1
|
Borovkova AD, Gavrilova VA, Donets MM, Belanov MA, Tsygankov VY. Mussel watch program in the Sea of Japan: Persistent organic pollutants in bivalves of the family Mytilidae. MARINE POLLUTION BULLETIN 2024; 209:117107. [PMID: 39406066 DOI: 10.1016/j.marpolbul.2024.117107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 11/28/2024]
Abstract
In this study current data on the content of POPs in soft tissues of bivalvia species from the Mytilidae family are presented. The highest concentrations of both OCPs and PCBs were found in Amur Bay. The lowest levels were recorded for Bolshoy Pelis Island. Temporal trends of pollutant concentrations showed a decrease from 1996 to 2022. Nevertheless, in 2017 and 2022, we recorded substantial concentrations of less persistent, lower chlorinated PCB congeners that characterized a recent entry of pollutants into the water body. When comparing the obtained data with the results of studies conducted in the countries of the Asia-Pacific region, it was found that the levels of DDT and its metabolites and PCBs in mollusks of the coastal waters of the Sea of Japan were lower than in other countries of the region, however, relatively high pollution of Peter the Great Bay with HCH isomers was noted.
Collapse
Affiliation(s)
- Aleksandra D Borovkova
- Pacific Geographical Institute, Far-Eastern Branch, Russian Academy of Sciences (FEB RAS), 7 Radio Street, 690041 Vladivostok, Russia; Institute of the World Ocean, Far Eastern Federal University, Ajax 10, Russky Island, 690922 Vladivostok, Russia
| | - Viktoria A Gavrilova
- Institute of the World Ocean, Far Eastern Federal University, Ajax 10, Russky Island, 690922 Vladivostok, Russia
| | - Maksim M Donets
- Pacific Geographical Institute, Far-Eastern Branch, Russian Academy of Sciences (FEB RAS), 7 Radio Street, 690041 Vladivostok, Russia
| | - Maksim A Belanov
- Pacific Geographical Institute, Far-Eastern Branch, Russian Academy of Sciences (FEB RAS), 7 Radio Street, 690041 Vladivostok, Russia
| | - Vasiliy Yu Tsygankov
- Pacific Geographical Institute, Far-Eastern Branch, Russian Academy of Sciences (FEB RAS), 7 Radio Street, 690041 Vladivostok, Russia.
| |
Collapse
|
2
|
Ohoro CR, Wepener V. Review of scientific literature on available methods of assessing organochlorine pesticides in the environment. Heliyon 2023; 9:e22142. [PMID: 38045185 PMCID: PMC10692828 DOI: 10.1016/j.heliyon.2023.e22142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Organochlorine pesticides (OCPs) are persistent organic pollutants (POPs) widely used in agriculture and industry, causing serious health and ecological consequences upon exposure. This review offers a thorough overview of OCPs analysis emphasizing the necessity of ongoing work to enhance the identification and monitoring of these POPs in environmental and human samples. The benefits and drawbacks of the various OCPs analysis techniques including gas chromatography-mass spectrometry (GC-MS), gas chromatography-electron capture detector (GC-ECD), and liquid chromatography-mass spectrometry (LC-MS) are discussed. Challenges associated with validation and optimization criteria, including accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ), must be met for a method to be regarded as accurate and reliable. Suitable quality control measures, such as method blanks and procedural blanks, are emphasized. The LOD and LOQ are critical quality control measure for efficient quantification of these compounds, and researchers have explored various techniques for their calculation. Matrix interference, solubility, volatility, and partition coefficient influence OCPs occurrences and are discussed in this review. Validation experiments, as stated by European Commission in document SANTE/11813/2017, showed that the acceptance criteria for method validation of OCP analytes include ≤20 % for high precision, and 70-120 % for recovery. This may ultimately be vital for determining the human health risk effects of exposure to OCP and for formulating sensible environmental and public health regulations.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
3
|
Samarajeewa U. Emerging challenges in maintaining marine food-fish availability and food safety. Compr Rev Food Sci Food Saf 2023; 22:4734-4757. [PMID: 37732477 DOI: 10.1111/1541-4337.13239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The marine finfish and crustaceans contribute immensely to human nutrition. Harvesting marine food-fish to meet the global demand has become a challenge due to reduction of the fishery areas and food safety hazards associated with increased pre-harvest and post-harvest contaminations. The causes of low fish availability and contaminations were reviewed following the published literature from 2000 to 2023. The marine fish yields are stressed due to spread of contaminants triggered by rising sea temperatures, transport of microorganisms by marine vessels across the oceans, anthropogenic activities leading to increase in the toxic microorganisms, and the entry of toxic chemicals and antibiotic residues into the seawater through rivers or directly. Processing adds pyrogenic chemicals to foods. The hazardous materials may accumulate in the food-fish, beyond tolerance limits permitted for human foods. While the research and control measures focus on minimizing the hazards due to pathogenic microorganisms and chemicals in market fish, there is less discussion on the unhealthy changes occurring in the oceans affecting the quantity and quality of food-fish, and the origins of microbial and chemical contaminations. This review examines the factors affecting availability of wild food-fish and increased contaminations. It aims to bridge the knowledge gaps between the spread of hazardous agents in the marine environment, and their effects on the food-fish. Meeting the future human food security and safety through marine fish and fish products may need marine cage farming, introduction of genetically modified high yielding food-fish, and cultured contaminant free finless fish muscles as options.
Collapse
Affiliation(s)
- Upali Samarajeewa
- Department of Food Science & Technology, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
4
|
Baqar M, Naseem S, Tabinda AB, Yao Y, Shahzad M, Mahmood A, Yasar A, Zhao S, Zhang G, Sun H. Distribution, bioaccumulation, and health risk assessment of organochlorines across the riverine ecosystem of Punjab Province, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98377-98388. [PMID: 37608167 DOI: 10.1007/s11356-023-28778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/09/2023] [Indexed: 08/24/2023]
Abstract
This study was designed to assess the distribution of organochlorines (OCs) in fish species, their spatio-temporal variations, bioaccumulation potential, and associated human health risks via dietary intake. The levels of twenty-three organochlorine pesticides (OCPs) and thirty-five polychlorinated biphenyls (PCBs) were analyzed in six fish species collected from the riverine ecosystem of Punjab Province, Pakistan. The results indicated that the mean levels of Σ23OCPs were 74.1 ng/g ww and 184 ng/g ww, and for Σ35PCBs the levels were 38.8 ng/g ww and 74.8 ng/g ww in herbivorous and carnivorous fish species, respectively. The most abundant contaminants in all fish species were DDTs (65%) and HCHs (14%) among OCPs and heavier PCB congeners (62%) among PCBs. As for dioxin-like PCBs, the WHO toxic equivalency values (ng TEQ/g ww) were in the range of 0.21 (Cyprinus Carpio) to 2.38 (Rita Rita), exceeding the maximum allowable limit of 0.004 ng TEQ/g, ww by the European Commission. Spatio-temporal analysis indicated relatively higher OC levels in winter season with elevated concentrations in fish samples from industrial zone. The bioconcentration factor (L/kg) values ranged from 723 to 2773 for PCBs and 315 to 923 for OCPs in all fish species, with higher levels were reported in carnivorous species. The human health risk assessment at both 50th and 95th percentiles revealed the absence of any significant non-carcinogenic risk as calculated HR was less than 1. However, the critical carcinogenic risk was found to be associated for most of the contaminants, signifying the dietary exposure to OCPs and PCBs might pose the public health concern.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Samra Naseem
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Muhammad Shahzad
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, 51310, Pakistan
| | - Abdullah Yasar
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
5
|
Donets MM, Tsygankov VY. Organochlorine Compounds in the Amur (Heilong) River Basin (2000-2020): A Review. J Xenobiot 2023; 13:439-462. [PMID: 37606425 PMCID: PMC10443256 DOI: 10.3390/jox13030028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023] Open
Abstract
Persistent organic pollutants (POPs) are well-known contaminants that raise serious concerns, even more than 20 years after they were banned. Their worldwide distribution and persistence necessitate continuous monitoring in all components of the environment. The most challenging issues of POP regulation are associated with international water resources because their solutions require international cooperation in environment protection. This review provides data on various POPs (DDT, HCH, endrin, dieldrin, and PCBs) and their concentrations in aquatic organisms inhabiting the Amur River basin, one of the most poorly explored regions of Northeast Asia. Most studies have been conducted in the Songhua River (China), a tributary of the Amur River, which indicates that large inland bodies of water, especially those of international importance, require more extensive research.
Collapse
Affiliation(s)
- Maksim M. Donets
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, Ajax 10, Russky Island, Vladivostok 690922, Russia;
- Institute of the World Ocean (School), Far Eastern Federal University, Ajax 10, Russky Island, Vladivostok 690922, Russia
| | - Vasiliy Yu. Tsygankov
- School of Advanced Engineering Studies, Institute of Biotechnology, Bioengineering and Food Systems, Far Eastern Federal University, Ajax 10, Russky Island, Vladivostok 690922, Russia;
- Institute of the World Ocean (School), Far Eastern Federal University, Ajax 10, Russky Island, Vladivostok 690922, Russia
| |
Collapse
|