1
|
Sun C, Yin M, Peng Y, Lin C, Wu Y, Fu F, Lin Y. The characteristic and bio-accessibility evaluation of mercury species in various kinds of seafood collected from Fujian of China for mercury risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136549. [PMID: 39571373 DOI: 10.1016/j.jhazmat.2024.136549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 01/26/2025]
Abstract
Seafood consumption is the major source of total Hg (tHg) and methyl mercury (MeHg) for humans. Lack of broad-representative bio-accessibility of mercury species makes accurate assessment on health risk of seafood's mercury impossible. Herein, the concentrations and in vitro bio-accessibilities of mercury species in 93 seafood samples with 71 different species were extensively investigated. Results indicated that all shellfish and fish samples, and most seaweed samples contained both Hg2+ and MeHg, while some seaweed samples contained only Hg2+. The concentrations of mercury species varied depending on the differences in species/individuals of seafood and sampling regions. MeHg in seafood can be partly de-methylated into Hg2+ during gastrointestinal digestion, which reduced the toxicity of mercury in seafood. The mean demethylation rate of MeHg varied as follows: seaweeds (⁓62.1 %) > shellfishes/shrimps (⁓19.7 %) > fishes (⁓9.2 %). The mean bio-accessibility of Hg2+ and tHg varied as follows: seaweeds (⁓97.7 % and ⁓90.1 %) > shellfishes/shrimps (⁓65.1 % and ⁓67.9 %) ≈ fishes (⁓65.1 % and ⁓66.7 %), while that of MeHg varied as follows: fishes (⁓57.7 %) > shellfishes/shrimps (50.8 %) > seaweeds (⁓11.6 %). The simulated calculation of target hazard quotient (THQ) revealed that the health risk of seafood's mercury may be accurately assessed using tHg, not mercury species, even without considering bio-accessibility. This offers a simple but protective approach for assessing the health risk of seafood's mercury. Results of this study provide the potential broad-representative bio-accessibilities of mercury species existing in various kinds of seafood and novel insights for scientifically assessing the health risk of seafood's mercury and revising the mercury limitation in seafood.
Collapse
Affiliation(s)
- Chaochen Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Miaomiao Yin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ying Peng
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chen Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yue Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
2
|
Dogruyol H, Mol S, Ulusoy Ş, Atanasoff A. Evaluation of Health Risks Attributed to Toxic Trace Elements and Selenium in Farmed Mediterranean Mussels from Türkiye and Bulgaria. Biol Trace Elem Res 2024; 202:5177-5189. [PMID: 38296919 PMCID: PMC11442619 DOI: 10.1007/s12011-024-04084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/28/2024] [Indexed: 02/02/2024]
Abstract
Farmed mussels accumulate contaminants from their production environment rather than releasing them into water. This study reveals potential health risks associated with selenium, cadmium, mercury, and lead resulting from the consumption of mussels (Mytilus galloprovincialis) cultured along the coasts of Türkiye and Bulgaria. The concentrations of Se and toxic trace metals were measured by inductively coupled plasma mass spectrometry (ICP-MS). The detection limits (LOD) were 0.100, 0.015, 0.025, and 0.180 µg/kg for Se, Cd, Hg, and Pb, respectively. The mean Se concentrations were between 1.305 and 1.957 µg/g, and toxic metals were below the maximum limits. Due to Turkish and Bulgarian consumers' limited mollusk consumption, mussels could only provide a maximum of 7.35% of the daily Se need. THQ and TTHQ of Se, Cd, and methyl-Hg were below 1, indicating that farmed mussels were safe for consumption. Percent PTWI values were calculated only for Cd and MeHg, as the PTWI value for Pb was discarded by the authorities and not determined for Se. Accordingly, weekly mussel consumption did not pose any risks. The margin of exposure approach was used to evaluate Pb intake. MOE-SBP and MOE-NE were significantly higher than 10, designating no significant health risks. Long-term consumption of mussels also does not pose a carcinogenic risk regarding the TR index calculated between 10-5 and 10-6 for Pb. Positive HBVSe (10.13-37.27) indicated that Se in mussels overcame Hg-related potential health concerns. Consequently, mussels grown in Türkiye and Bulgaria did not pose a risk for human consumption, based on current risk analysis methods.
Collapse
Affiliation(s)
- Hande Dogruyol
- Department of Food Safety, Faculty of Aquatic Sciences, Istanbul University, Istanbul, 34134, Türkiye.
| | - Suhendan Mol
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Istanbul, 34134, Türkiye
| | - Şafak Ulusoy
- Department of Seafood Processing Technology, Faculty of Aquatic Sciences, Istanbul University, Istanbul, 34134, Türkiye
| | - Alexander Atanasoff
- Department of Animal Husbandry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, 6000, Bulgaria
| |
Collapse
|
3
|
Puspitasari R, Takarina ND, Soesilo TEB, Agustina H. Potential risks of heavy metals in green mussels (Perna viridis) harvested from Cilincing and Kamal Muara, Jakarta Bay, Indonesia to human health. MARINE POLLUTION BULLETIN 2023; 189:114754. [PMID: 36913801 DOI: 10.1016/j.marpolbul.2023.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study investigates Pb, Cd, and Cr in the suspended particulate matter (SPM), sediments, and green mussels from Cilincing and Kamal Muara, Jakarta Bay and estimates their potential human health risks. The results showed that the metal levels in SPM from Cilincing ranged from 0.81 to 1.69 mg/kg for Pb and 2.14 to 5.31 mg/kg for Cr, while in Kamal Muara ranged from 0.70 to 3.82 mg/kg for Pb and 1.88 to 4.78 mg/kg dry weight for Cr. The levels of Pb, Cd, and Cr in sediments from Cilincing ranged from 16.53 to 32.51 mg/kg, 0.91 to 2.52 mg/kg; and 0.62 to 1.0 mg/kg whereas in Kamal Muara ranged from 8.74 to 8.81 mg/kg; 0.51 to 1.79 mg/kg, and 0.27 to 0.31 mg/kg dry weight, respectively. The levels of Cd and Cr of green mussels in Cilincing ranged from 0.014 to 0.75 mg/kg and 0.003 to 0.11 mg/kg; while in Kamal Muara ranged from 0.015 to 0.073 mg/kg and 0.01 to 0.04 mg/kg wet weight, respectively. Pb was not detected in all samples of green mussels. The Pb, Cd, and Cr levels in the green mussels were still below the permissible limits set by international standards. However, the Target Hazard Quotient (THQ) for adult and children in several samples were higher than one indicating potential noncarcinogenic effects to consumers due to Cd accumulation. To reduce the detrimental effects of metals, we suggest maximum mussel consumption of 0.65 kg for adults and 0.19 kg for children in a week based on the highest level of metals.
Collapse
Affiliation(s)
- Rachma Puspitasari
- School of Environmental Sciences, Universitas Indonesia, Salemba Raya Street No. 4, Central Jakarta 10430, Indonesia; Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih, Ancol, North Jakarta 14430, Indonesia.
| | - Noverita Dian Takarina
- Departement of Biology, Faculty of Mathematics and Natural Science, Universitas Indonesia, Gedung E, Campus UI, Depok, West Java 16424, Indonesia
| | - Tri Edhi Budhi Soesilo
- School of Environmental Sciences, Universitas Indonesia, Salemba Raya Street No. 4, Central Jakarta 10430, Indonesia
| | - Haruki Agustina
- School of Environmental Sciences, Universitas Indonesia, Salemba Raya Street No. 4, Central Jakarta 10430, Indonesia; Ministry of Environment and Forestry, Manggala Wanabakti Building, Jakarta 10270, Indonesia
| |
Collapse
|
4
|
Wang W, Lin C, Wang L, Jiang R, Huang H, Liu Y, Lin H. Contamination, sources and health risks of potentially toxic elements in the coastal multimedia environment of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160735. [PMID: 36493820 DOI: 10.1016/j.scitotenv.2022.160735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Coastal ecosystems are vulnerable to the accumulation of potentially toxic elements (PTEs), which pose a threat to marine ecosystems and human health. In this study, the concentrations of eight PTEs in a typical area of South China were analysed, and their distributions, seasonal variations, pollution degrees, potential health risks and sources in seawater, sediment and organisms were evaluated. The comprehensive pollution index (CPI), pollution load index (PLI), potential ecological risk index (PERI) and target hazard quotient (THQ) were applied to assess seawater, sediment and organism quality, respectively. The annual mean concentrations of Zn, Hg, Cr and As in the bottom seawater were higher than those in the surface water while those of Pb, Mn and Cu were higher in the surface seawater. The mean content of Hg was higher than the corresponding background value of that in China Shelf Sea sediment. Marine organisms have a high enrichment capacity for Cu, Zn, Cr, Hg, As and Mn in seawater. Based on CPI, the seawater was generally not polluted by PTEs. The PLI and PERI results demonstrated that Hg was the main contamination element in surface sediment. The total target hazard quotient (TTHQ) analysis illustrated that long-term consumption of some fish by children poses a noncarcinogenic health risk, while that risk to adults is negligible. Natural sources, agricultural activity sources, coal burning and industrial emission sources were the main sources of the PTEs in surface sediments according to positive matrix factorization (PMF) model.
Collapse
Affiliation(s)
- Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ronggen Jiang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haining Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
5
|
Yin M, Chen M, Li Z, Matsuoka R, Xi Y, Zhang L, Wang X. The valuable and safe supplement of macro- and trace elements to the human diet: Capelin (Mallotus villosus). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|