1
|
Xing D, Zuo W, Chen J, Ma B, Cheng X, Zhou X, Qian Y. Spatial Delivery of Triple Functional Nanoparticles via an Extracellular Matrix-Mimicking Coaxial Scaffold Synergistically Enhancing Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37380-37395. [PMID: 35946874 DOI: 10.1021/acsami.2c08784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It remains a major challenge to simultaneously achieve bone regeneration and prevent infection in the complex microenvironment of repairing bone defects. Here, we developed a novel ECM-mimicking scaffold by coaxial electrospinning to be endowed with multibiological functions. Lysophosphatidic acid (LPA) and zinc oxide (ZnO) nanoparticles were loaded into the poly-lactic-co-glycolic acid/polycaprolactone (PLGA/PCL, PP) sheath layer of coaxial nanofibers, and deferoxamine (DFO) nanoparticles were loaded into its core layer. The novel scaffold PP-LPA-ZnO/DFO maintained a porous nanofibrous architecture after incorporating three active nanoparticles, showing better physicochemical properties and eximious biocompatibility. In vitro studies showed that the bio-scaffold loaded with LPA nanoparticles had excellent cell adhesion, proliferation, and differentiation for MC3T3-E1 cells and synergistic osteogenesis with the addition of ZnO and DFO nanoparticles. Further, the PP-LPA-ZnO/DFO scaffold promoted tube formation and facilitated the expression of vascular endothelial markers in HUVECs. In vitro antibacterial studies against Escherichia Coli and Staphylococcus aureus demonstrated effective antibacterial activity of the PP-LPA-ZnO/DFO scaffold. In vivo studies showed that the PP-LPA-ZnO/DFO scaffold exhibited excellent biocompatibility after subcutaneous implantation and remarkable osteogenesis at 4 weeks post-implantation in the mouse alveolar bone defects. Importantly, the PP-LPA-ZnO/DFO scaffold showed significant antibacterial activity, prominent neovascularization, and new bone formation in the rat fenestration defect model. Overall, the spatially sustained release of LPA, ZnO, and DFO nanoparticles through the coaxial scaffold synergistically enhanced biocompatibility, osteogenesis, angiogenesis, and effective antibacterial properties, which is ultimately beneficial for bone regeneration. This project provides the optimized design of bone regenerative biomaterials and a new strategy for bone regeneration, especially in the potentially infected microenvironment.
Collapse
Affiliation(s)
- Danlei Xing
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Wei Zuo
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Jiahong Chen
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Buyun Ma
- Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xi Cheng
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| |
Collapse
|
2
|
Modulating Tumor Cell Functions by Tunable Nanopatterned Ligand Presentation. NANOMATERIALS 2020; 10:nano10020212. [PMID: 31991896 PMCID: PMC7074906 DOI: 10.3390/nano10020212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022]
Abstract
Cancer comprises a large group of complex diseases which arise from the misrouted interplay of mutated cells with other cells and the extracellular matrix. The extracellular matrix is a highly dynamic structure providing biochemical and biophysical cues that regulate tumor cell behavior. While the relevance of biochemical signals has been appreciated, the complex input of biophysical properties like the variation of ligand density and distribution is a relatively new field in cancer research. Nanotechnology has become a very promising tool to mimic the physiological dimension of biophysical signals and their positive (i.e., growth-promoting) and negative (i.e., anti-tumoral or cytotoxic) effects on cellular functions. Here, we review tumor-associated cellular functions such as proliferation, epithelial-mesenchymal transition (EMT), invasion, and phenotype switch that are regulated by biophysical parameters such as ligand density or substrate elasticity. We also address the question of how such factors exert inhibitory or even toxic effects upon tumor cells. We describe three principles of nanostructured model systems based on block copolymer nanolithography, electron beam lithography, and DNA origami that have contributed to our understanding of how biophysical signals direct cancer cell fate.
Collapse
|
3
|
Xu Y. Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside. Cancers (Basel) 2019; 11:E1523. [PMID: 31658655 PMCID: PMC6826372 DOI: 10.3390/cancers11101523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Since the clear demonstration of lysophosphatidic acid (LPA)'s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications.
Collapse
Affiliation(s)
- Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Tigyi GJ, Yue J, Norman DD, Szabo E, Balogh A, Balazs L, Zhao G, Lee SC. Regulation of tumor cell - Microenvironment interaction by the autotaxin-lysophosphatidic acid receptor axis. Adv Biol Regul 2018; 71:183-193. [PMID: 30243984 DOI: 10.1016/j.jbior.2018.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
The lipid mediator lysophosphatidic acid (LPA) in biological fluids is primarily produced by cleavage of lysophospholipids by the lysophospholipase D enzyme Autotaxin (ATX). LPA has been identified and abundantly detected in the culture medium of various cancer cell types, tumor effusates, and ascites fluid of cancer patients. Our current understanding of the physiological role of LPA established its role in fundamental biological responses that include cell proliferation, metabolism, neuronal differentiation, angiogenesis, cell migration, hematopoiesis, inflammation, immunity, wound healing, regulation of cell excitability, and the promotion of cell survival by protecting against apoptotic death. These essential biological responses elicited by LPA are seemingly hijacked by cancer cells in many ways; transcriptional upregulation of ATX leading to increased LPA levels, enhanced expression of multiple LPA GPCR subtypes, and the downregulation of its metabolic breakdown. Recent studies have shown that overexpression of ATX and LPA GPCR can lead to malignant transformation, enhanced proliferation of cancer stem cells, increased invasion and metastasis, reprogramming of the tumor microenvironment and the metastatic niche, and development of resistance to chemo-, immuno-, and radiation-therapy of cancer. The fundamental role of LPA in cancer progression and the therapeutic inhibition of the ATX-LPA axis, although highly appealing, remains unexploited as drug development to these targets has not reached into the clinic yet. The purpose of this brief review is to highlight some unique signaling mechanisms engaged by the ATX-LPA axis and emphasize the therapeutic potential that lies in blocking the molecular targets of the LPA system.
Collapse
Affiliation(s)
- Gabor J Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary.
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Erzsebet Szabo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA; Institute of Clinical Experimental Research, Semmelweis University, POB 2, H-1428, Budapest, Hungary
| | - Louisa Balazs
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Guannan Zhao
- Department of Pathology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, TN, 38163, USA
| |
Collapse
|
5
|
Wang J, Chen J, Zhu Y, Zheng N, Liu J, Xiao Y, Lu Y, Dong H, Xie J, Yu S, Shao J, Jia L. In vitro and in vivo efficacy and safety evaluation of metapristone and mifepristone as cancer metastatic chemopreventive agents. Biomed Pharmacother 2016; 78:291-300. [DOI: 10.1016/j.biopha.2016.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/26/2022] Open
|
6
|
Yannas IV, Tzeranis D, So PT. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves. Biomed Mater 2015; 11:014106. [PMID: 26694657 PMCID: PMC5775477 DOI: 10.1088/1748-6041/11/1/014106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.
Collapse
Affiliation(s)
- I V Yannas
- Departments of Mechanical and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
7
|
Tzeranis DS, Soller EC, Buydash MC, So PTC, Yannas IV. In Situ Quantification of Surface Chemistry in Porous Collagen Biomaterials. Ann Biomed Eng 2015; 44:803-15. [PMID: 26369635 DOI: 10.1007/s10439-015-1445-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/01/2015] [Indexed: 01/28/2023]
Abstract
Cells inside a 3D matrix (such as tissue extracellular matrix or biomaterials) sense their insoluble environment through specific binding interactions between their adhesion receptors and ligands present on the matrix surface. Despite the critical role of the insoluble matrix in cell regulation, there exist no widely-applicable methods for quantifying the chemical stimuli provided by a matrix to cells. Here, we describe a general-purpose technique for quantifying in situ the density of ligands for specific cell adhesion receptors of interest on the surface of a 3D matrix. This paper improves significantly the accuracy of the procedure introduced in a previous publication by detailed marker characterization, optimized staining, and improved data interpretation. The optimized methodology is utilized to quantify the ligands of integrins α 1 β 1, α 2 β 1 on two kinds of matched porous collagen scaffolds, which are shown to possess significantly different ligand density, and significantly different ability to induce peripheral nerve regeneration in vivo. Data support the hypothesis that cell adhesion regulates contractile cell phenotypes, recently shown to be inversely related to organ regeneration. The technique provides a standardized way to quantify the surface chemistry of 3D matrices, and a means for introducing matrix effects in quantitative biological models.
Collapse
Affiliation(s)
- Dimitrios S Tzeranis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Mechanical Engineering, National Technical University of Athens, 15780, Zografou, Greece.
| | - Eric C Soller
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Melissa C Buydash
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter T C So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ioannis V Yannas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
8
|
Staiculescu MC, Ramirez-Perez FI, Castorena-Gonzalez JA, Hong Z, Sun Z, Meininger GA, Martinez-Lemus LA. Lysophosphatidic acid induces integrin activation in vascular smooth muscle and alters arteriolar myogenic vasoconstriction. Front Physiol 2014; 5:413. [PMID: 25400583 PMCID: PMC4215695 DOI: 10.3389/fphys.2014.00413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/06/2014] [Indexed: 01/16/2023] Open
Abstract
In vascular smooth muscle cells (VSMC) increased integrin adhesion to extracellular matrix (ECM) proteins, as well as the production of reactive oxygen species (ROS) are strongly stimulated by lysophosphatidic acid (LPA). We hypothesized that LPA-induced generation of ROS increases integrin adhesion to the ECM. Using atomic force microscopy (AFM) we determined the effects of LPA on integrin adhesion to fibronectin (FN) in VSMC isolated from rat (Sprague-Dawley) skeletal muscle arterioles. In VSMC, exposure to LPA (2 μM) doubled integrin-FN adhesion compared to control cells (P < 0.05). LPA-induced integrin-FN adhesion was reduced by pre-incubation with antibodies against β1 and β3 integrins (50 μg/ml) by 66% (P < 0.05). Inhibition of LPA signaling via blockade of the LPA G-protein coupled receptors LPAR1 and LPAR3 with 10 μM Ki16425 reduced the LPA-enhanced adhesion of VSCM to FN by 40% (P < 0.05). Suppression of ROS with tempol (250 μM) or apocynin (300 μM) also reduced the LPA-induced FN adhesion by 47% (P < 0.05) and 59% (P < 0.05), respectively. Using confocal microscopy, we observed that blockade of LPA signaling, with Ki16425, reduced ROS by 45% (P < 0.05), to levels similar to control VSMC unexposed to LPA. In intact isolated arterioles, LPA (2 μM) exposure augmented the myogenic constriction response to step increases in intraluminal pressure (between 40 and 100 mm Hg) by 71% (P < 0.05). The blockade of LPA signaling, with Ki16425, decreased the LPA-enhanced myogenic constriction by 58% (P < 0.05). Similarly, blockade of LPA-induced ROS release with tempol or gp91 ds-tat decreased the LPA-enhanced myogenic constriction by 56% (P < 0.05) and 55% (P < 0.05), respectively. These results indicate that, in VSMC, LPA-induced integrin activation involves the G-protein coupled receptors LPAR1 and LPAR3, and the production of ROS, and that LPA may play an important role in the control of myogenic behavior in resistance vessels through ROS modulation of integrin activity.
Collapse
Affiliation(s)
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA
| | - Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA
| | - Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| |
Collapse
|
9
|
Khraiche M, Muthuswamy J. Multi-modal biochip for simultaneous, real-time measurement of adhesion and electrical activity of neurons in culture. LAB ON A CHIP 2012; 12:2930-2941. [PMID: 22722746 DOI: 10.1039/c2lc40190h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent evidence suggests that integrin-mediated adhesion of neurons has immediate functional implications for learning and memory. In addition, adhesion of neurons to artificial substrates often determines the effectiveness and life of implants in the brain and peripheral nervous system. In this study, we present a novel biochip capable of simultaneous, quantitative, real-time monitoring of integrin-mediated adhesion and electrophysiology of primary neurons in vitro. The proposed technology combines acoustic micro-resonators capable of tracking changes in mechanics of the adhering neuronal layer, and microelectrode arrays for recording extracellular unit activity. Our results showed in four different experimental paradigms that the acoustic sensor response to adhering cells is correlated to integrin-mediated adhesion and that the micro-sensor is capable of monitoring the dynamics of neuronal adhesion over a period of 9 days. Finally, using our unique dual measurement platform, we performed simultaneous, real-time measurement of integrin-mediated adhesion and single cell electrophysiology in a neuronal culture. The sensitivities of the micro-resonators were 4-5 orders of magnitude greater than the sensitivity of the macro-scale resonators in response to adhering neurons. This multi-functional sensor platform offers insight into the interplay between integrin-mediated adhesion and neural function on a temporal resolution beyond any currently available experimental method and can therefore potentially lead to novel discoveries on the interactions between neuronal adhesion and function.
Collapse
Affiliation(s)
- Massoud Khraiche
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | | |
Collapse
|
10
|
Rancoule C, Pradère JP, Gonzalez J, Klein J, Valet P, Bascands JL, Schanstra JP, Saulnier-Blache JS. Lysophosphatidic acid-1-receptor targeting agents for fibrosis. Expert Opin Investig Drugs 2011; 20:657-67. [DOI: 10.1517/13543784.2011.566864] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Tzeranis DS, Roy A, So PTC, Yannas IV. An optical method to quantify the density of ligands for cell adhesion receptors in three-dimensional matrices. J R Soc Interface 2010; 7 Suppl 5:S649-61. [PMID: 20671067 PMCID: PMC3024575 DOI: 10.1098/rsif.2010.0321.focus] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/09/2010] [Indexed: 12/21/2022] Open
Abstract
The three-dimensional matrix that surrounds cells is an important insoluble regulator of cell phenotypes. Examples of such insoluble surfaces are the extracellular matrix (ECM), ECM analogues and synthetic polymeric biomaterials. Cell-matrix interactions are mediated by cell adhesion receptors that bind to chemical entities (adhesion ligands) on the surface of the matrix. There are currently no established methods to obtain quantitative estimates of the density of adhesion ligands recognized by specific cell adhesion receptors. This article presents a new optical-based methodology for measuring ligands of adhesion receptors on three-dimensional matrices. The study also provides preliminary quantitative results for the density of adhesion ligands of integrins alpha(1)beta(1) and alpha(2)beta(1) on the surface of collagen-based scaffolds, similar to biomaterials that are used clinically to induce regeneration in injured skin and peripheral nerves. Preliminary estimates of the surface density of the ligands of these two major collagen-binding receptors are 5775 +/- 2064 ligands microm(-2) for ligands of alpha(1)beta(1) and 17 084 +/- 5353 ligands microm(-2) for ligands of alpha(2)beta(1). The proposed methodology can be used to quantify the surface chemistry of insoluble surfaces that possess biological activity, such as native tissue ECM and biomaterials, and therefore can be used in cell biology, biomaterials science and regenerative medical studies for quantitative description of a matrix and its effects on cells.
Collapse
Affiliation(s)
- Dimitrios S. Tzeranis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amit Roy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ioannis V. Yannas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Kim MH, Kino-oka M, Taya M. Designing culture surfaces based on cell anchoring mechanisms to regulate cell morphologies and functions. Biotechnol Adv 2010; 28:7-16. [DOI: 10.1016/j.biotechadv.2009.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/28/2009] [Accepted: 08/01/2009] [Indexed: 12/11/2022]
|
13
|
Murph MM, Liu W, Yu S, Lu Y, Hall H, Hennessy BT, Lahad J, Schaner M, Helland A, Kristensen G, Børresen-Dale AL, Mills GB. Lysophosphatidic acid-induced transcriptional profile represents serous epithelial ovarian carcinoma and worsened prognosis. PLoS One 2009; 4:e5583. [PMID: 19440550 PMCID: PMC2679144 DOI: 10.1371/journal.pone.0005583] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 04/18/2009] [Indexed: 01/03/2023] Open
Abstract
Background Lysophosphatidic acid (LPA) governs a number of physiologic and pathophysiological processes. Malignant ascites fluid is rich in LPA, and LPA receptors are aberrantly expressed by ovarian cancer cells, implicating LPA in the initiation and progression of ovarian cancer. However, there is an absence of systematic data critically analyzing the transcriptional changes induced by LPA in ovarian cancer. Methodology and Principal Findings In this study, gene expression profiling was used to examine LPA-mediated transcription by exogenously adding LPA to human epithelial ovarian cancer cells for 24 h to mimic long-term stimulation in the tumor microenvironment. The resultant transcriptional profile comprised a 39-gene signature that closely correlated to serous epithelial ovarian carcinoma. Hierarchical clustering of ovarian cancer patient specimens demonstrated that the signature is associated with worsened prognosis. Patients with LPA-signature-positive ovarian tumors have reduced disease-specific and progression-free survival times. They have a higher frequency of stage IIIc serous carcinoma and a greater proportion is deceased. Among the 39-gene signature, a group of seven genes associated with cell adhesion recapitulated the results. Out of those seven, claudin-1, an adhesion molecule and phenotypic epithelial marker, is the only independent biomarker of serous epithelial ovarian carcinoma. Knockdown of claudin-1 expression in ovarian cancer cells reduces LPA-mediated cellular adhesion, enhances suspended cells and reduces LPA-mediated migration. Conclusions The data suggest that transcriptional events mediated by LPA in the tumor microenvironment influence tumor progression through modulation of cell adhesion molecules like claudin-1 and, for the first time, report an LPA-mediated expression signature in ovarian cancer that predicts a worse prognosis.
Collapse
Affiliation(s)
- Mandi M Murph
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Doi T, Puri P, Bannigan J, Thompson J. Downregulation of ROCK-I and ROCK-II gene expression in the cadmium-induced ventral body wall defect chick model. Pediatr Surg Int 2008; 24:1297-301. [PMID: 18956198 DOI: 10.1007/s00383-008-2270-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE In the chick embryo, administration of the heavy metal cadmium (Cd) after 60 h incubation induces the ventral body wall defect (VBW) with similarities to the human omphalocele. Rho-associated coiled-coil-containing protein kinase (ROCK) I and ROCK-II mediate signalling from Rho to the actin cytoskeleton in the Wnt non-canonical pathway. ROCK-I knockout (KO), ROCK-II KO, and ROCK-I/ROCK-II double heterozygous mice have been shown to cause failure of closure of the VBW. The exact mechanism by which Cd acts in the Wnt signalling pathway still remains unclear. We designed this study to test the hypothesis, that the gene expression levels of ROCK-I and ROCK-II are downregulated during the critical period of embryogenesis in the Cd-induced VBW defect chick model. METHODS Chick embryos were harvested 1 h (1H), 4 h (4H), and 8 h (8H) after treatment of cadmium and divided into two groups: control (n = 8 at each time point), and Cd (n = 8 at each time point). Real-time RT-PCR was performed to evaluate the relative mRNA levels of ROCK-I and ROCK-II expression in the Cd-induced VBW defect chick model. Differences between the two groups at each time point were tested by using Mann-Whitney's U test and statistical significance was accepted at P < 0.05. RESULTS The relative mRNA levels of ROCK-I and ROCK-II at 4H were significantly decreased in Cd group compared to controls (P < 0.01 and P < 0.001, respectively). The expression levels of ROCK-I and ROCK-II at 1H and 8H were not significantly different between Cd group and controls. CONCLUSIONS Our results provide evidence, for the first time, that the gene expression levels of ROCK-I and ROCK-II are significantly downregulated at 4 h after treatment of Cd in the VBW defect model of chick embryo. We speculate that the downregulation of ROCK-I and ROCK-II gene expressions during this narrow window of embryogenesis may cause VBW defect by disrupting Wnt non-canonical pathway.
Collapse
Affiliation(s)
- Takashi Doi
- The Children's Research Centre, Our Lady's Children's Hospital, Dublin 12, Ireland
| | | | | | | |
Collapse
|
15
|
Kim MH, Kino-oka M, Kawase M, Yagi K, Taya M. Glucose transporter mediation responsible for morphological changes of human epithelial cells on glucose-displayed surfaces. J Biosci Bioeng 2008; 105:319-26. [DOI: 10.1263/jbb.105.319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 12/25/2007] [Indexed: 01/03/2023]
|
16
|
Shi J, Wei L. Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz) 2007; 55:61-75. [PMID: 17347801 PMCID: PMC2612781 DOI: 10.1007/s00005-007-0009-7] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 12/21/2006] [Indexed: 12/19/2022]
Abstract
Rho kinase (ROCK) belongs to a family of serine/threonine kinases that are activated via interaction with Rho GTPases. ROCK is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, and proliferation. Recent studies have shown that ROCK plays an important role in the regulation of apoptosis in various cell types and animal disease models. Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be function redundant, this based largely on kinase construct overexpression and chemical inhibitors (Y27632 and fasudil) which inhibit both ROCK1 and ROCK2. Gene targeting and RNA interference approaches allow further dissection of distinct cellular, physiological, and patho-physiological functions of the two ROCK isoforms. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of ROCK signaling in the regulation of apoptosis and highlights new findings from recently generated ROCK-deficient mice.
Collapse
Affiliation(s)
- Jianjian Shi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, School of Medicine, R4 building, Room 370, 1044 West Walnut Str, Indianapolis, IN 46202-5225, USA
| | | |
Collapse
|