1
|
Yan W, Cheng J, Wu H, Gao Z, Li Z, Cao C, Meng Q, Wu Y, Ren S, Zhao F, Wang H, Liu P, Wang J, Hu X, Ao Y. Vascular Smooth Muscle Cells Transdifferentiate into Chondrocyte-Like Cells and Facilitate Meniscal Fibrocartilage Regeneration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0555. [PMID: 39717465 PMCID: PMC11665451 DOI: 10.34133/research.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
The effective and translational strategy to regenerate knee meniscal fibrocartilage remained challenging. Herein, we first identified vascular smooth muscle cells (VSMCs) transdifferentiated into fibrochondrocytes and participated in spontaneous meniscal regeneration using smooth muscle cell lineage tracing transgenic mice meniscal defect model. Then, we identified low-intensity pulsed ultrasound (LIPUS) acoustic stimulus enhanced fibrochondrogenic transdifferentiation of VSMCs in vitro and in vivo. Mechanistically, LIPUS stimulus could up-regulate mechanosensitive ion channel Piezo1 expression and then activate the transforming growth factor β1 (TGFβ1) signal, following repression of the Notch signal, consequently enhancing fibrochondrogenic transdifferentiation of VSMCs. Finally, we demonstrated that the regular LIPUS stimulus enhanced anisotropic native-like meniscal fibrocartilage tissue regeneration in a beagle canine subtotal meniscectomy model at 6 months postoperatively. The single-cell RNA sequencing analysis confirmed the role of VSMC fibrochondrogenic transdifferentiation in meniscal regeneration.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Haoda Wu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Zeyuan Gao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Zong Li
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Chenxi Cao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yue Wu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Shuang Ren
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Fengyuan Zhao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Hongde Wang
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Ping Liu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jianquan Wang
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Peredo AP, Tsinman TK, Bonnevie ED, Jiang X, Smith HE, Gullbrand SE, Dyment NA, Mauck RL. Developmental morphogens direct human induced pluripotent stem cells toward an annulus fibrosus-like cell phenotype. JOR Spine 2024; 7:e1313. [PMID: 38283179 PMCID: PMC10810760 DOI: 10.1002/jsp2.1313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Therapeutic interventions for intervertebral disc herniation remain scarce due to the inability of endogenous annulus fibrosus (AF) cells to respond to injury and drive tissue regeneration. Unlike other orthopedic tissues, such as cartilage, delivery of exogenous cells to the site of annular injury remains underdeveloped, largely due to a lack of an ideal cell source and the invasive nature of cell isolation. Human induced pluripotent stem cells (iPSCs) can be differentiated to specific cell fates using biochemical factors and are, therefore, an invaluable tool for cell therapy approaches. While differentiation protocols have been developed for cartilage and fibrous connective tissues (e.g., tendon), the signals that regulate the induction and differentiation of human iPSCs toward the AF fate remain unknown. Methods iPSC-derived sclerotome cells were treated with various combinations of developmental signals including transforming growth factor beta 3 (TGF-β3), connective tissue growth factor (CTGF), platelet derived growth factor BB (PDGF-BB), insulin-like growth factor 1 (IGF-1), or the Hedgehog pathway activator, Purmorphamine, and gene expression changes in major AF-associated ECM genes were assessed. The top performing combination treatments were further validated by using three distinct iPSC lines and by assessing the production of upregulated ECM proteins of interest. To conduct a broader analysis of the transcriptomic shifts elicited by each factor combination, and to compare genetic profiles of treated cells to mature human AF cells, a 96.96 Fluidigm gene expression array was applied, and principal component analysis was employed to identify the transcriptional signatures of each cell population and treatment group in comparison to native AF cells. Results TGF-β3, in combination with PDGF-BB, CTGF, or IGF-1, induced an upregulation of key AF ECM genes in iPSC-derived sclerotome cells. In particular, treatment with a combination of TGF-β3 with PDGF-BB for 14 days significantly increased gene expression of collagen II and aggrecan and increased protein deposition of collagen I and elastin compared to other treatment groups. Assessment of genes uniquely highly expressed by AF cells or SCL cells, respectively, revealed a shift toward the genetic profile of AF cells with the addition of TGF-β3 and PDGF-BB for 14 days. Discussion These findings represent an initial approach to guide human induced pluripotent stem cells toward an AF-like fate for cellular delivery strategies.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Tonia K. Tsinman
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Edward D. Bonnevie
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Xi Jiang
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| | - Nathaniel A. Dyment
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical Center, Translational Musculoskeletal Research CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Xia Y, Wang H, Yang R, Hou Y, Li Y, Zhu J, Fu C. Biomaterials delivery strategies to repair degenerated intervertebral discs by regulating the inflammatory microenvironment. Front Immunol 2023; 14:1051606. [PMID: 36756124 PMCID: PMC9900107 DOI: 10.3389/fimmu.2023.1051606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is one of the leading causes of lower back pain. Although IVDD cannot directly cause death, it can cause pain, psychological burdens, and economic burdens to patients. Current conservative treatments for IVDD can relieve pain but cannot reverse the disease. Patients who cannot tolerate pain usually resort to a strategy of surgical resection of the degenerated disc. However, the surgical removal of IVDD can affect the stability of adjacent discs. Furthermore, the probability of the reherniation of the intervertebral disc (IVD) after surgery is as high as 21.2%. Strategies based on tissue engineering to deliver stem cells for the regeneration of nucleus purposes (NP) and annulus fibrosus (AF) have been extensively studied. The developed biomaterials not only locally withstand the pressure of the IVD but also lay the foundation for the survival of stem cells. However, the structure of IVDs does not provide sufficient nutrients for delivered stem cells. The role of immune mechanisms in IVDD has recently become clear. In IVDD, the IVD that was originally in immune privilege prevents the attack of immune cells (mainly effector T cells and macrophages) and aggravates the disease. Immune regulatory and inflammatory factors released by effector T cells, macrophages, and the IVD further aggravate IVDD. Reversing IVDD by regulating the inflammatory microenvironment is a potential approach for the treatment of the disease. However, the biological factors modulating the inflammatory microenvironment easily degrade in vivo. It makes it possible for different biomaterials to modulate the inflammatory microenvironment to repair IVDD. In this review, we have discussed the structures of IVDs and the immune mechanisms underlying IVDD. We have described the immune mechanisms elicited by different biological factors, including tumor necrosis factors, interleukins, transforming growth factors, hypoxia-inducible factors, and reactive oxygen species in IVDs. Finally, we have discussed the biomaterials used to modulate the inflammatory microenvironment to repair IVDD and their development.
Collapse
Affiliation(s)
- Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruohan Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yulin Hou
- Department of Cardiology, Guangyuan Central Hospital, Guangyuan, China
| | - Yuehong Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Changfeng Fu,
| |
Collapse
|
4
|
Liu L, He J, Liu C, Yang M, Fu J, Yi J, Ai X, Liu M, Zhuang Y, Zhang Y, Huang B, Li C, Zhou Y, Feng C. Cartilage intermediate layer protein affects the progression of intervertebral disc degeneration by regulating the extracellular microenvironment (Review). Int J Mol Med 2021; 47:475-484. [PMID: 33416131 PMCID: PMC7797476 DOI: 10.3892/ijmm.2020.4832] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc degeneration (IDD), which is caused by multiple factors, affects the health of individuals and contributes to low back pain. The pathology of IDD is complicated, and changes in the extracellular microenvironment play an important role in promoting the process of degeneration. Cartilage intermediate layer protein (CILP) is a matrix protein that resides in the middle of human articular cartilage and is involved in numerous diseases that affect cartilage. However, there is no detailed review of the relationship between CILP and degenerative disc disease. Growing evidence has revealed the presence of CILP in the extracellular microenvironment of intervertebral discs (IVDs) and has suggested that there is a gradual increase in CILP in degenerative discs. Specifically, CILP plays an important role in regulating the metabolism of the extracellular matrix (ECM), an important component of the extracellular microenvironment. CILP can combine with transforming growth factor‑β or insulin‑like growth factor‑1 to regulate the ECM synthesis of IVDs and influence the balance of ECM metabolism, which leads to changes in the extracellular microenvironment to promote the process of IDD. It may be possible to show the correlation of CILP with IDD and to target CILP to interfere with IDD. For this purpose, in the present study, the current knowledge on CILP was summarized and a detailed description of CILP in discs was provided.
Collapse
Affiliation(s)
- Libangxi Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Jinyue He
- Department of Orthopedics, Xi'nan Hospital, Army Medical University, Chongqing 400037
| | - Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Minghui Yang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Jiawei Fu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Jiarong Yi
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Xuezheng Ai
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Miao Liu
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yong Zhuang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yaqing Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University
| |
Collapse
|
5
|
Jiang W, Takeshita N, Maeda T, Sogi C, Oyanagi T, Kimura S, Yoshida M, Sasaki K, Ito A, Takano-Yamamoto T. Connective tissue growth factor promotes chemotaxis of preosteoblasts through integrin α5 and Ras during tensile force-induced intramembranous osteogenesis. Sci Rep 2021; 11:2368. [PMID: 33504916 PMCID: PMC7841149 DOI: 10.1038/s41598-021-82246-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
In vertebrates, new bone formation via intramembranous osteogenesis is a critical biological event for development, remodeling, and fracture healing of bones. Chemotaxis of osteoblast lineage cells is an essential cellular process in new bone formation. Connective tissue growth factor (CTGF) is known to exert chemotactic properties on various cells; however, details of CTGF function in the chemotaxis of osteoblast lineage cells and underlying molecular biological mechanisms have not been clarified. The aim of the present study was to evaluate the chemotactic properties of CTGF and its underlying mechanisms during active bone formation through intramembranous osteogenesis. In our mouse tensile force-induced bone formation model, preosteoblasts were aggregated at the osteogenic front of calvarial bones. CTGF was expressed at the osteogenic front, and functional inhibition of CTGF using a neutralizing antibody suppressed the aggregation of preosteoblasts. In vitro experiments using μ-slide chemotaxis chambers showed that a gradient of CTGF induced chemotaxis of preosteoblastic MC3T3-E1 cells, while a neutralizing integrin α5 antibody and a Ras inhibitor inhibited the CTGF-induced chemotaxis of MC3T3-E1 cells. These findings suggest that the CTGF-integrin α5-Ras axis is an essential molecular mechanism to promote chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis.
Collapse
Affiliation(s)
- Wei Jiang
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Nobuo Takeshita
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Toshihiro Maeda
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Chisumi Sogi
- Department of Pediatrics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8574, Japan
| | - Toshihito Oyanagi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Seiji Kimura
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Michiko Yoshida
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Kiyo Sasaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Arata Ito
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, 980-8575, Japan. .,Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8586, Japan.
| |
Collapse
|
6
|
Zhu L, Yu C, Zhang X, Yu Z, Zhan F, Yu X, Wang S, He F, Han Y, Zhao H. The treatment of intervertebral disc degeneration using Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113117. [PMID: 32738389 DOI: 10.1016/j.jep.2020.113117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Intervertebral disc degeneration (IDD) is one of the most common causes of chronic low back pain that spending a lot of workforces and financial resources, seriously affecting human physical and mental health. Clinically used drug treatments and surgical treatments cannot fundamentally relieve the disease and have a risk of recurrence. Traditional Chinese Medicine (TCM) has a history of more than a thousand years in the prevention and treatment of IDD. However, so far, there are few reviews on the treatment of IDD by TCM. Therefore, it is crucial and necessary to systematically mine the existing literature on the treatment of IDD with TCM. This paper strives to systematically describe the modern medicine and TCM theoretical research on IDD, progress in the treatment of IDD and focuses on the treatment of IDD by TCM, which would lay some theoretical foundation and provide new directions for future research. MATERIALS AND METHODS Information on clinical observations, animal experiments and relevant pharmacology data about the treatment of IDD were gathered from various sources including traditional Chinese books and Chinese Pharmacopoeia, scientific databases (Elsevier, PubMed, Science Direct, Baidu Scholar, CNKI, Spring Link, Web of Science) and from different professional websites. RESULTS This review mainly introduces the current research on the theoretical research on IDD, the combination principle of the TCM formula, and the underlying mechanism of the formula and active ingredients. CONCLUSIONS At present, domestic and foreign scholars have carried out a lot of research in different ways, such as the molecular mechanism and predisposing factors of IDD, which provides theoretical development and clinical practice significance for future research. TCM, as a multi-component and multi-targeted drug, can produce synergistic effects to exert its efficacy. Therefore, the development of TCM with more specific functions and practical data will not only become a significant trend in the world market but also has an irreplaceable role in the future treatment of IDD.
Collapse
Affiliation(s)
- Liguo Zhu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Changsui Yu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China.
| | - Xiaofeng Zhang
- Heilongjiang Provincial Administration of Traditional Chinese Medicine, Harbin, 150030, China
| | - Zhongbao Yu
- Liaoning Yuzhongbao Chinese Medicine Clinic, Kuandian, 118200, China
| | - Fengyuan Zhan
- Liaoning Yuzhongbao Chinese Medicine Clinic, Kuandian, 118200, China
| | - Xin Yu
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuren Wang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Feng He
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Yusheng Han
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - He Zhao
- Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Iozzo RV, Theocharis AD, Neill T, Karamanos NK. Complexity of matrix phenotypes. Matrix Biol Plus 2020; 6-7:100038. [PMID: 33543032 PMCID: PMC7852209 DOI: 10.1016/j.mbplus.2020.100038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix is engaged in an ever-evolving and elegant ballet of dynamic reciprocity that directly and bi-directionally regulates cell behavior. Homeostatic and pathophysiological changes in cell-matrix signaling cascades manifest as complex matrix phenotypes. Indeed, the extracellular matrix can be implicated in virtually every known human disease, thus, making it the most critical and dynamic "organ" in the human body. The overall goal of this Special Issue is to provide an accurate and inclusive functional definition that addresses the inherent complexity of matrix phenotypes. This goal is summarily achieved via a corpus of expertly written articles, reviews and original research, focused at answering this question empirically and fundamentally via state-of-the-art methods and research strategies.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinases
- AGE, advanced glycation end products
- Angiogenesis
- Cancer
- Collagen
- DDR1, discoidin domain receptor 1
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMILIN1, elastin microfibril interfacer 1
- EMILIN2, elastin microfibril interfacer 2
- EMT, epithelial-mesenchymal transition
- ERα, estrogen receptor α
- ERβ, estrogen receptor β
- GBM, glioblastoma
- HA, hyaluronan
- HAS2, hyaluronan synthase 2
- HAS2-AS1, HAS2 antisense 1
- HB-EGF, heparin binding EGF
- HMGA2, high-mobility group AT-Hook 2
- IBC, inflammatory breast cancer
- IGF-IR, insulin growth factor I receptor
- IR-A, insulin receptor A
- LEKTI, lympho-epithelial Kazal-type inhibitor
- LOX, lysyl oxidases
- LTBP, latent TGFβ-binding proteins
- MAGP, microfibril-associated glycoproteins
- MET, mesenchymal-epithelial transition
- MMP, matrix metalloproteinases
- Methodologies
- OB, osteoblast
- OI, osteogenesis imperfecta
- PARs, protease activated receptors
- PG, proteoglycans
- PLL, poly-l-lysine
- Proteoglycans
- ROS, reactive oxygen species
- RTK, receptor tyrosine kinase
- SLRP, small leucine rich proteoglycans
- SSR, solar-simulated radiation
- TGFβ, transforming growth factor β
- TNT, tunneling nanotubes
- UVR, ultraviolet radiation
- VEGF, vascular endothelial growth factor
- miR, microRNA
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
Collapse
Affiliation(s)
- Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
8
|
Chen S, Liu S, Ma K, Zhao L, Lin H, Shao Z. TGF-β signaling in intervertebral disc health and disease. Osteoarthritis Cartilage 2019; 27:1109-1117. [PMID: 31132405 DOI: 10.1016/j.joca.2019.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This paper aims to provide a comprehensive review of the changing role of transforming growth factor-β (TGF-β) signaling in intervertebral disc (IVD) health and disease. METHODS A comprehensive literature search was performed using PubMed terms 'TGF-β' and 'IVD'. RESULTS TGF-β signaling is necessary for the development and growth of IVD, and can play a protective role in the restoration of IVD tissues by stimulating matrix synthesis, inhibiting matrix catabolism, inflammatory response and cell loss. However, excessive activation of TGF-β signaling is detrimental to the IVD, and inhibition of the aberrant TGF-β signaling can delay IVD degeneration. CONCLUSIONS Activation of TGF-β signaling has a promising treatment prospect for IVD degeneration, while excessive activation of TGF-β signaling may contribute to the progression of IVD degeneration. Studies aimed at elucidating the changing role of TGF-β signaling in IVD at different pathophysiological stages and its specific molecular mechanisms are needed, and these studies will contribute to safe and effective TGF-β signaling-based treatments for IVD degeneration.
Collapse
Affiliation(s)
- S Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - S Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - K Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - L Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - H Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Z Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Hiyama A, Morita K, Sakai D, Watanabe M. CCN family member 2/connective tissue growth factor (CCN2/CTGF) is regulated by Wnt-β-catenin signaling in nucleus pulposus cells. Arthritis Res Ther 2018; 20:217. [PMID: 30268161 PMCID: PMC6162946 DOI: 10.1186/s13075-018-1723-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022] Open
Abstract
Background The aims of this study were to investigate the gene expression of CCN family members in rat intervertebral disc (IVD) cells and to examine whether Wnt–β-catenin signaling regulates the expression of CCN family 2 (CCN2)/connective tissue growth factor (CTGF) in rat nucleus pulposus (NP) cells. Methods The gene expression of CCN family members were assessed in rat IVD cells using real-time reverse transcription polymerase chain reaction (RT-PCR). The expression pattern of CCN2 was also assessed in rat IVD cells using western blot and immunohistochemical analyses. Gain-of-function and loss-of-function experiments were performed to identify the mechanisms by which Wnt–β-catenin signaling influences the activity of the CCN2 promoter. To further determine if the mitogen-activated protein kinase (MAPK) pathway is required for the Wnt–β-catenin signaling-induced regulation of CCN2 expression in the NP cells, CCN2 expression was analyzed by reporter assay, RT-PCR and western blot analysis. Results CCN2 messenger RNA (mRNA) and protein were expressed in rat IVDs. Expression of CCN2 was significantly higher than for mRNA of other CCN family members in both rat NP and annulus fibrosus (AF) cells. The relative activity of the CCN2 promoter decreased 24 h after treatment with 6-bromoindirubin-3′-oxime (1.0 μM) (0.773 (95% 0.735, 0.812) P = 0.0077) in NP cells. In addition, treatment with the WT–β-catenin vector (500 ng) significantly decreased CCN2 promoter activity (0.688 (95% 0.535, 0.842) P = 0.0063), whereas β-catenin small interfering RNA (500 ng) significantly increased CCN2 promoter activity (1.775 (95% 1.435, 2.115) P < 0.001). Activation of Wnt–β-catenin signaling decreased the expression of CCN2 mRNA and protein by NP cells. Regulation of CCN2 by Wnt–β-catenin signaling involved the MAPK pathway in rat NP cells. Conclusions This study shows that Wnt–β-catenin signaling regulates the expression of CCN2 through the MAPK pathway in NP cells. Understanding the balance between Wnt–β-catenin signaling and CCN2 is necessary for developing therapeutic alternatives for the treatment of IVD degeneration. Electronic supplementary material The online version of this article (10.1186/s13075-018-1723-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akihiko Hiyama
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan. .,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Kosuke Morita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.,Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
10
|
Ciliary parathyroid hormone signaling activates transforming growth factor-β to maintain intervertebral disc homeostasis during aging. Bone Res 2018; 6:21. [PMID: 30038820 PMCID: PMC6050246 DOI: 10.1038/s41413-018-0022-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 02/05/2023] Open
Abstract
Degenerative disc disease (DDD) is associated with intervertebral disc degeneration of spinal instability. Here, we report that the cilia of nucleus pulposus (NP) cells mediate mechanotransduction to maintain anabolic activity in the discs. We found that mechanical stress promotes transport of parathyroid hormone 1 receptor (PTH1R) to the cilia and enhances parathyroid hormone (PTH) signaling in NP cells. PTH induces transcription of integrin αvβ6 to activate the transforming growth factor (TGF)-β-connective tissue growth factor (CCN2)-matrix proteins signaling cascade. Intermittent injection of PTH (iPTH) effectively attenuates disc degeneration of aged mice by direct signaling through NP cells, specifically improving intervertebral disc height and volume by increasing levels of TGF-β activity, CCN2, and aggrecan. PTH1R is expressed in both mouse and human NP cells. Importantly, knockout PTH1R or cilia in the NP cells results in significant disc degeneration and blunts the effect of PTH on attenuation of aged discs. Thus, mechanical stress-induced transport of PTH1R to the cilia enhances PTH signaling, which helps maintain intervertebral disc homeostasis, particularly during aging, indicating therapeutic potential of iPTH for DDD. Sensory structures found in the jelly-like space between spinal discs release a hormone that helps preserve back health in aging mice. Xu Cao from Johns Hopkins University in Baltimore, Maryland, USA, and colleagues observed that levels of a critical growth factor declined in the space between adjacent vertebrae as mice aged, and that injecting a naturally occurring hormone that activates this growth factor could attenuate disc degeneration in older animals. The researchers showed, in response to mechanical stresses, receptor proteins that respond to this hormone relocate themselves to particular sensory organelles known as cilia that found within cells of the intervertebral core. That results in elevated hormone signaling—and drugs designed to have the same effect could help treat degenerative disc disease, one of the most common causes of chronic back pain.
Collapse
|
11
|
de Vries S, Doeselaar MV, Meij B, Tryfonidou M, Ito K. Notochordal Cell Matrix As a Therapeutic Agent for Intervertebral Disc Regeneration. Tissue Eng Part A 2018; 25:830-841. [PMID: 29739272 DOI: 10.1089/ten.tea.2018.0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Notochordal cells (NCs) reside in the core of the healthy disc and produce soluble factors that can stimulate nucleus pulposus cells (NPCs). These NC-derived factors may be applied in intervertebral disc regeneration for treatment of low-back pain. However, identification of the active soluble factors is challenging. Therefore a novel approach to directly use porcine NC-rich NP matrix (NCM) is introduced. We explored porcine NCM's anabolic effects on bovine NPCs harvested from caudal discs of adolescent and adult (2-2.5 vs. 4-6 year old) cows. NC-conditioned medium (NCCM) and NCM were produced from porcine NC-rich NP tissue. Bovine NPCs were cultured in alginate beads for 4 weeks in base medium (BM), NCCM, and NCM to investigate NCM's regenerative potential. Porcine NCM increased glycosaminoglycan (GAG) content of both adolescent and adult bovine NPCs. This was through increased proliferation of adolescent bovine NPCs, whereas in adult bovine NPCs, it was mostly through increased GAG production per NPC. Furthermore, adolescent bovine NPCs were cultured in BM and porcine NCM treated with interleukin (IL)-1β to investigate NCM's potential in an inflammatory environment. Addition of IL-1β enhanced IL1β and CXCL8 (IL8) gene expression, while NCM diminished IL1β gene expression. IL-1β reduced GAG and DNA content, but the addition of NCM relative to BM improved GAG and DNA content. Altogether, porcine NCM exerts bovine NPC-age dependent effects, and NCM's anabolic effect on adult NPCs is stronger compared with NCCM. Furthermore, porcine NCM induced an anabolic response of bovine NPCs in an inflammatory environment and may have anti-inflammatory properties. Therefore, NCM has potential in a regenerative therapy for disc degeneration, and warrants additional in vivo studies.
Collapse
Affiliation(s)
- Stefan de Vries
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marina van Doeselaar
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Björn Meij
- 2 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna Tryfonidou
- 2 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Keita Ito
- 1 Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,3 Department of Orthopaedics, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
12
|
Zhang Y, Xiong C, Kudelko M, Li Y, Wang C, Wong YL, Tam V, Rai MF, Cheverud J, Lawson HA, Sandell L, Chan WCW, Cheah KSE, Sham PC, Chan D. Early onset of disc degeneration in SM/J mice is associated with changes in ion transport systems and fibrotic events. Matrix Biol 2018; 70:123-139. [PMID: 29649547 DOI: 10.1016/j.matbio.2018.03.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
Intervertebral disc degeneration (IDD) causes back pain and sciatica, affecting quality of life and resulting in high economic/social burden. The etiology of IDD is not well understood. Along with aging and environmental factors, genetic factors also influence the onset, progression and severity of IDD. Genetic studies of risk factors for IDD using human cohorts are limited by small sample size and low statistical power. Animal models amenable to genetic and functional studies of IDD provide desirable alternatives. Despite differences in size and cellular content as compared to human intervertebral discs (IVDs), the mouse is a powerful model for genetics and assessment of cellular changes relevant to human biology. Here, we provide evidence for early onset disc degeneration in SM/J relative to LG/J mice with poor and good tissue healing capacity respectively. In the first few months of life, LG/J mice maintain a relatively constant pool of notochordal-like cells in the nucleus pulposus (NP) of the IVD. In contrast, chondrogenic events are observed in SM/J mice beginning as early as one-week-old, with progressive fibrotic changes. Further, the extracellular matrix changes in the NP are consistent with IVD degeneration. Leveraging on the genomic data of two parental and two recombinant inbred lines, we assessed the genetic contribution to the NP changes and identified processes linked to the regulation of ion transport systems. Significantly, "transport" system is also in the top three gene ontology (GO) terms from a comparative proteomic analysis of the mouse NP. These findings support the potential of the SM/J, LG/J and their recombinant inbred lines for future genetic and biological analysis in mice and validation of candidate genes and biological relevance in human cohort studies. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD008784.
Collapse
Affiliation(s)
- Ying Zhang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Xiong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Mateusz Kudelko
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yan Li
- Centre for Genomic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Cheng Wang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yuk Lun Wong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - James Cheverud
- Department of Biology, Loyola University of Chicago, IL 60660, USA
| | - Heather A Lawson
- Department of Genetics, Washington University, St. Louis, MO 63110, USA
| | - Linda Sandell
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - Wilson C W Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; The University of Hong Kong - Shenzhen Institute of Research and Innovation (HKU-SIRI), Hi-Tech Industrial Park, Nanshan, Shenzhen, China
| | - Kathryn S E Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Pak C Sham
- Centre for Genomic Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; The University of Hong Kong - Shenzhen Institute of Research and Innovation (HKU-SIRI), Hi-Tech Industrial Park, Nanshan, Shenzhen, China.
| |
Collapse
|
13
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Gruber HE, Ingram JA, Hoelscher GL, Marrero E, Hanley EN. Mucin 1, a signal transduction membrane-bound mucin, is present in human disc tissue and is downregulated in vitro by exposure to IL-1ß or TNF-α. BMC Musculoskelet Disord 2017; 18:182. [PMID: 28482827 PMCID: PMC5422927 DOI: 10.1186/s12891-017-1541-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 04/28/2017] [Indexed: 01/08/2023] Open
Abstract
Background Back pain and disc degeneration have a growing socioeconomic healthcare impact. Mucin 1 (MUC1) is a transmembrane glycoprotein whose extracellular and intracellular domains participate in cellular signaling. Little is currently known about the presence or role of MUC1 in human disc degeneration. Methods In this IRB-approved research study, 29 human disc specimens were analyzed for MUC1 immunohistochemical localization and gene expression, and annulus fibrosus (annulus) cells were also isolated and cultured in 3D. Microarray analysis assessed expression levels of MUC1 in healthy and degenerated disc tissue and in cells exposed to proinflammatory cytokines (IL-1ß or TNF-α). Results MUC1 was shown to be present in annulus cells at the protein level using immunochemistry, and its expression was significantly upregulated in annulus tissue from more degenerated grade V discs compared to healthier grade I-II discs (p = 0.02). A significant positive correlation was present between the percentage of MUC1-positive cells and disc grade (p = 0.009). MUC1 expression in annulus cells cultured in 3D was also analyzed following exposure to IL-1ß or TNF-α; exposure produced significant MUC1 downregulation (p = 0.0006). Conclusions Here we present the first data for the constitutive presence of MUC1 in the human disc, and its altered expression during disc degeneration. MUC1 may have an important role in disc aging and degeneration by acting as a regulator in the hypoxic environment, helping disc cells to survive under hypoxic conditions by stabilization and by activation of HIF-1α as previously recognized in pancreatic cancer cells.
Collapse
Affiliation(s)
- Helen E Gruber
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, USA. .,Orthopaedic Research Biology, Carolinas Medical Center, Cannon Research Center, Room 304, PO Box 32861, Charlotte, NC, 28232, USA.
| | - Jane A Ingram
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, USA
| | - Gretchen L Hoelscher
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, USA
| | - Emilio Marrero
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, USA
| | - Edward N Hanley
- Department of Orthopaedic Surgery, Carolinas Medical Center, PO Box 32861, Charlotte, NC, USA
| |
Collapse
|
15
|
Ghannam M, Jumah F, Mansour S, Samara A, Alkhdour S, Alzuabi MA, Aker L, Adeeb N, Massengale J, Oskouian RJ, Tubbs RS. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat 2017; 30:251-266. [PMID: 27997062 DOI: 10.1002/ca.22822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malik Ghannam
- An-Najah National University Hospital, Nablus, Palestine
| | - Fareed Jumah
- An-Najah National University Hospital, Nablus, Palestine
| | - Shaden Mansour
- An-Najah National University Hospital, Nablus, Palestine
| | - Amjad Samara
- An-Najah National University Hospital, Nablus, Palestine
| | - Saja Alkhdour
- An-Najah National University Hospital, Nablus, Palestine
| | | | - Loai Aker
- An-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | - Justin Massengale
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | | | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
16
|
Abstract
The extent of ageing in the musculoskeletal system during the life course affects the quality and length of life. Loss of bone, degraded articular cartilage, and degenerate, narrowed intervertebral discs are primary features of an ageing skeleton, and together they contribute to pain and loss of mobility. This review covers the cellular constituents that make up some key components of the musculoskeletal system and summarizes discussion from the 2015 Aarhus Regenerative Orthopaedic Symposium (AROS) (Regeneration in the Ageing Population) about how each particular cell type alters within the ageing skeletal microenvironment.
Collapse
Affiliation(s)
- Sally Roberts
- Spinal Studies and ISTM, Keele University, and Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
| | - Pauline Colombier
- INSERM U791-LIOAD, Centre Hospitalo-Universitaire (CHU) de Nantes, Nantes, France
| | - Aneka Sowman
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claire Mennan
- Spinal Studies and ISTM, Keele University, and Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Foundation Trust, Oswestry, UK
| | - Jan H D Rölfing
- Orthopaedic Research Laboratory and Departments of Orthopaedics, Aarhus and Aalborg University Hospitals, Aarhus, Denmark
| | - Jérôme Guicheux
- INSERM U791-LIOAD, Centre Hospitalo-Universitaire (CHU) de Nantes, Nantes, France
| | - James R Edwards
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK,Correspondence:
| |
Collapse
|
17
|
Epithelial derived CTGF promotes breast tumor progression via inducing EMT and collagen I fibers deposition. Oncotarget 2016; 6:25320-38. [PMID: 26318291 PMCID: PMC4694834 DOI: 10.18632/oncotarget.4659] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/17/2015] [Indexed: 12/21/2022] Open
Abstract
Interactions among tumor cells, stromal cells, and extracellular matrix compositions are mediated through cytokines during tumor progression. Our analysis of 132 known cytokines and growth factors in published clinical breast cohorts and our 84 patient-derived xenograft models revealed that the elevated connective tissue growth factor (CTGF) in tumor epithelial cells significantly correlated with poor clinical prognosis and outcomes. CTGF was able to induce tumor cell epithelial-mesenchymal transition (EMT), and promote stroma deposition of collagen I fibers to stimulate tumor growth and metastasis. This process was mediated through CTGF-tumor necrosis factor receptor I (TNFR1)-IκB autocrine signaling. Drug treatments targeting CTGF, TNFR1, and IκB signaling each prohibited the EMT and tumor progression.
Collapse
|
18
|
Oh CD, Yasuda H, Zhao W, Henry SP, Zhang Z, Xue M, de Crombrugghe B, Chen D. SOX9 directly Regulates CTGF/CCN2 Transcription in Growth Plate Chondrocytes and in Nucleus Pulposus Cells of Intervertebral Disc. Sci Rep 2016; 6:29916. [PMID: 27436052 PMCID: PMC4951750 DOI: 10.1038/srep29916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 06/20/2016] [Indexed: 01/17/2023] Open
Abstract
Several lines of evidence indicate that connective tissue growth factor (CTGF/CCN2) stimulates chondrocyte proliferation and maturation. Given the fact that SOX9 is essential for several steps of the chondrocyte differentiation pathway, we asked whether Ctgf (Ccn2) is the direct target gene of SOX9. We found that Ctgf mRNA was down-regulated in primary sternal chondrocytes from Sox9flox/flox mice infected with Ad-CMV-Cre. We performed ChIP-on-chip assay using anti-SOX9 antibody, covering the Ctgf gene from 15 kb upstream of its 5′-end to 10 kb downstream of its 3′-end to determine SOX9 interaction site. One high-affinity interaction site was identified in the Ctgf proximal promoter by ChIP-on-chip assay. An important SOX9 regulatory element was found to be located in −70/−64 region of the Ctgf promoter. We found the same site for SOX9 binding to the Ctgf promoter in nucleus pulposus (NP) cells. The loss of Sox9 in growth plate chondrocytes in knee joint and in NP cells in intervertebral disc led to the decrease in CTGF expression. We suggest that Ctgf is the direct target gene of SOX9 in chondrocytes and NP cells. Our study establishes a strong link between two regulatory molecules that have a major role in cartilaginous tissues.
Collapse
Affiliation(s)
- Chun-do Oh
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA.,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Hideyo Yasuda
- Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Weiwei Zhao
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA.,Department of Orthopaedics &Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Stephen P Henry
- Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Zhaoping Zhang
- Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Ming Xue
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Benoit de Crombrugghe
- Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Ding L, Wu J, Li D, Wang H, Zhu B, Lu W, Xu G. Effects of CCN3 on rat cartilage endplate chondrocytes cultured under serum deprivation in vitro. Mol Med Rep 2016; 13:2017-22. [PMID: 26795879 PMCID: PMC4768995 DOI: 10.3892/mmr.2016.4803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
The presence of apoptotic cells and loss of extracellular matrix (ECM) are common characteristics of degenerated cartilage endplates (CEPs). In addition, therapeutic efficacy is hampered by an incomplete understanding regarding the mechanisms underlying CEP homeostasis and degeneration. The CCN proteins have recently emerged as important regulators of cell-ECM interactions, and have been identified as key mediators of nucleus pulposus ECM composition and tissue homeostasis. However, whether CCN3 is associated with CEP homeostasis has yet to be elucidated. The present study aimed to investigate the effects of CCN3 on the apoptosis and ECM synthesis of CEP cells cultured under serum deprivation. Rat CEP cells were confirmed to be of the chondrocytic phenotype by toluidine blue staining. The mRNA expression levels of CCN3 were markedly increased, and a dose-dependent increase of apoptotic rate was detected under serum deprivation conditions following treatment with recombinant CCN3, whereas CCN3 did not exert a proapoptotic effect on cells cultured under normal conditions. Furthermore, CCN3-treated cells exhibited a decrease in the expression levels of aggrecan and collagen II in both groups. These results suggested that CCN3 may act as a regulator, rather than an initiator, of serum deprivation-induced cellular apoptosis, and that CCN3 has a catabolic effect on the mediation of ECM synthesis under both normal and serum deprivation conditions. Therefore, CCN3 may represent a novel therapeutic target for the prevention of CEP degeneration.
Collapse
Affiliation(s)
- Lei Ding
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Jingping Wu
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Defang Li
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Houlei Wang
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Bin Zhu
- Department of Orthopedic Surgery, Second Affiliated Hospital of Anhui University of Medicine, Hefei, Anhui 230601, P.R. China
| | - Wei Lu
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
20
|
Binch ALA, Shapiro IM, Risbud MV. Syndecan-4 in intervertebral disc and cartilage: Saint or synner? Matrix Biol 2016; 52-54:355-362. [PMID: 26796346 DOI: 10.1016/j.matbio.2016.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/14/2016] [Accepted: 01/15/2016] [Indexed: 01/01/2023]
Abstract
The ECM of the intervertebral disc and articular cartilage contains a highly organised network of collagens and proteoglycans which resist compressive forces applied to these tissues. A pathological hallmark of the intervertebral disc is the imbalance between production of anabolic and catabolic factors by the resident cells. This process is thought to be mediated by pro-inflammatory cytokines, predominantly TNF-α and IL-1β, which upregulate expression of matrix degrading enzymes such as MMPs and ADAMTSs. This imbalance ultimately results in tissue degeneration causing failure of the biomechanical function of the tissues. A similar cascade of events is thought to occur in articular cartilage during development of osteoarthritis. Within these skeletal tissues a small, cell surface heparan sulphate proteoglycan; syndecan-4 (SDC4) has been implicated in maintaining physiological functions. However in the degenerating niche of the intervertebral disc and cartilage, dysregulated activities of this molecule may exacerbate pathological changes. Studies in recent years have elucidated a role for SDC4 in mediating matrix degradation in both intervertebral discs and cartilage by controlling ADAMTS-5 function and MMP3 expression. Discourse presented in this review highlights the potential of SDC4 as a possible therapeutic target in slowing the progression of ECM degradation in both degenerative disc disease and osteoarthritis.
Collapse
Affiliation(s)
- Abbie L A Binch
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, USA.
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, USA.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
21
|
Tian Y, Yuan W, Li J, Wang H, Hunt MG, Liu C, Shapiro IM, Risbud MV. TGFβ regulates Galectin-3 expression through canonical Smad3 signaling pathway in nucleus pulposus cells: implications in intervertebral disc degeneration. Matrix Biol 2015; 50:39-52. [PMID: 26639428 DOI: 10.1016/j.matbio.2015.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/19/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
Galectin-3 is highly expressed in notochordal nucleus pulposus (NP) and thought to play important physiological roles; however, regulation of its expression remains largely unexplored. The aim of the study was to investigate if TGFβ regulates Galectin-3 expression in NP cells. TGFβ treatment resulted in decreased Galectin-3 expression. Bioinformatic analysis using JASPAR and MatInspector databases cross-referenced with published ChIP-Seq data showed nine locations of highly probable Smad3 binding in the LGALS3 proximal promoter. In NP cells, TGFβ treatment resulted in decreased activity of reporters harboring several 5' deletions of the proximal Galectin-3 promoter. While transfection of NP cells with constitutively active (CA)-ALK5 resulted in decreased promoter activity, DN-ALK5 blocked the suppressive effect of TGFβ on the promoter. The suppressive effect of Smad3 on the Galectin-3 promoter was confirmed using gain- and loss-of-function studies. Transfection with DN-Smad3 or Smad7 blocked TGFβ mediated suppression of promoter activity. We also measured Galectin-3 promoter activity in Smad3 null and wild type cells. Noteworthy, promoter activity was suppressed by TGFβ only in wild type cells. Likewise, stable silencing of Smad3 in NP cells using sh-Smad3 significantly blocked TGFβ-dependent decrease in Galectin-3 expression. Treatment of human NP cells isolated from tissues with different grades of degeneration showed that Galectin-3 expression was responsive to TGF-β-mediated suppression. Importantly, Galectin-3 synergized effects of TNF-α on inflammatory gene expression by NP cells. Together these studies suggest that TGFβ, through Smad3 controls Galectin-3 expression in NP cells and may have implications in the intervertebral disc degeneration.
Collapse
Affiliation(s)
- Ye Tian
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, U.S.A.; Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Wen Yuan
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Jun Li
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, U.S.A.; Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, P.R. China
| | - Hua Wang
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, U.S.A.; Department of Orthopaedics, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Maxwell G Hunt
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, U.S.A
| | - Chao Liu
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, U.S.A.; Department of Orthopaedic Surgery, Shaghai First People's Hospital, Shanghai, P.R. China
| | - Irving M Shapiro
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, U.S.A
| | - Makarand V Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia, PA, U.S.A..
| |
Collapse
|
22
|
Sakai D, Grad S. Advancing the cellular and molecular therapy for intervertebral disc disease. Adv Drug Deliv Rev 2015; 84:159-71. [PMID: 24993611 DOI: 10.1016/j.addr.2014.06.009] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/07/2014] [Accepted: 06/24/2014] [Indexed: 12/19/2022]
Abstract
The healthy intervertebral disc (IVD) fulfils the essential function of load absorption, while maintaining multi-axial flexibility of the spine. The interrelated tissues of the IVD, the annulus fibrosus, the nucleus pulposus, and the cartilaginous endplate, are characterised by their specific niche, implying avascularity, hypoxia, acidic environment, low nutrition, and low cellularity. Anabolic and catabolic factors balance a slow physiological turnover of extracellular matrix synthesis and breakdown. Deviations in mechanical load, nutrient supply, cellular activity, matrix composition and metabolism may initiate a cascade ultimately leading to tissue dehydration, fibrosis, nerve and vessel ingrowth, disc height loss and disc herniation. Spinal instability, inflammation and neural sensitisation are sources of back pain, a worldwide leading burden that is challenging to cure. In this review, advances in cell and molecular therapy, including mobilisation and activation of endogenous progenitor cells, progenitor cell homing, and targeted delivery of cells, genes, or bioactive factors are discussed.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland.
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland; Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland.
| |
Collapse
|
23
|
Parapuram SK, Thompson K, Tsang M, Hutchenreuther J, Bekking C, Liu S, Leask A. Loss of PTEN expression by mouse fibroblasts results in lung fibrosis through a CCN2-dependent mechanism. Matrix Biol 2015; 43:35-41. [DOI: 10.1016/j.matbio.2015.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
24
|
Sakai D, Andersson GBJ. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol 2015; 11:243-56. [PMID: 25708497 DOI: 10.1038/nrrheum.2015.13] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intervertebral disc (IVD) degeneration is frequently associated with low back and neck pain, which accounts for disability worldwide. Despite the known outcomes of the IVD degeneration cascade, the treatment of IVD degeneration is limited in that available conservative and surgical treatments do not reverse the pathology or restore the IVD tissue. Regenerative medicine for IVD degeneration, by injection of IVD cells, chondrocytes or stem cells, has been extensively studied in the past decade in various animal models of induced IVD degeneration, and has progressed to clinical trials in the treatment of various spinal conditions. Despite preliminary results showing positive effects of cell-injection strategies for IVD regeneration, detailed basic research on IVD cells and their niche indicates that transplanted cells are unable to survive and adapt in the avascular niche of the IVD. For this therapeutic strategy to succeed, the indications for its use and the patients who would benefit need to be better defined. To surmount these obstacles, the solution will be identified only by focused research, both in the laboratory and in the clinic.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Gunnar B J Andersson
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
25
|
Patel P, Brooks C, Seneviratne A, Hess DA, Séguin CA. Investigating microenvironmental regulation of human chordoma cell behaviour. PLoS One 2014; 9:e115909. [PMID: 25541962 PMCID: PMC4277432 DOI: 10.1371/journal.pone.0115909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022] Open
Abstract
The tumour microenvironment is complex and composed of many different constituents, including matricellular proteins such as connective tissue growth factor (CCN2), and is characterized by gradients in oxygen levels. In various cancers, hypoxia and CCN2 promote stem and progenitor cell properties, and regulate the proliferation, migration and phenotype of cancer cells. Our study was aimed at investigating the effects of hypoxia and CCN2 on chordoma cells, using the human U-CH1 cell line. We demonstrate that under basal conditions, U-CH1 cells express multiple CCN family members including CCN1, CCN2, CCN3 and CCN5. Culture of U-CH1 cells in either hypoxia or in the presence of recombinant CCN2 peptide promoted progenitor cell-like characteristics specific to the notochordal tissue of origin. Specifically, hypoxia induced the most robust increase in progenitor-like characteristics in U-CH1 cells, including increased expression of the notochord-associated markers T, CD24, FOXA1, ACAN and CA12, increased cell growth and tumour-sphere formation, and a decrease in the percentage of vacuolated cells present in the heterogeneous population. Interestingly, the effects of recombinant CCN2 peptide on U-CH1 cells were more pronounced under normoxia than hypoxia, promoting increased expression of CCN1, CCN2, CCN3 and CCN5, the notochord-associated markers SOX5, SOX6, T, CD24, and FOXA1 as well as increased tumour-sphere formation. Overall, this study highlights the importance of multiple factors within the tumour microenvironment and how hypoxia and CCN2 may regulate human chordoma cell behaviour.
Collapse
Affiliation(s)
- Priya Patel
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Courtney Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Ayesh Seneviratne
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Cheryle A. Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
26
|
Targeting the extracellular matrix: Matricellular proteins regulate cell–extracellular matrix communication within distinct niches of the intervertebral disc. Matrix Biol 2014; 37:124-30. [DOI: 10.1016/j.matbio.2014.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/02/2014] [Accepted: 05/03/2014] [Indexed: 01/01/2023]
|
27
|
Nastase MV, Iozzo RV, Schaefer L. Key roles for the small leucine-rich proteoglycans in renal and pulmonary pathophysiology. Biochim Biophys Acta Gen Subj 2014; 1840:2460-70. [PMID: 24508120 DOI: 10.1016/j.bbagen.2014.01.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Small leucine-rich proteoglycans (SLRPs) are molecules that have signaling roles in a multitude of biological processes. In this respect, SLRPs play key roles in the evolution of a variety of diseases throughout the human body. SCOPE OF REVIEW We will critically review current developments in the roles of SLRPs in several types of disease of the kidney and lungs. Particular emphasis will be given to the roles of decorin and biglycan, the best characterized members of the SLRP gene family. MAJOR CONCLUSIONS In both renal and pulmonary disorders, SLRPs are essential elements that regulate several pathophysiological processes including fibrosis, inflammation and tumor progression. Decorin has remarkable antifibrotic and antitumorigenic properties and is considered a valuable potential treatment of these diseases. Biglycan can modulate inflammatory processes in lung and renal inflammation and is a potential target in the treatment of inflammatory conditions. GENERAL SIGNIFICANCE SLRPs can serve as either treatment targets or as potential treatment in renal or lung disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Madalina V Nastase
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|