1
|
Majeed S, Shajahan S, Vineetha G, Satheesh A, Bindu L. Swash zone sentinels: Unravelling microplastic pollution in selected beaches along the Southwest Coast of Peninsular India using the sand crab, Emerita emeritus. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138286. [PMID: 40245715 DOI: 10.1016/j.jhazmat.2025.138286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/16/2025] [Accepted: 04/12/2025] [Indexed: 04/19/2025]
Abstract
Microplastic pollution has emerged as a significant environmental concern within marine ecosystems globally. Sand crab, Emerita, valued as a food source in various parts of the world, can serve as an indicator of pollution in beach ecosystems. Present study assessed microplastic (MP) pollution across six beaches of Kerala, south west coast of India, by analysing MP in water, sediment, and ingestion by Emerita emeritus. The study evidenced prominent spatial variation in microplastic distribution among the six beaches. High MP concentration was observed in beaches of the south notable for their intense tourism and fishing activities. Microplastic concentration were remarkably high in water compared to the sediment and Emerita. Black MP (38.7 %) were the most prevalent, followed by colorless (37.6 %). Polyethylene (PE) accounted for the majority of MP types (42 %), followed by polypropylene (PP, 39 %) and polystyrene (PS, 19 %). Surface characterization of microplastics extracted from the gut of Emerita using SEM/EDX analysis identified the presence of toxic elements Hg (2.63 wt%) and Al (0.52 wt%) with Ca (11.75 wt%) exhibiting the highest elemental concentration followed by C and O. Presence of adsorbed metals indicates probable bioaccumulation, biomagnification and resultant health hazards to nearshore fishes, birds, and humans upon consumption of Emerita.
Collapse
Affiliation(s)
- Shameena Majeed
- Postgraduate Department of Zoology and Research Centre, Sanatana Dharma College, University of Kerala, Alappuzha, 688003, India
| | - Shahin Shajahan
- Tohoku University, Aobayama campus, Graduate school of agriculture, Sendai 980-0845, Japan
| | - G Vineetha
- Central Marine Fisheries Research Institute (CMFRI), Kochi 682018, India
| | - Athira Satheesh
- Postgraduate Department of Zoology and Research Centre, Sanatana Dharma College, University of Kerala, Alappuzha, 688003, India
| | - L Bindu
- Postgraduate Department of Zoology, Milad-E-Sherief Memorial College, University of Kerala, Kayamkulam, 690502, India.
| |
Collapse
|
2
|
Doshi M, Rabari V, Trivedi J. A systematic review on microplastic contamination in marine sediment and water of Asia: Concentration, characterization, and polymeric risk assessment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70042. [PMID: 39956909 DOI: 10.1002/wer.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
Microplastics (MPs) are ubiquitous in the marine environment and harmful for biodiversity. This review was based on 311 studies published on various online platforms published between 2006 and 2024 on MP contamination in marine sediment and water in different countries of Asia. The research highlights an increasing trend in MP contamination studies, with China and India. Analytical techniques for sample collection, digestion, flotation, and polymer identification are discussed. Fourier transform infrared spectroscopy (FTIR) emerged as the preferred method for polymer identification. The maximum MP contamination in marine sediments was recorded at Taiwan and Indonesia, while the maximum MP contamination in marine water was recorded in China, Malaysia, and India. The fiber was the most dominant shape. The 1-2 mm and 500 μ-1 mm-sized MPs having blue color were found dominantly. The pollution indices revealed a very high risk of MP contamination in all the Asian countries. PRACTITIONER POINTS: China and India are the leading in publications on MP contamination studies. Common tools used are steel scoop/spatula/shovel for sediment, nets for water. FTIR is the preferred method for polymer identification. Highest MP in sediment of Indonesia and in water of China, Malaysia, and India. Dominant MP shape: fiber; size 1-2 mm and 500 μ-1 mm, blue color.
Collapse
Affiliation(s)
- Mahima Doshi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Vasantkumar Rabari
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Jigneshkumar Trivedi
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
3
|
Wu B, Yu H, Lei P, He J, Yi J, Wu W, Wang H, Yang Q, Zeng G, Sun D. Microplastics in aquatic ecosystems: Detection, source tracing, and sustainable management strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117883. [PMID: 39965319 DOI: 10.1016/j.ecoenv.2025.117883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Microplastics (MPs) are emerging contaminants characterized by persistence, cross-media transport, and complex pollutant interactions, posing serious ecotoxicological risks to ecosystems and human health. Effective MPs management requires multi-faced, long-term, strategies involving targeted sampling, quantitative detection, and comprehensive risk assessments, all of which entail significant resource investment. Despite advancements in remediation technologies, a holistic governance framework integrating these innovations remains underdeveloped. This review synthesizes current knowledge on MPs, elaborating on their diverse morphologies, degradation pathways, and their role as vectors for toxic substances. State-of-the-art extraction techniques are evaluated in this article, including micropore adsorption using nanocomposites, alongside the incorporation of advanced analytical tools such as spectroscopic methods, electron microscopy, and bioinformatics to augment environmental forensics. This review also underscores the necessity of formulating robust global policies to regulate MPs pollution and discusses the potential of biodegradation and thermal degradation as sustainable solutions for MPs removal. By promoting an interdisciplinary approach, this review advocates for a coordinated global response, integrating environmental science, policy frameworks, and waste management strategies to mitigate the escalating impact of MPs on ecosystems and human well-being.
Collapse
Affiliation(s)
- Baihui Wu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Pengyu Lei
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiaxuan He
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jia Yi
- Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Wei Wu
- Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, 999077, Hong Kong
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Guoming Zeng
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Institute of Life Science & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Kumar BSK, Chari NVHK, Reddy KK, Cheriyan E, Sherin CK, Rao DB, Elangovan SS, Reddy BB, Gupta GVM. Natural light driven plastic leaching effects on carbon chemistry in the tropical coastal waters of eastern Arabian sea: An experimental study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124948. [PMID: 39265767 DOI: 10.1016/j.envpol.2024.124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024]
Abstract
This study examined the effects of solar light driven plastic degradation on carbon chemistry in the coastal waters of eastern Arabian Sea along the west coast of India. The research was conducted through experimental incubations exposed to natural sunlight at multiple locations between December 2023-February 2024. Photodegradation induced a significant pH decrease (up to 0.38 ± 0.02) between controls and plastic incubations ranging from 8.17 ± 0.01 to 7.54 ± 0.02 with the highest variation in the Mumbai coast ranging from 8.13 ± 0.01 to 7.75 ± 0.03. pH variations are primarily caused by the leaching of organic acids and CO2 release during solar irradiated incubation. Plastic leaching due to natural light irradiation and subsequent changes in the water chemistry is of prime significance with dissolved organic carbon (DOC) leaching of 0.002-0.03% of plastic weight into the coastal waters. Our estimations suggest 15-75 metric tonnes (MT) of DOC release per year by plastic pollution in the eastern Arabian Sea coastal waters. Further, the fluorescent dissolved organic matter (FDOM) fragmentation, a part of DOC, may act as an organic source of synthetic contaminants and would promote heterotrophic microbial action in the coastal waters. Photodegradation of plastic and the interaction of natural DOC and plastic-derived DOC resulted in longer wavelengths FDOM, which may affect the penetration of photosynthetically active radiation in the water column, thereby impacting primary production. Finally, future research work focussing on the role of plastic pollution in coastal ocean acidification and vice-versa is essential and will be increasingly intense in the upcoming decades.
Collapse
Affiliation(s)
- B S K Kumar
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India.
| | - N V H K Chari
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - Kiran Kumar Reddy
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - Eldhose Cheriyan
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - C K Sherin
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - D Bhaskara Rao
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - S Sai Elangovan
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - B Bikram Reddy
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| | - G V M Gupta
- Centre for Marine Living Resources and Ecology, Ministry of Earth Sciences, Kochi, 682508, Kerala, India
| |
Collapse
|
5
|
Vethanayaham J, Partheeban EC, Rajendran R. Ecological risk assessment and characterization of microplastics in the beach sediments of southeast coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1232. [PMID: 39570422 DOI: 10.1007/s10661-024-13379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
This study explores spatiotemporal variations of microplastics (MPs) in beach sediments along India's southeast coast, focusing on Tamil Nadu and Puducherry from 2020 to 2021. The MPs were extracted from the sediments through density separation and wet peroxidation. Following extraction, they were quantified and physically characterized using stereo-microscopy and chemically analyzed using ATR-FTIR. During the monsoon, Chennai (923 ± 380 MPs/kg) exhibited the highest MP abundance, followed by Puducherry (805 ± 222 MPs/kg), Nagapattinam (799 ± 257 MPs/kg), Thoothukudi (653 ± 258 MPs/kg), Rameswaram (585 ± 151 MPs/kg), and Kanyakumari (344 ± 71 MPs/kg). Similarly, in summer, Chennai (719 ± 192 MPs/kg) recorded the highest mean, trailed by Puducherry (645 ± 163 MPs/kg), Rameswaram (529 ± 138 MPs/kg), Nagapattinam (523 ± 95 MPs/kg), Thoothukudi (492 ± 104 MPs/kg), and Kanyakumari (335 ± 72 MPs/kg). Fibers predominated as the most common MP type. FTIR revealed polymers like polystyrene, polyethylene terephthalate, polyethylene, polypropylene, polyurethane, and polyamide. The Polymer Hazard Index indicated high polymer pollution risk, while the Pollution Load Index showed minimal contamination. The Potential Ecological Risk Index revealed low-to-medium MP pollution levels. Tailored strategies addressing plastic usage reduction and mitigation of terrestrial MP sources are imperative for coastal ecosystem resilience.
Collapse
Affiliation(s)
- Jebashalomi Vethanayaham
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | | | - Rajaram Rajendran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
6
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
7
|
Riaz S, Sahar R, Qader I, Burhan ZUN, Alvi SK, Rasool SG, Siddiqui PJA, Shafique S. Preliminary assessment of microplastic in rhizosphere and non-rhizosphere region of mangrove at four locations along Karachi coast, Pakistan. MARINE POLLUTION BULLETIN 2024; 205:116608. [PMID: 38917495 DOI: 10.1016/j.marpolbul.2024.116608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Mangrove ecosystem faces significant threats from the various pollutants including microplastic (MPs). The aim of this study was to assess variations in MP distribution in mangrove sediments of rhizosphere (R) and non-rhizosphere (NR) regions. A total of 14,960 MP particles were identified from Sandspit backwater (SS-1 & SS-2) and Creek areas (PQ & KC). Notably, the NR showed higher MP counts (7848) compared to the R region (7112). Analysis revealed variations in MP types, with beads being predominant in both R and NR, followed by film, fiber, and fragments. KC exhibited highest MP contamination, followed by PQ, SS-2, and SS-1. Fourier-transform infrared (FTIR) analysis confirmed the presence of polyethylene terephthalate and polyethylene in sediments samples. This first detailed report on MP in mangrove sediments and other limited studies from Pakistan establishes the widespread distribution of MPs in the coastal area and provide a baseline for further elaboration in future.
Collapse
Affiliation(s)
- Shagufta Riaz
- Department of Zoology, University of Karachi, Pakistan
| | - Rafia Sahar
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Irfana Qader
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Zaib-Un-Nisa Burhan
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Sofia Khalique Alvi
- PCSIR Laboratories Complex, Applied Chemistry Research Centre, Karachi, Pakistan
| | | | - Pirzada J A Siddiqui
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Seema Shafique
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
8
|
Choudhury TR, Riad S, Uddin FJ, Maksud MA, Alam MA, Chowdhury AMS, Mubin AN, Islam ARMT, Malafaia G. Microplastics in multi-environmental compartments: Research advances, media, and global management scenarios. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104379. [PMID: 38851130 DOI: 10.1016/j.jconhyd.2024.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
During the past decades, microplastics (MPs) have become an emerging concern due to their persistence and potential environmental threat. MP pollution has become so drastic that it has been found in the human food chain, breast milk, polar regions, and even the Himalayan basin, lake, etc. Inflammation, pulmonary hypertension, vascular occlusions, increased coagulability and blood cell cytotoxicity, disruption of immune function, neurotoxicity, and neurodegenerative diseases can all be brought on by severe microplastic exposure. Although many MPs studies have been performed on single environmental compartments, MPs in multi-environmental compartments have yet to be explored fully. This review aims to summarize the muti-environmental media, detection tools, and global management scenarios of MPs. The study revealed that MPs could significantly alter C flow through the soil-plant system, the structure and metabolic status of the microbial community, soil pH value, biomass of plant shoots and roots, chlorophyll, leaf C and N contents, and root N contents. This review reveals that MPs may negatively affect many C-dependent soil functions. Different methods have been developed to detect the MPs from these various environmental sources, including microscopic observation, density separation, Raman, and FT-IR analysis. Several articles have focused on MPs in individual environmental sources with a developed evaluation technique. This review revealed the extensive impacts of MPs on soil-plant systems, microbial communities, and soil functions, especially on water, suggesting possible disturbances to vital ecological processes. Furthermore, the broad range of detection methods explored emphasizes the significance of reliable analytical techniques in precisely evaluating levels of MP contamination in various environmental media. This paper critically discusses MPs' sources, occurrences, and global management scenarios in all possible environmental media and ecological health impacts. Future research opportunities and required sustainable strategies have also been suggested from Bangladesh and international perspectives based on challenges faced due to MP's pollution.
Collapse
Affiliation(s)
- Tasrina Rabia Choudhury
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh.
| | - Syed Riad
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - Foyez Jalal Uddin
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh
| | - M A Maksud
- Analytical Chemistry Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - M Abbas Alam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka, Bangladesh; Bangladesh Accreditation Board, Dhaka 1000, Bangladesh
| | | | - Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
9
|
Gupta P, Saha M, Naik A, Kumar MM, Rathore C, Vashishth S, Maitra SP, Bhardwaj KD, Thukral H. A comprehensive assessment of macro and microplastics from Rivers Ganga and Yamuna: Unveiling the seasonal, spatial and risk factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133926. [PMID: 38484661 DOI: 10.1016/j.jhazmat.2024.133926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
There have been growing apprehensions and concerns regarding the increasing presence of plastic pollutants in the holiest river of India, the Ganga, and its major tributary, Yamuna. In response to this issue, the current study aimed to conduct a comprehensive investigation of the seasonal and spatial distribution of macro to microplastics (MPs) in the surface water, water column, and sediments from the River Ganga and Yamuna. MP samples were collected from various points of these Rivers, including upstream, downstream, and drainage points around the vicinity of Haridwar, Agra, Prayagraj, and Patna cities. With a significant seasonal variation, the estimated MPs and plastic flux were higher during the wet season than during the dry season. MPs sized 300 µm-1 mm and fibre-shaped blue and black colored MPs were pre-dominant in both rivers. Polyacrylamide, polyamide, and polyvinyl chloride were the most ascertained polymers. MPs including hazardous polymers (hazard score >1000) may pose a risk to the population of Indo-Gangetic Plain via direct and indirect exposure to MPs. The information provided in this study could serve as a starting point for the action plan required by municipal corporations to mitigate plastic pollution and target the possible sources at each location.
Collapse
Affiliation(s)
- Priyansha Gupta
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Akshata Naik
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - M Manish Kumar
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Chayanika Rathore
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shrish Vashishth
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | | | - K D Bhardwaj
- National Productivity council, New Delhi 110003, India
| | - Harsh Thukral
- National Productivity council, New Delhi 110003, India
| |
Collapse
|
10
|
Martinez M, Minetti R, La Marca EC, Montalto V, Rinaldi A, Costa E, Badalamenti F, Garaventa F, Mirto S, Ape F. The power of Posidonia oceanica meadows to retain microplastics and the consequences on associated macrofaunal benthic communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123814. [PMID: 38499170 DOI: 10.1016/j.envpol.2024.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
In the coastal environment, a large amount of microplastics (MPs) can accumulate in the sediments of seagrass beds. However, the potential impact these pollutants have on seagrasses and associated organisms is currently unknown. In this study, we investigated the differences in MPs abundance and composition (i.e., shape, colour and polymer type) in marine sediments collected at different depths (-5 m, -15 m, -20 m) at two sites characterized by the presence of Posidonia oceanica meadows and at one unvegetated site. In the vegetated sites, sediment samples were collected respectively above and below the upper and lower limits of the meadow (-5 m and -20 m), out of the P. oceanica meadow, and in the central portion of the meadow (-15 m). By focusing on the central part of the meadow, we investigated if the structural features (i.e. shoots density and leaf surface) can affect the amount of MPs retained within the underlying sediment and if these, in turn, can affect the associated benthic communities. Results showed that the number of MPs retained by P. oceanica meadows was higher than that found at the unvegetated site, showing also a different composition. In particular, at vegetated sites, we observed that MPs particles were more abundant within the meadow (at - 15 m), compared to the other depths, on unvegetated sediment, with a dominance of transparent fragments of polypropylene (PP). We observed that MPs entrapment by P. oceanica was accentuated by the higher shoots density, while the seagrass leaf surface did not appear to have any effect. Both the abundance and richness of macrofauna associated with P. oceanica rhizomes appear to be negatively influenced by the MPs abundance in the sediment. Overall, this study increases knowledge of the potential risks of MPs accumulation in important coastal habitats such as the Posidonia oceanica meadows.
Collapse
Affiliation(s)
- Marco Martinez
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy.
| | - Roberta Minetti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Emanuela Claudia La Marca
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Valeria Montalto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Alessandro Rinaldi
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Elisa Costa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Fabio Badalamenti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Garaventa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Simone Mirto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Ape
- Institute of Marine Sciences, National Research Council (ISMAR-CNR) Via Gobetti, 101, 40129, Bologna, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
11
|
Devi SS, Gouri BR, Anjali S, Kumar AB. Microplastic contamination in Ashtamudi Lake, India: Insights from a Ramsar wetland. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104367. [PMID: 38772271 DOI: 10.1016/j.jconhyd.2024.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Estuaries function as temporary storage sites for plastic debris, influencing the distribution of microplastics (MPs) across ecosystems. This research delves into the presence of MPs in the water, sediment, fish, and shellfish of Ashtamudi Lake, a Ramsar wetland with brackish water located on the southwest coast of India. Given the lake's significance in supporting the livelihoods of numerous fishers and acting as a vital source of fishery resources for both local consumption and export, examining the contamination of the system by MPs becomes particularly pertinent. The highest percentage composition of MPs was found in macrofauna at 60.6% (with fish at 19.6% and shellfish at 40.9%), followed by sediment (22.8%) and water (16.7%). The primary types of MPs identified in all samples were fibers (35.6%), fragments (33.3%), and films (28%), with beads being the least represented at 3.03%. ATR-FTIR and Raman spectra analysis identified five polymers from shellfish (polypropylene, polyethylene, polystyrene, nylon, and polyvinyl chloride), five from fish guts (nylon, polypropylene, polyethylene, polyurethane, and polysiloxane), four in sediment (polypropylene, polyethylene, nylon, rayon), and four in water samples (polypropylene, polyethylene, nylon, and polystyrene). SEM-EDAX analysis of MPs obtained from the samples revealed degradation and the presence of inorganic elements such as Na, Mg, Al, Si, S, K, Cl, P, and Ca, as well as heavy metals like Pb, Mo, Rh, Pd, Ti, and Fe. The existence of these plastic polymers and heavy metals in microplastic samples poses a threat to vulnerable biota; people consume contaminated fish and shellfish, underscoring the importance of monitoring MPs in lake water. This investigation of MPs in Ashtamudi Lake highlights the system's susceptibility to plastic pollution and the bioavailability of smaller MPs to aquatic organisms. Identified sources of MPs in the lake include fishing and aquaculture activities, sewage pollution, improper solid waste management in lake watersheds, and unsustainable tourism. Upstream and downstream management interventions are recommended to address MP pollution in Ashtamudi Lake.
Collapse
Affiliation(s)
- Suvarna S Devi
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Beena Ramachandran Gouri
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - S Anjali
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
12
|
Wilkens JL, Calomeni-Eck AJ, Boyda J, Kennedy A, McQueen AD. Microplastic in Dredged Sediments: From Databases to Strategic Responses. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:72. [PMID: 38689078 PMCID: PMC11061003 DOI: 10.1007/s00128-024-03878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Microplastics (MPs) accumulate in sediments, yet guidelines for evaluating MP risks in dredged sediments are lacking. The objective of this study was to review existing literature on MPs in sediments to improve fundamental knowledge of MP exposures and develop a publicly available database of MPs in sediments. Twelve percent of the reviewed papers (nine studies) included sediment core samples with MP concentrations generally decreasing with depth, peaking in the top 15 cm. The remaining papers evaluated surficial grab samples (0 to 15 cm depth) from various water bodies with MPs detected in almost every sample. Median MP concentrations (items/kg dry sediment) increased in this order: lakes and reservoirs (184), estuarine (263), Great Lakes nearshore areas and tributaries (290), riverine (410), nearshore marine areas (487), dredge activities (817), and harbors (948). Dredging of recurrent shoaling sediments could be expected to contain MPs at various depths with concentrations influenced by the time elapsed since the last dredging event. These results offer key insights into the presence and variability of MPs in dredged sediments, informing environmental monitoring and risk assessment strategies.
Collapse
Affiliation(s)
- J L Wilkens
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA.
| | - A J Calomeni-Eck
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - J Boyda
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - A Kennedy
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - A D McQueen
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| |
Collapse
|
13
|
Villanova-Solano C, Díaz-Peña FJ, Hernández-Sánchez C, González-Sálamo J, Edo C, Vega-Moreno D, Fernández-Martín S, Fraile-Nuez E, Machín F, Hernández-Borges J. Beneath the water column: Uncovering microplastic pollution in the sublittoral coastal sediments of the Canary Islands, Spain. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133128. [PMID: 38134684 DOI: 10.1016/j.jhazmat.2023.133128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
Marine ecosystems pollution by microplastics (MPs) is a global problem of special concern. The present study examines the prevalence and distribution of MPs and cellulosic particles in sublittoral coastal sediments of the Canary Islands archipelago (Spain). At twenty-six different locations alongside seven islands, three samples were taken parallel to the shoreline between 1 and 10 m depth (n = 78). Sediment samples were primarily digested with a H2O2 solution followed by four flotations in a saturated NaCl solution. The mean concentration obtained was 3.9 ± 1.6 items/g of dry weight. A similar distribution pattern was observed across all islands concerning particles morphology, color, size and composition: mainly colorless/translucent and blue fibers (60.0%). Additionally, fragments were also found, and to a much lesser extent microbeads, films and tangled messes. MicroFourier Transform Infrared spectroscopy analysis of 12.5% of the fibers, showed that they were mainly cellulosic (54.5%) -either natural or semisynthetic- followed by polyester (22.7%) and acrylic (4.5%). The potential correlation between particle distribution in nearshore sediments and wave intensity was also explored. This work provides the first comprehensive report on the current MPs content of the seabed of the region.
Collapse
Affiliation(s)
- Cristina Villanova-Solano
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Francisco J Díaz-Peña
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Cintia Hernández-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Forense y Legal y Parasitología, Área de Medicina Preventiva y Salud Pública, Escuela Politécnica Superior de Ingeniería, Sección de Náutica, Máquinas y Radioelectrónica Naval, Universidad de La Laguna (ULL), Vía Auxiliar Paso Alto, 2, 38001 Santa Cruz de Tenerife, Spain
| | - Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Carlos Edo
- Departamento de Ingeniería Química, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daura Vega-Moreno
- Departamento de Química, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Sonia Fernández-Martín
- Departamento de Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain
| | - Eugenio Fraile-Nuez
- Centro Oceanográfico de Canarias, Instituto Español de Oceanografía (IEO), Consejo Superior de Investigaciones Científicas (CSIC), Calle Farola del Mar, 22, 38180 Santa Cruz de Tenerife, Spain
| | - Francisco Machín
- Departamento de Física, Universidad de Las Palmas de Gran Canaria (ULPGC), Spain
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, s/n, 38206 San Cristóbal de La Laguna, Spain.
| |
Collapse
|
14
|
Nikhil VG, Amritha GG, Ranjeet K, Varghese GK. Distribution of microplastics in seafloor sediments and their differential assimilation in nearshore benthic molluscs along the south-west coast of India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123350. [PMID: 38219899 DOI: 10.1016/j.envpol.2024.123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Spatial and temporal distribution of microplastics (MPs) in the nearshore seafloor sediments along the Southwest coast of India and their patterns of accumulation in selected infaunal and epibenthic molluscs with diverse feeding strategies were investigated. Along the 300-km coastal stretch, which is one of the most productive and biodiversity rich regions of the eastern Arabian Sea, notable levels of MP contamination in both sediment (617.7 items/kg dry weight) and molluscs (5.39 items/g) was recorded. The concentration of MPs in sediments also varied seasonally, with a higher prevalence during the post-monsoon season. Among the four molluscan groups studied, the highest MP abundance was recorded among scavenging gastropod Pseudominolia biangulosa (9.13 items/g), followed by microcarnivore scaphopod Tesseracme quadrapicalis (5.96 items/g). In comparison, the suspension feeding bivalve, Anadara hankeyana and deposit feeding clam Jitlada philippinarum had lesser accumulation of MPs (2.98 items/g and 3.50 items/g respectively). The majority of MPs in sediments and within molluscs were less than 250 μm in size (89.14%) and were predominantly fibres and fragments. Chemical characterisation of MPs revealed eleven types of polymers dominated by polyethylene (PE) and polypropylene (PP). Present study identified positive correlations between ingested MP polymers and the feeding strategies of molluscs. Higher values for the ecological risk assessment indices (PHI, PLI and PERI) in most of the stations indicated the severity of plastic pollution in the region. Molluscs being a major contributor to the benthic food web is also a connecting link to higher trophic levels. Hence understanding the specificity in the MPs accumulation pattern within this group has far reaching significance in utilizing them as potential bioindicators for pollution studies in marine ecosystems.
Collapse
Affiliation(s)
- V G Nikhil
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - G G Amritha
- Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - K Ranjeet
- Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, India.
| | - George K Varghese
- Department of Civil Engineering, National Institute of Technology, Kozhikode, India
| |
Collapse
|
15
|
Gupta P, Saha M, Suneel V, Rathore C, Chndrasekhararao AV, Gupta GVM, Junaid CK. Microplastics in the sediments along the eastern Arabian Sea shelf: Distribution, governing factors and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168629. [PMID: 37977402 DOI: 10.1016/j.scitotenv.2023.168629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Despite the omnipresence of microplastics (MPs), the studies around the western continental shelf of Indian Ocean (Eastern Arabian Sea-EAS) are uncovered and understudied. Thus, the present study was focused to understand the spatial distribution, characterization and risk assessment of MPs in sediment across seven coastal transects (10 to 50 m) all along the EAS shelf. The highest MPs concentration (MPs/kg d.w.) was detected in the northern EAS (NEAS; 2260 ± 1050) followed by central (CEAS; 1550 ± 1012) and southern (SEAS; 1300 ± 513) shelves. Among all distinct locations, the highest concentration of MPs (2500 ± 1042) was detected in the north coastal sediments off Mumbai, followed by off Mangalore (1480 ± 1169) in the center and off Kochi (1350 ± 212) in the south. MPs were found in the form of fibres, fragments and films with a predominance of fibres (~70-80 %). Approximately 74.6 % of the total MPs were in the size range of 300 μm to 5 mm. The surface of detected MPs was rough, irregular, and mechanical weathering features such as pits, grooves also observed and spotted with bacterial community structures. Polypropylene (PP; 34 %), polyisoprene (PIP; 19 %), butyl rubber (18 %), and low-density polyethylene (LDPE; 13 %) were dominant polymers. The pollution load index highlighted minor risk while the polymer hazard index exhibited a hazard level of V. Litter discharge, fishing activities, and active marine navigation are among the many high-risk sources of plastic contamination in this region. Due to the prevailing winds, currents, low sea surface height, and high precipitation, the conditions in the EAS are favorable for the accumulation of both sea-based and land-based particles. Hence, this study provides novel insights into the potential risks posed by MP to the IO rim and associated marine ecosystem which will enhance our knowledge of the ecological implications and consequences of MP pollution, ultimately aiding in developing effective management and mitigation strategies.
Collapse
Affiliation(s)
- Priyansha Gupta
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - V Suneel
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chayanika Rathore
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - G V M Gupta
- Centre for Marine Living Resources and Ecology, Puthuvype, Kochi 682508, India
| | - C K Junaid
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| |
Collapse
|
16
|
Guo S, Wu Z, Li X, Shen D, Shentu J, Lu L, Qi S, Zhu M, Long Y. Microplastic, a possible trigger of landfill sulfate reduction process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167662. [PMID: 37820800 DOI: 10.1016/j.scitotenv.2023.167662] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The environmental impact of microplastics (MPs) formed from landfill has not been gained enough attention. This research investigated the characteristics of the MPs occurrence in landfills through field sampling. It shows that the MPs abundance in the landfill surface soil and non-landfill areas can reach 3573 items·g-1 and 3041 items·g-1, respectively. The vertical abundance of MPs increases significantly with depth, ranging from 387 to 11,599 items·g-1 with small size (≤10 μm, 65.61 %) and flake or wedge shape (38.48 %). The leachate movement in a longitudinal direction enables MPs to accumulate more easily in the landfill bottom layer with high moisture abundance. The abundance of MPs are significantly correlated with SO42- and S2- content, the two typical metabolic substrate and product of sulfate reduction process. In such heterogeneous environment, this significant correlation is not a random phenomenon in terms of the MPs have known substantial impact on biogeochemical processes. Microplastic is a possible trigger of landfill odor emission related with sulfate reduction. This research could serve as a reference for MPs and odor pollution management in landfills.
Collapse
Affiliation(s)
- Shuli Guo
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zixiao Wu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xianghang Li
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Min Zhu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
17
|
Sari Erkan H, Takatas B, Ozturk A, Gündogdu S, Aydın F, Koker L, Ozdemir OK, Albay M, Onkal Engin G. Spatio-temporal distribution of microplastic pollution in surface sediments along the coastal areas of Istanbul, Turkey. MARINE POLLUTION BULLETIN 2023; 195:115461. [PMID: 37659384 DOI: 10.1016/j.marpolbul.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Microplastics (MPs) have become prevalent in various environmental compartments, including air, water, and soil, attracting attention as significant pollutant parameters. This study investigated the prevalence of MP pollution in surface sediments along Istanbul's Marmara Sea, encompassing the megacity and the Bosphorus. A comprehensive sampling approach was employed, covering 43 stations across four seasons and depths ranging from 5 to 70 m. The objective was to assess the impact of terrestrial, social, and industrial activities on MPs. The average concentrations varied per season, with fall, winter, spring, and summer values recorded as 2000 ± 4100, 1600 ± 3900, 4300 ± 12,000, and 9500 ± 20,300 particles/kg-DW. The study identified river stations in the Golden Horn and sea discharge locations as hotspots for high concentrations. Notably, the dominant shape shifted from fibers in fall, winter, and spring to fragments during summer, coinciding with mucilage occurrences. The study identified 11 different polymers, with polyethylene (44 %) and polypropylene (31 %) being the most common.
Collapse
Affiliation(s)
- Hanife Sari Erkan
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye.
| | - Betul Takatas
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| | - Alihan Ozturk
- Yildiz Technical University, Control and Automation Engineering Department, 34349 Istanbul, Turkiye
| | - Sedat Gündogdu
- Cukurova University, Faculty of Fisheries, Department of Basic Sciences, 01330 Adana, Turkiye
| | - Fatih Aydın
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Latife Koker
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Oguz Kaan Ozdemir
- Yıldız Technical University, Department of Metallurgical and Materials Engineering, 34220 İstanbul, Turkiye
| | - Meric Albay
- Istanbul University, Faculty of Aquatic Sciences, Department of Freshwater Resources and Management, Istanbul, Turkiye
| | - Guleda Onkal Engin
- Yildiz Technical University, Civil Engineering Faculty, Environmental Engineering Department, Davutpasa, Esenler, 34220 Istanbul, Turkiye
| |
Collapse
|
18
|
Purushothaman A, Vishnudattan NK, Nehala SP, Meghamol MD, Neethu KV, Joseph J, Nandan SB, Padmakumar KB, Thomas LC. Patterns and variability in the microplastic contamination along the southwest coast of India with emphasis on submarine groundwater discharge sites. MARINE POLLUTION BULLETIN 2023; 194:115432. [PMID: 37639866 DOI: 10.1016/j.marpolbul.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Beach sediments of the southwest coast of India were analysed to estimate the microplastic contamination with emphasis on the submarine groundwater discharge (SGD) zones. Both SGD and non-SGD sites were assessed for abundance, morphotype and polymer type of microplastics. Microplastic load was 230.429 ± 62.87 particles per 100 g. Fibre, mainly blue, was the abundant morphotype, followed by fragment, foam and film. The polymer types were POLYETHYLENE (PE) (30.77 %), POLYPROPYLENE (PP) (26.92 %), POLYAMIDE (PA) (19.23 %), POLYSTYRENE (PS) (11.54 %), ETHYLENE VINYL ACETATE (EVA) (7.692 %) and POLYVINYL CHLORIDE (PVC) (3.846 %). The SGD zones exhibited higher microplastic contamination with statistically significant variations from non SGD sites. The study accounts the levels of microplastic contamination along the southwest coast of India, a major fishery zone. The higher abundance of microplastic in the SGD zones indicates the significance of subterranean groundwater through flow as a pathway of anthropogenic contaminants towards marine ecosystems.
Collapse
Affiliation(s)
- Aishwarya Purushothaman
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - N K Vishnudattan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - S P Nehala
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - M D Meghamol
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - K V Neethu
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Jorphin Joseph
- Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - S Bijoy Nandan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - K B Padmakumar
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Lathika Cicily Thomas
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India.
| |
Collapse
|
19
|
Cai C, Zhu L, Hong B. A review of methods for modeling microplastic transport in the marine environments. MARINE POLLUTION BULLETIN 2023; 193:115136. [PMID: 37329736 DOI: 10.1016/j.marpolbul.2023.115136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023]
Abstract
Microplastic (MP) pollution is ubiquitous in the oceans and poses serious threats to the marine ecosystems. Nowadays numerical modeling has become one of the widely used tools for monitoring and predicting the transport and fate of MP in marine environments. Despite the growing body of research on numerical modeling of marine MP, the advantages and disadvantages of various modeling methods have not received systematic evaluation in published works. Important aspects such as parameterization schemes for MP behaviors, factors influencing MP transport, and proper configuration in beaching are essential for guiding researchers to choose proper methods in their work. For this purpose, we comprehensively reviewed the current knowledge on factors influencing MP transport, classified modeling approaches according to the governing equations, and summarized up-to-date parameterization schemes for MP behaviors. Critical factors such as vertical velocity, biofouling, degradation, fragmentation, beaching, and washing-off were reviewed in the frame of MP transport processes.
Collapse
Affiliation(s)
- Caiyuan Cai
- School of Civil and Transportation Engineering, South China University of Technology, Guangzhou, China
| | - Liangsheng Zhu
- School of Civil and Transportation Engineering, South China University of Technology, Guangzhou, China
| | - Bo Hong
- School of Civil and Transportation Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
20
|
Mallik A, Bhushan S, Chakraborty P, Ramteke KK, Pal P, Jaiswar AK, Sreekanth GB, Nayak BB. Study of feeding biology and diet-associated microplastic contamination in selected creek fishes of northeastern Arabian Sea: A multi-species approach. MARINE POLLUTION BULLETIN 2023; 190:114875. [PMID: 37002968 DOI: 10.1016/j.marpolbul.2023.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
This study investigated the diet composition and microplastic contamination in six fish species collected from the creek area of northeastern Arabian Sea. The results show that the diet of the fish is mainly composed of shrimps, algae, fish, and zooplankton, with microplastics constituting up to 4.83 % (Index of Preponderance) of their diet. The average abundance of microplastics ranges from 5.82 to 7.69 items per fish, and their ingestion is influenced by seasonal variation, gut fullness, and trophic level. Microplastic contamination has no significant effect on the condition factor and hepatosomatic index of the fish species. However, polymer hazard index indicates that microplastic pollution in fish is associated with a low to high risk factor, which might cause potential harm to aquatic lives and higher vertebrates via food chain. Therefore, this study highlights the need for immediate attention and effective regulations to reduce microplastic pollution to protect marine life.
Collapse
Affiliation(s)
- Abhijit Mallik
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Shashi Bhushan
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India.
| | - Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - K K Ramteke
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University(I), 799210, India
| | - A K Jaiswar
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| | - G B Sreekanth
- ICAR - Central Coastal Agricultural Research Institute, Goa 403402, India
| | - B B Nayak
- ICAR-Central Institute of Fisheries Education, Mumbai 400061, India
| |
Collapse
|
21
|
Trindade LDS, Gloaguen TV, Benevides TDSF, Valentim ACS, Bomfim MR, Gonzaga Santos JA. Microplastics in surface waters of tropical estuaries around a densely populated Brazilian bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121224. [PMID: 36754197 DOI: 10.1016/j.envpol.2023.121224] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Brazil is the fourth largest producer of plastic waste in the world, but studies on pollution of rivers and estuaries by microplastics are still scarce. This study is located in the state of Bahia (Northeast region) in ten estuarine environments around Todos dos Santos Bay (TDB), the largest Brazilian bay, where more than 3 million Brazilians live. The aim of the study was the evaluation of the input of microplastics into the TSB by river. Microplastic abundance, size, morphology and water quality were determined during three sampling campaigns. All river samples were highly polluted with microplastics (mostly <150 μm), up to 33,000 items m-3, exceeding values observed in most estuaries worldwide. The poor quality of the river water reflect the deficient treatment of domestic wastewater in the state of Bahia (49% are not treated), and in this study is shown a correlation with the abundance of microplastics, indicating their possible main source. Artisanal fishing can also contribute locally to this pollution. Morover, the results highlight the importance of sampling small microplastics (<100 μm) to avoid important underestimation of this pollution. Based on these data, the three major rivers would discharge 3.88 trillion items into the Bay each year, equivalent to 4.75 × 105 m2 of plastic. Further research in surface water systems is essential, given that the average wastewater treatment rates in the country and in the Northeast and North regions are only 43%, 32%, and 12%, respectively.
Collapse
Affiliation(s)
- Laiana Dos Santos Trindade
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo of Bahia, 44380-000, Cruz Das Almas, Brazil
| | - Thomas Vincent Gloaguen
- Center for Technology and Exact Sciences, Federal University of Reconcavo of Bahia, 44380-000, Cruz Das Almas, Brazil.
| | | | | | - Marcela Rebouças Bomfim
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo of Bahia, 44380-000, Cruz Das Almas, Brazil.
| | - Jorge Antônio Gonzaga Santos
- Center for Agricultural, Environmental and Biological Sciences, Federal University of Reconcavo of Bahia, 44380-000, Cruz Das Almas, Brazil.
| |
Collapse
|