1
|
Rigatou D, Gerakaris V, Digka N, Adamopoulou A, Patsiou D, Hatzonikolakis Y, Tsiaras K, Tsangaris C, Zeri C, Kaberi H, Raitsos DE. The role of seagrass meadows (Posidonia oceanica) as microplastics sink and vector to benthic food webs. MARINE POLLUTION BULLETIN 2025; 211:117420. [PMID: 39689653 DOI: 10.1016/j.marpolbul.2024.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Plastic pollution in marine environments is of global concern, yet its distribution within seagrasses remains poorly understood. We explore the efficiency of Posidonia oceanica in trapping microplastics (MPs) across various components (leaves, rhizomes, sediment), examine their potential transfer through the food web and assess their dispersal using advanced modelling techniques. Field surveys confirm that P. oceanica traps MPs across all components, with the often-overlooked rhizomes accumulating over twice as many MPs (0.2 ± 0.41 items/rhizome) as leaves (0.08 ± 0.28 items/leaf). MP abundance is lower in vegetated sediments than in the adjacent unvegetated seabed (15 ± 1.9 vs. 49 items kg-1 dry weight, respectively). While individual meadow's substrates exhibit low MP levels, the overall concentration increases substantially when accounting for its multi-dimensional structure. Species-specific traits, such as leaf height, and local hydrodynamic processes are likely influencing MPs spatiotemporal distribution. The elevated risk of MPs ingestion by seagrass-associated grazers cannot be confirmed, but further investigation is necessary. This study highlights the effectiveness of a holistic approach in assessing MP pollution within seagrass ecosystems, emphasizing its importance as the way forward.
Collapse
Affiliation(s)
- Dionysia Rigatou
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece.
| | - Vasilis Gerakaris
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Nikoletta Digka
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Argyro Adamopoulou
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Danae Patsiou
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Yannis Hatzonikolakis
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Kostas Tsiaras
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Catherine Tsangaris
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Christina Zeri
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Helen Kaberi
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Dionysios E Raitsos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
2
|
Gonkowski S, Tzatzarakis M, Vakonaki E, Meschini E, Könyves L, Rytel L. Concentration levels of phthalate metabolites in wild boar hair samples. Sci Rep 2024; 14:17228. [PMID: 39060311 PMCID: PMC11282317 DOI: 10.1038/s41598-024-68131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Phthalates used in the industry penetrate the environment and negatively affect humans and animals. Hair samples seem to be the best matrix for studies on long-term exposure to phthalates, but till now they were used only in investigations on humans. Moreover, the knowledge of the wild terrestrial animal exposure to phthalates is extremely limited. This study aimed to establish of concentration levels of selected phthalate metabolites (i.e. monomethyl phthalate-MMP, monoethyl phthalate-MEP, mono-isobutyl phthalate-MiBP, monobutyl phthalate-MBP, monobenzyl phthalate-MBzP, mono-cyclohexyl phthalate-MCHP, mono(2-ethylhexyl) phthalate-MEHP and mono-n-octyl phthalate-MOP) in wild boar hair samples using liquid chromatography with mass spectrometry (LC-MS) analysis. MEHP was noted in 90.7% of samples with mean 66.17 ± 58.69 pg/mg (median 49.35 pg/mg), MMP in 59.3% with mean 145.1 ± 310.6 pg/mg (median 64.45 pg/mg), MiBP in 37.0% with mean 56.96 ± 119.4 pg/mg (median < limit of detection-LOD), MBP in 35.2% with mean 19.97 ± 34.38 pg/mg (median < LOD) and MBzP in 1.9% with concentration below limit of quantification. MEP, MCHP, and MOP have not been found in wild boar hair samples during this study. The results have shown that wild boars are exposed to phthalates and hair samples may be used as a matrix during studies on levels of phthalate metabolites in wild animals.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957, Olsztyn, Poland
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Elena Meschini
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - László Könyves
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, Budapest, 1078, Hungary
| | - Liliana Rytel
- Department and Clinic of Internal Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowski Str. 14, 10-718, Olsztyn, Poland.
| |
Collapse
|
3
|
Choudhury TR, Riad S, Uddin FJ, Maksud MA, Alam MA, Chowdhury AMS, Mubin AN, Islam ARMT, Malafaia G. Microplastics in multi-environmental compartments: Research advances, media, and global management scenarios. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104379. [PMID: 38851130 DOI: 10.1016/j.jconhyd.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
During the past decades, microplastics (MPs) have become an emerging concern due to their persistence and potential environmental threat. MP pollution has become so drastic that it has been found in the human food chain, breast milk, polar regions, and even the Himalayan basin, lake, etc. Inflammation, pulmonary hypertension, vascular occlusions, increased coagulability and blood cell cytotoxicity, disruption of immune function, neurotoxicity, and neurodegenerative diseases can all be brought on by severe microplastic exposure. Although many MPs studies have been performed on single environmental compartments, MPs in multi-environmental compartments have yet to be explored fully. This review aims to summarize the muti-environmental media, detection tools, and global management scenarios of MPs. The study revealed that MPs could significantly alter C flow through the soil-plant system, the structure and metabolic status of the microbial community, soil pH value, biomass of plant shoots and roots, chlorophyll, leaf C and N contents, and root N contents. This review reveals that MPs may negatively affect many C-dependent soil functions. Different methods have been developed to detect the MPs from these various environmental sources, including microscopic observation, density separation, Raman, and FT-IR analysis. Several articles have focused on MPs in individual environmental sources with a developed evaluation technique. This review revealed the extensive impacts of MPs on soil-plant systems, microbial communities, and soil functions, especially on water, suggesting possible disturbances to vital ecological processes. Furthermore, the broad range of detection methods explored emphasizes the significance of reliable analytical techniques in precisely evaluating levels of MP contamination in various environmental media. This paper critically discusses MPs' sources, occurrences, and global management scenarios in all possible environmental media and ecological health impacts. Future research opportunities and required sustainable strategies have also been suggested from Bangladesh and international perspectives based on challenges faced due to MP's pollution.
Collapse
Affiliation(s)
- Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh.
| | - Syed Riad
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Foyez Jalal Uddin
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - M A Maksud
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - M Abbas Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh; Bangladesh Accreditation Board, Dhaka 1000, Bangladesh
| | | | - Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Gambardella C, Miroglio R, Prieto Amador M, Castelli F, Castellano L, Piazza V, Faimali M, Garaventa F. High concentrations of phthalates affect the early development of the sea urchin Paracentrotus lividus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116473. [PMID: 38781890 DOI: 10.1016/j.ecoenv.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The toxicity of three phthalates (PAEs) - butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and di-(2-ethylhexyl) phthalate (DEHP) - was tested on the Mediterranean sea urchin Paracentrotus lividus. Fertilized eggs were exposed to environmental and high PAE concentrations for 72 h. The potential toxic effects on larval development and any morphological anomalies were then assessed to estimate PAEs impact. Environmental concentrations never affected development, while high concentrations induced toxic effects in larvae exposed to BBP (EC50: 2.9 ×103 µg/L) and DEHP (EC50: 3.72 ×103 µg/L). High concentrations caused skeletal anomalies, with a slight to moderate impact for DEP/DEHP and BBP, respectively. PAE toxicity was: BBP>DEHP>DEP. In conclusion, the three PAEs at environmental concentrations do not pose a risk to sea urchins. However, PAE concentrations should be further monitored in order not to constitute a concern to marine species, especially at their early developmental stages.
Collapse
Affiliation(s)
- Chiara Gambardella
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy.
| | - Roberta Miroglio
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | | | | | - Laura Castellano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, Genoa 16128, Italy
| | | | - Marco Faimali
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | - Francesca Garaventa
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| |
Collapse
|
5
|
Vencato S, Montano S, Saliu F, Coppa S, Becchi A, Liotta I, Valente T, Cocca M, Matiddi M, Camedda A, Massaro G, Seveso D, Lasagni M, Galli P, de Lucia GA. Phthalate levels in common sea anemone Actinia equina and Anemonia viridis: A proxy of short-term microplastic interaction? MARINE POLLUTION BULLETIN 2024; 200:116125. [PMID: 38359481 DOI: 10.1016/j.marpolbul.2024.116125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Phthalates are widely employed plasticizers blended to plastic polymers that, during plastic aging and weathering are prone to leach in the surrounding environment. Thus, phthalates were proposed to indirectly evaluate MPs contamination in marine environments, with still uncertain and scarce data, particularly for wildlife. This study investigates simultaneously microplastics (MPs) and phthalates (PAEs) occurrence in wild Actinia equina and Anemonia viridis, two common and edible sea anemone species. Both species had a 100 % frequency of MPs occurrence, with similar average concentrations. PAEs were detected in 70 % of samples, with concentrations up to 150 ng/g in A. equina and 144.3 ng/g for A. viridis. MPs and PAEs present in sea anemone tissues appear to reflect seawater plastic contamination conditions in the study area. Given the rapid biodegradation of PAEs, occurrence and concentrations of both these additives and their metabolites could be useful tracers of short-term plastic debris-biota interactions.
Collapse
Affiliation(s)
- Sara Vencato
- CNR-IAS, National Research Council - Institute of Anthropic Impact and Sustainability in Marine Environment, Oristano Section, Località Sa Mardini, 09170 Torregrande, Oristano, Italy; DISAT, Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Simone Montano
- DISAT, Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Francesco Saliu
- DISAT, Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Stefania Coppa
- CNR-IAS, National Research Council - Institute of Anthropic Impact and Sustainability in Marine Environment, Oristano Section, Località Sa Mardini, 09170 Torregrande, Oristano, Italy.
| | - Alessandro Becchi
- DISAT, Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Immacolata Liotta
- CNR-IPCB, National Research Council - Institute of Polymers, Composites and Biomaterials, Via Campi Flegrei, 34-80078 Pozzuoli, Napoli, Italy; DICMaPI, Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Tommaso Valente
- ISPRA, Italian National Institute for Environmental Protection and Research, Via del Fosso di Fiorano 64, 00143 Roma, Italy; La Sapienza' University of Rome, Department of Environmental Biology, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Mariacristina Cocca
- CNR-IPCB, National Research Council - Institute of Polymers, Composites and Biomaterials, Via Campi Flegrei, 34-80078 Pozzuoli, Napoli, Italy
| | - Marco Matiddi
- ISPRA, Italian National Institute for Environmental Protection and Research, Via del Fosso di Fiorano 64, 00143 Roma, Italy
| | - Andrea Camedda
- CNR-IAS, National Research Council - Institute of Anthropic Impact and Sustainability in Marine Environment, Oristano Section, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - Giorgio Massaro
- CNR-IAS, National Research Council - Institute of Anthropic Impact and Sustainability in Marine Environment, Oristano Section, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - Davide Seveso
- DISAT, Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Marina Lasagni
- DISAT, Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paolo Galli
- DISAT, Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Republic of Maldives
| | - Giuseppe Andrea de Lucia
- CNR-IAS, National Research Council - Institute of Anthropic Impact and Sustainability in Marine Environment, Oristano Section, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| |
Collapse
|
6
|
Gobbato J, Becchi A, Bises C, Siena F, Lasagni M, Saliu F, Galli P, Montano S. Occurrence of phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) in key species of anthozoans in Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 200:116078. [PMID: 38290362 DOI: 10.1016/j.marpolbul.2024.116078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The Mediterranean Sea's biodiversity is declining due to climate change and human activities, with plastics and emerging contaminants (ECs) posing significant threats. This study assessed phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) occurrence in four anthozoan species (Cladocora caespitosa, Eunicella cavolini, Madracis pharensis, Parazoanthus axinellae) using solid phase microextraction (SPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All specimens were contaminated with at least one contaminant, reaching maximum values of 57.3 ng/g for the ∑PAEs and 64.2 ng/g (wet weight) for ∑APIs, with dibutyl phthalate and Ketoprofen being the most abundant. P. axinellae was the most contaminated species, indicating higher susceptibility to bioaccumulation, while the other three species showed two-fold lower concentrations. Moreover, the potential adverse effects of these contaminants on anthozoans have been discussed. Investigating the impact of PAEs and APIs on these species is crucial, given their key role in the Mediterranean benthic communities.
Collapse
Affiliation(s)
- J Gobbato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives.
| | - A Becchi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - C Bises
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - F Siena
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - M Lasagni
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - F Saliu
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - P Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; University of Dubai, P.O. Box 14143, Dubai Academic City, United Arab Emirates; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| | - S Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| |
Collapse
|
7
|
Dąbrowska A, Kipa S, Vasilopoulos M, Osial M. The comparative study by Raman spectroscopy of the plastic tide in the three ports of the Mediterranean Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124093-124105. [PMID: 37999840 PMCID: PMC10746617 DOI: 10.1007/s11356-023-30973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
This paper summarizes the field studies on marine microplastics (MPs) carried out in the autumn season in four various localisations within three ports chosen at the Mediterranean Sea near the French Riviera and the West Coast of Italy (within the Ligurian Sea). It considers the transport problem and the fate of the MPs introduced to the sea by analysing beach debris found on the shore after the stormy weather. Monitored ports included Saint-Tropez, Portoferraio and Porto Ercole, in which two different places were monitored. The aim is to approach the plastic tide phenomena by concentrating on a selected fraction of all MPs presented on the seashore. The final identification of debris was performed using Raman spectroscopy, providing a high-resolution signal. The PE, PP and PS contents were compared as the most frequent and representative polymers. Finally, we tackle the pending issue of the compound leakage from the MPs taking the environmentally aged particles from Portoferraio for further laboratory experiments and discuss an innovative approach with a low detection limit based on the electrochemical methods.
Collapse
Affiliation(s)
- Agnieszka Dąbrowska
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland.
- University of Warsaw Biological and Chemical Research Centre, Żwirki i Wigury 101 st, 02-089, Warsaw, Poland.
| | - Seweryn Kipa
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland
| | - Michalis Vasilopoulos
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland
| |
Collapse
|
8
|
Digka N, Patsiou D, Kaberi H, Krasakopoulou E, Tsangaris C. Microplastic ingestion and its effects οn sea urchin Paracentrotus lividus: A field study in a coastal East Mediterranean environment. MARINE POLLUTION BULLETIN 2023; 196:115613. [PMID: 37820450 DOI: 10.1016/j.marpolbul.2023.115613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023]
Abstract
Microplastics (MPs) are recognized as an increasing threat to the marine environment, but little is known about their effects on benthic organisms, including sea urchins, when ingested. For this purpose, wild sea urchins (P. lividus) and seafloor sediment samples were investigated across three coastal areas of Zakynthos Island (Ionian Sea), each exposed to different anthropogenic pressures, revealing a consistent pattern in MP abundance, shape, and color. Biomarkers related to oxidative stress, neurotoxicity, and genotoxicity showed no significant effects of MP ingestion in the sea urchins, except for a positive correlation between GST activity and ingested MPs, suggesting a possible activation of their detoxification system in response to MP ingestion. While MP concentrations in sea urchins and sediments were within the low range reported in the global literature, it remains crucial to conduct further investigations in areas with MP pollution approaching predicted levels to fully comprehend the potential effects of MP pollution on marine organisms.
Collapse
Affiliation(s)
- Nikoletta Digka
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece; Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, 81132 Mytilene, Greece.
| | - Danae Patsiou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Helen Kaberi
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Evangelia Krasakopoulou
- Department of Marine Sciences, School of the Environment, University of the Aegean, University Hill, 81132 Mytilene, Greece
| | - Catherine Tsangaris
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| |
Collapse
|
9
|
Vighi M, Borrell A, Sahyoun W, Net S, Aguilar A, Ouddane B, Garcia-Garin O. Concentrations of bisphenols and phthalate esters in the muscle of Mediterranean striped dolphins (Stenella coeruleoalba). CHEMOSPHERE 2023; 339:139686. [PMID: 37544523 DOI: 10.1016/j.chemosphere.2023.139686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Bisphenols (BPs) and phthalate esters (PAEs) are important compounds for the plastics industry, also called "everywhere chemicals" due to their ubiquity in daily use products. Both chemical groups are well-known environmental contaminants, whose presence has been reported in all environmental compartments, and whose effects, mainly associated to endocrine disruption, are detrimental to living organisms. Cetaceans, due to their long life-span, low reproduction rate and high position in the trophic web, are especially vulnerable to the effects of contaminants. However, little is known about BP and PAE concentrations in cetacean tissues, their potential relation to individual biological variables, or their trends over time. Here, the concentration of 10 BPs and 13 PAEs was assessed in the muscle of 30 striped dolphins (Stenella coeruleoalba) stranded along the Spanish Catalan coast (NW Mediterranean) between 1990 and 2018. Six BP and 6 PAE compounds were detected, of which only 4,4'-(cyclohexane-1,1-diyl)diphenol (BPZ) was detected in all the samples, at the highest concentration (mean 16.06 μg g-1 lipid weight). Sex or reproductive condition were largely uninfluential on concentrations: only dimethylphthalate (DMP) concentrations were significantly higher in immature individuals than in adults, and the overall PAE concentrations were significantly higher in males than in females. Temporal variations were only detected in bis(4-hydroxyphenyl)ethane (BPE), diethylphthalate (DEP) and dimethylphthalate (DMP), whose concentrations were lower, and 9,9-Bis(4-hydroxyphenyl)fluorene (BPFL), which were higher, respectively, in samples taken between 2014 and 2018, probably reflecting shifts in the production and use of these chemicals. These results provide the first assessment of concentrations of several BP and PAE compounds in the muscle of an odontocete cetacean.
Collapse
Affiliation(s)
- Morgana Vighi
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain.
| | - Asunción Borrell
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| | - Wissam Sahyoun
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Sopheak Net
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Alex Aguilar
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| | - Baghdad Ouddane
- Université de Lille, Faculté des Sciences et Technologies, Laboratoire LASIRE (UMR 8516 CNRS), Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Odei Garcia-Garin
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology. University of Barcelona, 08028, Barcelona, Spain; Biodiversity Research Institute (IRBio). University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
10
|
Murano C, Nonnis S, Scalvini FG, Maffioli E, Corsi I, Tedeschi G, Palumbo A. Response to microplastic exposure: An exploration into the sea urchin immune cell proteome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121062. [PMID: 36641070 DOI: 10.1016/j.envpol.2023.121062] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
It is now known that the Mediterranean Sea currently is one of the major hotspot for microplastics (MPs; < 5 mm) pollution and that the risks will be even more pronounced in the coming years. Thus, the in-depth study of the mechanisms underlying the MPs toxicity in key Mediterranean organisms, subjected to high anthropic pressures, has become a categorical imperative to pursue. Here, we explore for the first time the sea urchins immune cells profile combined to their proteome upon in vivo exposure (72 h) to different concentrations of polystyrene-microbeads (micro-PS) starting from relevant environmental concentrations (10, 50, 103, 104 MP/L). Every 24 h, immunological parameters were monitored. After 72 h, the abundance of MPs was examined in various organs and coelomocytes were collected for proteomic analysis based on a shotgun label free proteomic approach. While sea urchins treated with the lowest concentration tested (10 and 50 micro-PS/L) did not show the presence of micro-PS in any tissue, in the specimens exposed to the highest concentration (103 and 104 micro-PS) there was an internalisation of 9.75 ± 2.75 and 113.75 ± 34.5 MP/g, respectively. Proteomic analyses revealed that MPs exposure altered coelomocytes protein profile not only compared to the control group but also among the different micro-PS concentrations and these variations are micro-PS concentration dependent. The proteins exclusively expressed in the coelomocytes of specimens exposed to MPs are mainly metabolite interconversion enzymes, involved in cellular processes, indicating a severe alteration of the cellular metabolic pathways. Overall, these findings provide new insights on the mode of action of MPs in the sea urchin immune cells both at the molecular and cellular level.
Collapse
Affiliation(s)
- Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy; CRC "Innovation for Well-being and Environment" (I-WE), Università Degli Studi di Milano, Milano, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy; CRC "Innovation for Well-being and Environment" (I-WE), Università Degli Studi di Milano, Milano, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|