu and Cd) on NAMPs were selected for further study. Results obtained via three-step extraction method showed that these heavy metals were mainly present as acid-extractable and reducible ions, which were characterized by high bioavailability. Release experiments suggested the notable Mn, Zn, As, Cr, Cu and Ni release in NaCl solution, and significant release of Mn, Zn, As, Cr, Cu, Pb and Ni in gastrointestinal solutions. The high metal release ratio in the simulated gastric solution was attributed to the weak binding of metal ions to NAMPs in acidic environment. This study will play a vital rule in assessing the ecological risks associated with MPs in natural environment.
Collapse
Affiliation(s)
- Gaobin Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qianmin Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Hailan Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yang Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Maocai Shen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| |
Collapse
|
16
|
Ouyang X, Duarte CM, Cheung SG, Tam NFY, Cannicci S, Martin C, Lo HS, Lee SY. Fate and Effects of Macro- and Microplastics in Coastal Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2386-2397. [PMID: 35089026 DOI: 10.1021/acs.est.1c06732] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coastal wetlands trap plastics from terrestrial and marine sources, but the stocks of plastics and their impacts on coastal wetlands are poorly known. We evaluated the stocks, fate, and biological and biogeochemical effects of plastics in coastal wetlands with plastic abundance data from 112 studies. The representative abundance of plastics that occurs in coastal wetland sediments and is ingested by marine animals reaches 156.7 and 98.3 items kg-1, respectively, 200 times higher than that (0.43 items kg-1) in the water column. Plastics are more abundant in mangrove forests and tidal marshes than in tidal flats and seagrass meadows. The variation in plastic abundance is related to climatic and geographic zones, seasons, and population density or plastic waste management. The abundance of plastics ingested by pelagic and demersal fish increases with fish length and dry weight. The dominant characteristics of plastics ingested by marine animals are correlated with those found in coastal wetland sediments. Microplastics exert negative effects on biota abundance and mangrove survival but positive effects on sediment nutrients, leaf drop, and carbon emission. We highlight that plastic pollution is widespread in coastal wetlands and actions are urged to include microplastics in ecosystem health and degradation assessment.
Collapse
Affiliation(s)
- Xiaoguang Ouyang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region, China
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Siu-Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong Special Administrative Region, China
| | - Nora Fung-Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong Special Administrative Region, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin 999077, Hong Kong Special Administrative Region, China
| | - Stefano Cannicci
- The Swire Institute of Marine Sciences and the Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam 999077, Hong Kong Special Administrative Region, China
- Department of Biology, University of Florence, Via Madonna Del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Cecilia Martin
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Kingdom of Saudi Arabia
| | - Hoi Shing Lo
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin 999077, Hong Kong Special Administrative Region, China
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Shing Yip Lee
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong Special Administrative Region, China
| |
Collapse
|
17
|
Rozman U, Kalčíková G. Seeking for a perfect (non-spherical) microplastic particle - The most comprehensive review on microplastic laboratory research. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127529. [PMID: 34736190 DOI: 10.1016/j.jhazmat.2021.127529] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, much attention has been paid to microplastic pollution, and research on microplastics has begun to grow exponentially. However, microplastics research still suffers from the lack of standardized protocols and methods for investigation of microplastics under laboratory conditions. Therefore, in this review, we summarize and critically discuss the results of 715 laboratory studies published on microplastics in the last five years to provide recommendations for future laboratory research. Analysis of the data revealed that the majority of microplastic particles used in laboratory studies are manufactured spheres of polystyrene ranging in size from 1 to 50 µm, that half of the studies did not characterize the particles used, and that a minority of studies used aged particles, investigated leaching of chemicals from microplastics, or used natural particles as a control. There is a large discrepancy between microplastics used in laboratory research and those found in the environment, and many laboratory studies suffer from a lack of environmental relevance and provide incomplete information on the microplastics used. We have summarized and discussed these issues and provided recommendations for future laboratory research on microplastics focusing on (i) microplastic selection, (ii) microplastic characterization, and (iii) test design of laboratory research on microplastics.
Collapse
Affiliation(s)
- Ula Rozman
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
18
|
Eder ML, Oliva-Teles L, Pinto R, Carvalho AP, Almeida CMR, Hornek-Gausterer R, Guimarães L. Microplastics as a vehicle of exposure to chemical contamination in freshwater systems: Current research status and way forward. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125980. [PMID: 34004584 DOI: 10.1016/j.jhazmat.2021.125980] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 05/07/2023]
Abstract
Contamination by microplastics is increasing steadily worldwide, affecting all environments. Additionally, aquatic organisms are often exposed to mixtures of other contaminants, including various chemicals. Numerous studies reported adsorption of chemicals to microplastics, raising concern about their possible role as vehicles of exposure through transfer to biota. Nevertheless, until recently, the studies on the topic were mostly focused on the marine environment. In the past five years, however, plenty of publications contributed empirical data about freshwater ecosystems, raising the need for a critical appraisal of the information. Herein the scientific literature was reviewed and multivariate data analysis was done. The analysed studies employed widely different experimental designs, endpoints, test species, shapes and concentrations of various polymer types and chemicals, often not relevant for the freshwater environment. Our integrated analytical approach revealed unfathomable research gaps, given the theoretical knowledge available and lessons learned from research about the marine environment. Greater harmonization of laboratory studies investigating this topic is needed, as well as testing conditions reflecting real exposure scenarios. Furthermore, standardized testing protocols are urgently required to guide such experiments and improve the comparability of the results obtained.
Collapse
Affiliation(s)
- Miriam Lena Eder
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; University of Applied Sciences, FH Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| | - Luis Oliva-Teles
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Raquel Pinto
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | - António Paulo Carvalho
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| | | | - Laura Guimarães
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
19
|
Zhang L, Li Y, Wang W, Zhang W, Zuo Q, Abdelkader A, Xi K, Heynderickx PM, Kim KH. The potential of microplastics as adsorbents of sodium dodecyl benzene sulfonate and chromium in an aqueous environment. ENVIRONMENTAL RESEARCH 2021; 197:111057. [PMID: 33757825 DOI: 10.1016/j.envres.2021.111057] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 05/11/2023]
Abstract
Considering the omnipresence of microplastics (MPs) in aquatic environments, they are expected to exert significatn impacts as carriers for diverse waterborne pollutants. In this work, the adsorptive behavior of two ionic components (i.e., sodium dodecyl benzene sulfonate (SDBS) and Cr(VI)) has been explored against the two types of MPs as model adsorbents, namely poly (ethylene terephthalate) (PET) and polystyrene (PS). The influence of key variables (e.g., pH, particle size, and dose of the MPs) on their adsorption behavior is evaluated from various respects. The maximum adsorption capacity values of SDBS on PET and PS are estimated to be 4.80 and 4.65 mg⋅g-1, respectively, while those of Cr(VI) ions are significantly lower at 0.080 and 0.072 mg⋅g-1, respectively, The adsorptive equilibrium of SDBS is best described in relation to pH and MP size by a Freundlich isotherm. In contrast, the adsorption behavior of Cr(VI) is best accounted for by a Langmuir isotherm to indicate its adsorption across at least two active surface sites.
Collapse
Affiliation(s)
- Liying Zhang
- School of Ecology and Environment Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, PR China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou, 450001, PR China
| | - Yonggan Li
- School of Ecology and Environment Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou, 450001, PR China
| | - Wenxia Wang
- School of Ecology and Environment Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou, 450001, PR China
| | - Wei Zhang
- School of Ecology and Environment Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou, 450001, PR China; School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Qiting Zuo
- Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou, 450001, China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou, 450001, PR China; School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection and Regional Coordination Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Amor Abdelkader
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, United Kingdom
| | - Kai Xi
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, United Kingdom.
| | - Philippe M Heynderickx
- Center for Environmental and Energy Research (CEER) - Engineering of Materials Via Catalysis and Characterization, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840, South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, B-9000, Belgium
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
20
|
Tang Y, Liu Y, Chen Y, Zhang W, Zhao J, He S, Yang C, Zhang T, Tang C, Zhang C, Yang Z. A review: Research progress on microplastic pollutants in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142572. [PMID: 33183825 DOI: 10.1016/j.scitotenv.2020.142572] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 05/24/2023]
Abstract
The ubiquitous problems of microplastics in waters are receiving global attention as microplastics can harm aquatic organisms, and finally can accumulate in the human body through biological chain amplification. In addition, microplastics act as a carrier capable of carrying heavy metals, organics, which form complex pollutants. These new combinations of pollutants, once ingested by aquatic organisms, are amplified through the food chain and can have unpredictable ramifications for aquatic organisms and human beings. Therefore, human beings are not only the source of plastic pollution, but also the sink of microplastic pollution. Therefore, this study reviews the source and distribution of microplastics, and their combined ability with heavy metals, antibiotics, and persistent organic pollutants in aquatic environments. Furthermore, it describes the interaction between aquatic organisms and microplastics. Finally, some suggestions are put forward to promote the sustainable application of microplastics. This work provides theoretical guidance for combining microplastics with other pollutants in water, and the accumulation of microplastics in food chain.
Collapse
Affiliation(s)
- Yuanqiang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yu Chen
- School of Architecture, Hunan University, Changsha 410082, PR China.
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jianmin Zhao
- School of Architecture, Hunan University, Changsha 410082, PR China.
| | - Shaoyao He
- School of Architecture, Hunan University, Changsha 410082, PR China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China.
| | - Tao Zhang
- Qingyuan Agricultural Science and Technology Extension Service Center, Guangdong Province, Qingyuan 511500, PR China
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Chen Zhang
- Zhejiang Ocean University, Zhoushan 316000, PR China
| | - Zisong Yang
- College of Resources and Environment of Aba Teachers University, Wenchuan 623002, PR China
| |
Collapse
|
21
|
Qian J, Tang S, Wang P, Lu B, Li K, Jin W, He X. From source to sink: Review and prospects of microplastics in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143633. [PMID: 33223161 DOI: 10.1016/j.scitotenv.2020.143633] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
The source, distribution, migration, and fate of microplastics (MPs) in aquatic and terrestrial ecosystems have received much attention. However, the relevant reports in wetland ecosystems, the boundary area between water and land, are still rare. Where are the sources and sinks of MPs in the wetland? The latest researches have shown that the sources of MPs in wetlands include sewage discharge, surface runoff, and plastic wastes from aquaculture. Fibers and fragments are the most common shapes, and PE, PP, PS can be detected in water or sediment matrices, and biota of wetlands. The distribution is affected by hydrodynamic conditions, sediment properties, and vegetation coverage. Factors affecting the vertical migration of MPs include their own physical and chemical properties, the combination of substances that accelerate deposition (mineral adsorption and biological flocculation), and resuspension. Minerals tend to adsorb negatively charged MPs while algae aggregates have a preference for positively charged MPs. The wetlands vegetation can trap MPs and affect their migration. In water matrices, MPs are ingested by organisms and integrated into sediments, which makes them seem undetectable in the wetland ecosystem. Photodegradation and microbial degradation can further reduce the MPs in size. Although recent research has increased, we are still searching for a methodological harmonization of the detection practices and exploring the migration rules and fate patterns of MPs. Our work is the first comprehensive review of the source, distribution, migration, and fate of MPs in wetland ecosystems. It reveals the uniqueness of wetland habitat in the research of MPs and indicates the potential of wetlands acting as sources or sinks for MPs.
Collapse
Affiliation(s)
- Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
22
|
Paul MB, Stock V, Cara-Carmona J, Lisicki E, Shopova S, Fessard V, Braeuning A, Sieg H, Böhmert L. Micro- and nanoplastics - current state of knowledge with the focus on oral uptake and toxicity. NANOSCALE ADVANCES 2020; 2:4350-4367. [PMID: 36132901 PMCID: PMC9417819 DOI: 10.1039/d0na00539h] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/20/2020] [Indexed: 05/18/2023]
Abstract
The production and use of plastics has constantly increased over the last 30 years. Over one third of the plastics is used in disposables, which are discarded within three years of their production. Despite efforts towards recycling, a substantial volume of debris has accumulated in the environment and is slowly degraded to micro- and nanoplastics by weathering and aging. It has recently been discovered that these small particles can enter the food chain, as for example demonstrated by the detection of microplastic particles in honey, beer, salt, sea food and recently in mineral water. Human exposure has further been documented by the detection of plastic microparticles in human feces. Potential toxic consequences of oral exposure to small plastic particles are discussed. Due to lacking data concerning exposure, biodistribution and related effects, the risk assessment of micro- and nanoplastics is still not possible. This review focuses on the oral uptake of plastic and polymer micro- and nanoparticles. Oral exposure, particle fate, changes of particle properties during ingestion and gastrointestinal digestion, and uptake and transport at the intestinal epithelium are reviewed in detail. Moreover, the interaction with intestinal and liver cells and possibly resulting toxicity are highlighted.
Collapse
Affiliation(s)
- Maxi B Paul
- German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 30 18412-3718
| | - Valerie Stock
- German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 30 18412-3718
| | - Julia Cara-Carmona
- German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 30 18412-3718
| | - Elisa Lisicki
- German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 30 18412-3718
| | - Sofiya Shopova
- German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 30 18412-3718
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety 10B rue Claude Bourgelat 35306 Fougères France
| | - Albert Braeuning
- German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 30 18412-3718
| | - Holger Sieg
- German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 30 18412-3718
| | - Linda Böhmert
- German Federal Institute for Risk Assessment Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 30 18412-3718
| |
Collapse
|
23
|
Turner A. Foamed Polystyrene in the Marine Environment: Sources, Additives, Transport, Behavior, and Impacts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10411-10420. [PMID: 32786582 DOI: 10.1021/acs.est.0c03221] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Foamed polystyrene (PS) that may be either expanded (EPS) or extruded (XPS) is a rigid, lightweight insulating thermoplastic that has a variety of uses in the consumer, packaging, construction, and marine sectors. The properties of the material also result in waste that is readily generated, dispersed, and fragmented in the environment. This review focuses on foamed PS in the marine setting, including its sources, transport, degradation, acquisition of contaminants, ingestion by animals, and biological impacts arising from the mobilization of chemical additives. In the ocean, foamed PS is subject to wind-assisted transport and fracturing via photolytic degradation. The material may also act as a substrate for rafting organisms while being exposed to elevated concentrations of natural and anthropogenic surface-active chemicals in the sea surface microlayer. In the littoral setting, fragmentation is accentuated by milling in the swash zone and abrasion when beached, with wind transport leading to the temporary burial of significant quantities of material. Ingestion of EPS and XPS has been documented for a variety of marine animals, but principally those that feed at the sea surface or use the material as a habitat. As well as risking injuries due to gastro-intestinal blockage, ingestion of foamed PS exposes animals to harmful chemicals, and of greatest concern in this respect is the presence of the historical, but still recycled, flame-retardant, hexabromocyclododecane. Because foamed PS is particularly difficult to retrieve as a constituent of marine litter, means of reducing its presence and impacts will rely on the elimination of processes that generate foamed waste, modification of current storage and disposal practices, and the development of more durable and sustainable alternatives.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences University of Plymouth Plymouth PL4 8AA, U.K
| |
Collapse
|