1
|
Yin K, Zhang C, Deng Z, Wei X, Xiang T, Yang C, Chen C, Chen Y, Luo F. FAPs orchestrate homeostasis of muscle physiology and pathophysiology. FASEB J 2024; 38:e70234. [PMID: 39676717 PMCID: PMC11647758 DOI: 10.1096/fj.202400381r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/26/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024]
Abstract
As a common clinical manifestation, muscle weakness is prevalent in people with mobility disorders. Further studies of muscle weakness have found that patients with muscle weakness present with persistent muscle inflammation, loss of muscle fibers, fat infiltration, and interstitial fibrosis. Therefore, we propose the concept of muscle microenvironment homeostasis, which explains the abnormal pathological changes in muscles through the imbalance of muscle microenvironment homeostasis. And we identified an interstitial progenitor cell FAP during the transition from normal muscle microenvironment homeostasis to muscle microenvironment imbalance caused by muscle damage diseases. As a kind of pluripotent stem cell, FAPs do not participate in myogenic differentiation, but can differentiate into fibroblasts, adipocytes, osteoblasts, and chondrocytes. As a kind of mesenchymal progenitor cell, it is involved in the generation of extracellular matrix, regulate muscle regeneration, and maintain neuromuscular junction. However, the muscle microenvironment is disrupted by the causative factors, and the abnormal activities of FAPs eventually contribute to the complex pathological changes in muscles. Targeting the mechanisms of these muscle pathological changes, we have identified appropriate signaling targets for FAPs to improve and even treat muscle damage diseases. In this review, we propose the construction of muscle microenvironmental homeostasis and find the key cells that cause pathological changes in muscle after homeostasis is broken. By studying the mechanism of abnormal differentiation and apoptosis of FAPs, we found a strategy to inhibit the abnormal pathological changes in muscle damage diseases and improve muscle regeneration.
Collapse
Affiliation(s)
- Kai Yin
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chengmin Zhang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Zihan Deng
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Xiaoyu Wei
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Tingwen Xiang
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Chuan Yang
- Department of Biomedical Materials ScienceThird Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Can Chen
- Department for Combat Casualty Care TrainingTraining Base for Army Health Care, Army Medical University (Third Military Medical University)ChongqingPeople's Republic of China
| | - Yueqi Chen
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| | - Fei Luo
- Department of OrthopedicsSouthwest Hospital, Third Military Medical University (Army Medical University)ChongqingPeople's Republic of China
| |
Collapse
|
2
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
3
|
Matveeva D, Kashirina D, Ezdakova M, Larina I, Buravkova L, Ratushnyy A. Senescence-Associated Alterations in Matrisome of Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:5332. [PMID: 38791371 PMCID: PMC11120844 DOI: 10.3390/ijms25105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
The process of aging is intimately linked to alterations at the tissue and cellular levels. Currently, the role of senescent cells in the tissue microenvironment is still being investigated. Despite common characteristics, different cell populations undergo distinctive morphofunctional changes during senescence. Mesenchymal stem cells (MSCs) play a pivotal role in maintaining tissue homeostasis. A multitude of studies have examined alterations in the cytokine profile that determine their regulatory function. The extracellular matrix (ECM) of MSCs is a less studied aspect of their biology. It has been shown to modulate the activity of neighboring cells. Therefore, investigating age-related changes in the MSC matrisome is crucial for understanding the mechanisms of tissue niche ageing. This study conducted a broad proteomic analysis of the matrisome of separated fractions of senescent MSCs, including the ECM, conditioned medium (CM), and cell lysate. This is the first time such an analysis has been conducted. It has been established that there is a shift in production towards regulatory molecules and a significant downregulation of the main structural and adhesion proteins of the ECM, particularly collagens, fibulins, and fibrilins. Additionally, a decrease in the levels of cathepsins, galectins, S100 proteins, and other proteins with cytoprotective, anti-inflammatory, and antifibrotic properties has been observed. However, the level of inflammatory proteins and regulators of profibrotic pathways increases. Additionally, there is an upregulation of proteins that can directly cause prosenescent effects on microenvironmental cells (SERPINE1, THBS1, and GDF15). These changes confirm that senescent MSCs can have a negative impact on other cells in the tissue niche, not only through cytokine signals but also through the remodeled ECM.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrey Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; (D.M.); (D.K.); (M.E.); (I.L.); (L.B.)
| |
Collapse
|
4
|
Alford AI, Hankenson KD. Thrombospondins modulate cell function and tissue structure in the skeleton. Semin Cell Dev Biol 2024; 155:58-65. [PMID: 37423854 PMCID: PMC11115190 DOI: 10.1016/j.semcdb.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Thrombospondins (TSPs) belong to a functional class of ECM proteins called matricellular proteins that are not primarily structural, but instead influence cellular interactions within the local extracellular environment. The 3D arrangement of TSPs allow interactions with other ECM proteins, sequestered growth factors, and cell surface receptors. They are expressed in mesenchymal condensations and limb buds during skeletal development, but they are not required for patterning. Instead, when absent, there are alterations in musculoskeletal connective tissue ECM structure, organization, and function, as well as altered skeletal cell phenotypes. Both functional redundancies and unique contributions to musculoskeletal tissue structure and physiology are revealed in mouse models with compound TSP deletions. Crucial roles of individual TSPs are revealed during musculoskeletal injury and regeneration. The interaction of TSPs with mesenchymal stem cells (MSC), and their influence on cell fate, function, and ultimately, musculoskeletal phenotype, suggest that TSPs play integral, but as yet poorly understood roles in musculoskeletal health. Here, unique and overlapping contributions of trimeric TSP1/2 and pentameric TSP3/4/5 to musculoskeletal cell and matrix physiology are reviewed. Opportunities for new research are also noted.
Collapse
Affiliation(s)
- Andrea I Alford
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Ann Arbor, MI 48109, United States.
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan School of Medicine, A. Alfred Taubman Biomedical Sciences Research Building, Ann Arbor, MI 48109, United States
| |
Collapse
|
5
|
Lee J, Jang J, Cha SR, Lee SB, Hong SH, Bae HS, Lee YJ, Yang SR. Recombinant Human Bone Morphogenetic Protein-2 Priming of Mesenchymal Stem Cells Ameliorate Acute Lung Injury by Inducing Regulatory T Cells. Immune Netw 2023; 23:e48. [PMID: 38188599 PMCID: PMC10767548 DOI: 10.4110/in.2023.23.e48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) possess immunoregulatory properties and their regulatory functions represent a potential therapy for acute lung injury (ALI). However, uncertainties remain with respect to defining MSCs-derived immunomodulatory pathways. Therefore, this study aimed to investigate the mechanism underlying the enhanced effect of human recombinant bone morphogenic protein-2 (rhBMP-2) primed ES-MSCs (MSCBMP2) in promoting Tregs in ALI mice. MSC were preconditioned with 100 ng/ml rhBMP-2 for 24 h, and then administrated to mice by intravenous injection after intratracheal injection of 1 mg/kg LPS. Treating MSCs with rhBMP-2 significantly increased cellular proliferation and migration, and cytokines array reveled that cytokines release by MSCBMP2 were associated with migration and growth. MSCBMP2 ameliorated LPS induced lung injury and reduced myeloperoxidase activity and permeability in mice exposed to LPS. Levels of inducible nitric oxide synthase were decreased while levels of total glutathione and superoxide dismutase activity were further increased via inhibition of phosphorylated STAT1 in ALI mice treated with MSCBMP2. MSCBMP2 treatment increased the protein level of IDO1, indicating an increase in Treg cells, and Foxp3+CD25+ Treg of CD4+ cells were further increased in ALI mice treated with MSCBMP2. In co-culture assays with MSCs and RAW264.7 cells, the protein level of IDO1 was further induced in MSCBMP2. Additionally, cytokine release of IL-10 was enhanced while both IL-6 and TNF-α were further inhibited. In conclusion, these findings suggest that MSCBMP2 has therapeutic potential to reduce massive inflammation of respiratory diseases by promoting Treg cells.
Collapse
Affiliation(s)
- Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Se Bi Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Han-Sol Bae
- Cellular Therapeutics Team, Daewoong Pharmaceutical, Yongin 17028, Korea
| | - Young Jin Lee
- Cellular Therapeutics Team, Daewoong Pharmaceutical, Yongin 17028, Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
6
|
Sun L, Yao Y. Mesenchymal stem/stromal cells- a principal element for tumour microenvironment heterogeneity. Front Immunol 2023; 14:1274379. [PMID: 37885883 PMCID: PMC10599013 DOI: 10.3389/fimmu.2023.1274379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
The heterogeneity of the tumor microenvironment (TME) is a major obstacle in cancer treatment, making most therapeutic interventions palliative rather than curative. Previous studies have suggested that the reason for the low efficacy of immunotherapy and the relapse of the original responders over time may be due to the complex network of mesenchymal stem/stromal cells (MSCs), a population of multipotent progenitor cells existing in a variety of tissues. Cancer-associated MSCs (CA-MSCs) have already been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. Although the roles of CA-MSCs from different sources vary widely, their origins are still poorly understood. Current evidence suggests that when local resident or distally recruited MSCs interact with tumor cells and other components in the TME, "naïve" MSCs undergo genetic and functional changes to form CA-MSCs. In this review, we mainly focus on the multiple roles of CA-MSCs derived from different sources, which may help in elucidating the formation and function of the entire TME, as well as discover innovative targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People’s Hospital, Affiliated to Jiangsu University, Kunshan, China
| |
Collapse
|
7
|
Buras ED, Woo MS, Verma RK, Kondisetti SH, Davis CS, Claflin DR, Baran KC, Michele DE, Brooks SV, Chun TH. Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553733. [PMID: 37645822 PMCID: PMC10462153 DOI: 10.1101/2023.08.17.553733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pulmonary disorders impact 40-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragmatic weakness. Increased intra-diaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs)-mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1 knockout ( Thbs1 -/- ) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGFβ-related expression signatures, and augmentation of a Thy1 -expressing sub-population previously linked to type 2 diabetes. Despite similar weight gain, Thbs1 -/- mice were protected from these transcriptomic changes, and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1 -/- diaphragms maintained normal contractile force and motion after DIO challenge. These findings establish THBS1 as a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition, and potential therapeutic target in obesity-associated respiratory dysfunction.
Collapse
|
8
|
Carminati L, Carlessi E, Longhi E, Taraboletti G. Controlled extracellular proteolysis of thrombospondins. Matrix Biol 2023; 119:82-100. [PMID: 37003348 DOI: 10.1016/j.matbio.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Limited proteolysis of thrombospondins is a powerful mechanism to ensure dynamic tuning of their activities in the extracellular space. Thrombospondins are multifunctional matricellular proteins composed of multiple domains, each with a specific pattern of interactions with cell receptors, matrix components and soluble factors (growth factors, cytokines and proteases), thus with different effects on cell behavior and responses to changes in the microenvironment. Therefore, the proteolytic degradation of thrombospondins has multiple functional consequences, reflecting the local release of active fragments and isolated domains, exposure or disruption of active sequences, altered protein location, and changes in the composition and function of TSP-based pericellular interaction networks. In this review current data from the literature and databases is employed to provide an overview of cleavage of mammalian thrombospondins by different proteases. The roles of the fragments generated in specific pathological settings, with particular focus on cancer and the tumor microenvironment, are discussed.
Collapse
Affiliation(s)
- Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elena Carlessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy.
| |
Collapse
|
9
|
Sharma HS, Muresanu DF, Nozari A, Lafuente JV, Buzoianu AD, Tian ZR, Huang H, Feng L, Bryukhovetskiy I, Manzhulo I, Wiklund L, Sharma A. Neuroprotective Effects of Nanowired Delivery of Cerebrolysin with Mesenchymal Stem Cells and Monoclonal Antibodies to Neuronal Nitric Oxide Synthase in Brain Pathology Following Alzheimer's Disease Exacerbated by Concussive Head Injury. ADVANCES IN NEUROBIOLOGY 2023; 32:139-192. [PMID: 37480461 DOI: 10.1007/978-3-031-32997-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors in developing Alzheimer's disease (AD) in military personnel at later stages of life. Breakdown of the blood-brain barrier (BBB) in CHI leads to extravasation of plasma amyloid beta protein (ΑβP) into the brain fluid compartments precipitating AD brain pathology. Oxidative stress in CHI or AD is likely to enhance production of nitric oxide indicating a role of its synthesizing enzyme neuronal nitric oxide synthase (NOS) in brain pathology. Thus, exploration of the novel roles of nanomedicine in AD or CHI reducing NOS upregulation for neuroprotection are emerging. Recent research shows that stem cells and neurotrophic factors play key roles in CHI-induced aggravation of AD brain pathologies. Previous studies in our laboratory demonstrated that CHI exacerbates AD brain pathology in model experiments. Accordingly, it is quite likely that nanodelivery of NOS antibodies together with cerebrolysin and mesenchymal stem cells (MSCs) will induce superior neuroprotection in AD associated with CHI. In this review, co-administration of TiO2 nanowired cerebrolysin - a balanced composition of several neurotrophic factors and active peptide fragments, together with MSCs and monoclonal antibodies (mAb) to neuronal NOS is investigated for superior neuroprotection following exacerbation of brain pathology in AD exacerbated by CHI based on our own investigations. Our observations show that nanowired delivery of cerebrolysin, MSCs and neuronal NOS in combination induces superior neuroprotective in brain pathology in AD exacerbated by CHI, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Hongyun Huang
- Beijing Hongtianji Neuroscience Academy, Beijing, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Igor Manzhulo
- Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Li L, Fu H, Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Jinesh GG, Brohl AS. Classical epithelial-mesenchymal transition (EMT) and alternative cell death process-driven blebbishield metastatic-witch (BMW) pathways to cancer metastasis. Signal Transduct Target Ther 2022; 7:296. [PMID: 35999218 PMCID: PMC9399134 DOI: 10.1038/s41392-022-01132-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/14/2022] [Accepted: 07/24/2022] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a pivotal event that accelerates the prognosis of cancer patients towards mortality. Therapies that aim to induce cell death in metastatic cells require a more detailed understanding of the metastasis for better mitigation. Towards this goal, we discuss the details of two distinct but overlapping pathways of metastasis: a classical reversible epithelial-to-mesenchymal transition (hybrid-EMT)-driven transport pathway and an alternative cell death process-driven blebbishield metastatic-witch (BMW) transport pathway involving reversible cell death process. The knowledge about the EMT and BMW pathways is important for the therapy of metastatic cancers as these pathways confer drug resistance coupled to immune evasion/suppression. We initially discuss the EMT pathway and compare it with the BMW pathway in the contexts of coordinated oncogenic, metabolic, immunologic, and cell biological events that drive metastasis. In particular, we discuss how the cell death environment involving apoptosis, ferroptosis, necroptosis, and NETosis in BMW or EMT pathways recruits immune cells, fuses with it, migrates, permeabilizes vasculature, and settles at distant sites to establish metastasis. Finally, we discuss the therapeutic targets that are common to both EMT and BMW pathways.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| | - Andrew S Brohl
- Department of Molecular Oncology, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA. .,Sarcoma Department, 12902 USF Magnolia Drive, H. Lee Moffitt Cancer Center & Research Institute, Tampa, 33612, FL, USA.
| |
Collapse
|
12
|
Liu J, Lai X, Bao Y, Xie W, Li Z, Chen J, Li G, Wang T, Huang W, Ma Y, Shi J, Zhao E, Xiang AP, Liu Q, Chen X. Intraperitoneally Delivered Mesenchymal Stem Cells Alleviate Experimental Colitis Through THBS1-Mediated Induction of IL-10-Competent Regulatory B Cells. Front Immunol 2022; 13:853894. [PMID: 35371051 PMCID: PMC8971528 DOI: 10.3389/fimmu.2022.853894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show promising therapeutic potential in treating inflammatory bowel disease (IBD), and intraperitoneal delivery of MSCs have become a more effective route for IBD treatment. However, the underlying mechanisms are still poorly understood. Here, we found that intraperitoneally delivered MSCs significantly alleviated experimental colitis. Depletion of peritoneal B cells, but not macrophages, clearly impaired the therapeutic effects of MSCs. Intraperitoneally delivered MSCs improved IBD likely by boosting the IL-10-producing B cells in the peritoneal cavity, and a single intraperitoneal injection of MSCs could significantly prevent disease severity in a recurrent mouse colitis model, with lower proinflammation cytokines and high level of IL-10. The gene expression profile revealed that thrombospondin-1 (THBS1) was dramatically upregulated in MSCs after coculture with peritoneal lavage fluid from colitis mice. Knockout of THBS1 expression in MSCs abolished their therapeutic effects in colitis and the induction of IL-10-producing B cells. Mechanistically, THBS1 modulates the activation of transforming growth factor-β (TGF-β), which combines with TGF-β receptors on B cells and contributes to IL-10 production. Blocking the interaction between THBS1 and latent TGF-β or inhibiting TGF-β receptors (TGF-βR) significantly reversed the THBS1-mediated induction of IL-10-producing B cells and the therapeutic effects on colitis. Collectively, our study revealed that intraperitoneally delivered MSCs secreted THBS1 to boost IL-10+Bregs and control the progression and recurrence of colitis, providing new insight for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Jialing Liu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingying Bao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Wenfeng Xie
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhishan Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jieying Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Gang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yuanchen Ma
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jiahao Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Erming Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaoyong Chen, ; Qiuli Liu, ; Andy Peng Xiang,
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaoyong Chen, ; Qiuli Liu, ; Andy Peng Xiang,
| | - Xiaoyong Chen
- The Biotherapy Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaoyong Chen, ; Qiuli Liu, ; Andy Peng Xiang,
| |
Collapse
|
13
|
Potential Anti-Inflammatory Effects of a New Lyophilized Formulation of the Conditioned Medium Derived from Periodontal Ligament Stem Cells. Biomedicines 2022; 10:biomedicines10030683. [PMID: 35327485 PMCID: PMC8944955 DOI: 10.3390/biomedicines10030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
The mesenchymal stem cells’ (MSCs) secretome includes the bioactive molecules released in the conditioned medium (CM), such as soluble proteins, free nucleic acids, lipids and extracellular vesicles. The secretome is known to mediate some of the beneficial properties related to MSCs, such as anti-inflammatory, anti-apoptotic and regenerative capacities. In this work, we aim to evaluate the anti-inflammatory potential of a new lyophilized formulation of CM derived from human periodontal ligament stem cells (hPDLSCs). With this aim, we treat hPDLSCs with lipopolysaccharide (LPS) and test the anti-inflammatory potential of lyophilized CM (LYO) through the evaluation of wound closure, transcriptomic and immunofluorescence analysis. LPS treatment increased the expression of TLR4 and of genes involved in its signaling and in p38 and NF-κB activation, also increasing the expression of cytokines and chemokines. Interestingly, LYO downregulated the expression of genes involved in Toll-like receptor 4 (TLR-4), nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and p38 signaling. As a consequence, the genes encoding for cytokines and chemokines were also downregulated. Immunofluorescence acquisitions confirmed the downregulation of TLR-4 and NF-κB with the LYO treatment. Moreover, the LYO treatment also increased hPDLSCs’ migration. LYO was demonstrated to contain transforming growth factor (TGF)-β3 and vascular endothelial growth factor (VEGF). These results suggest that LYO represents an efficacious formulation with anti-inflammatory potential and highlights lyophilization as a valid method to produce stable formulations of MSCs’ secretome.
Collapse
|
14
|
Abstract
The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
15
|
Pinessi D, Resovi A, Sangalli F, Morosi L, Zentilin L, Borsotti P, Carlessi E, Passoni A, Davoli E, Belotti D, Giavazzi R, Giacca M, Valbusa G, Berndt A, Zucchetti M, Taraboletti G. Tumor vascular remodeling by thrombospondin-1 enhances drug delivery and antineoplastic activity. Matrix Biol 2021; 103-104:22-36. [PMID: 34653669 DOI: 10.1016/j.matbio.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/31/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
The disorganized and inefficient tumor vasculature is a major obstacle to the delivery and efficacy of antineoplastic treatments. Antiangiogenic agents can normalize the tumor vessels, improving vessel function and boosting the distribution and activity of chemotherapy. The type III repeats (T3R) domain of thrombospondin-1 contains different potential antiangiogenic sequences. We therefore hypothesized that it might affect the tumor vasculature. Ectopic expression of the T3R domain by the tumor cells or by the host, or administration of recombinant T3R, delayed the in vivo growth of experimental tumors. Tumors presented marked reorganization of the vasculature, with abundant but smaller vessels, associated with substantially less necrosis. Mechanistically, the use of truncated forms of the domain, containing different active sequences, pointed to the FGF2/FGFR/ERK axis as a target for T3R activity. Along with reduced necrosis, the expression of T3R promoted tumor distribution of chemotherapy (paclitaxel), with a higher drug concentration and more homogeneous distribution, as assessed by HPLC and MALDI imaging mass spectrometry. T3R-expressing tumors were more responsive to paclitaxel and cisplatin. This study shows that together with its known role as a canonical inhibitor of angiogenesis, thrombospondin-1 can also remodel tumor blood vessels, affecting the morphological and functional properties of the tumor vasculature. The ability of T3R to reduce tumor growth and improve the response to chemotherapy opens new perspectives for therapeutic strategies based on T3R to be used in combination therapies.
Collapse
Affiliation(s)
- Denise Pinessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Andrea Resovi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Fabio Sangalli
- Laboratory of Renal Biophysics, Department of Biomedical Engineering, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Lavinia Morosi
- Cancer Clinical Pharmacology Unit, Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Patrizia Borsotti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elena Carlessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Alice Passoni
- Center of Mass Spectrometry Research for Health and Environment and Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Enrico Davoli
- Center of Mass Spectrometry Research for Health and Environment and Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Dorina Belotti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Raffaella Giavazzi
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Mauro Giacca
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK
| | | | - Alexander Berndt
- Section Pathology, Institute of Legal Medicine, Jena University Hospital, D-07747 Jena, Germany
| | - Massimo Zucchetti
- Cancer Clinical Pharmacology Unit, Laboratory of Cancer Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy.
| |
Collapse
|
16
|
Li W, Yang J, Zheng P, Li H, Zhao S. The Origins and Generation of Cancer-Associated Mesenchymal Stromal Cells: An Innovative Therapeutic Target for Solid Tumors. Front Oncol 2021; 11:723707. [PMID: 34513701 PMCID: PMC8427299 DOI: 10.3389/fonc.2021.723707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated mesenchymal stromal cells (CA-MSCs) have been isolated from various types of tumors and are characterized by their vigorous pro-tumorigenic functions. However, very little is known about the origins and generating process of CA-MSCs, which may facilitate the identification of biomarkers for diagnosis or innovative targets for anti-cancer therapy to restrain the tumor growth, spread and chemotherapy resistance. Current evidences have indicated that both distally recruited and local resident MSCs are the primary origins of CA-MSCs. In a tissue type-dependent mode, tumor cells together with the TME components prompt the malignant transition of tumor “naïve” MSCs into CA-MSCs in a direct cell-to-cell contact, paracrine or exosome-mediated manner. In this review, we discuss the transition of phenotypes and functions of naïve MSCs into CA-MSCs influenced by tumor cells or non-tumor cells in the TME. The key areas remaining poorly understood are also highlighted and concluded herein.
Collapse
Affiliation(s)
- Wei Li
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Jin Yang
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Ping Zheng
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Haining Li
- Department of Clinical Laboratory Diagnostics, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Shaolin Zhao
- Center of Research Laboratory, Department of Laboratory Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
17
|
Hsieh LY, Chiang AWT, Duong LD, Kuo CC, Dong SX, Dohil R, Kurten R, Lewis NE, Aceves SS. A unique esophageal extracellular matrix proteome alters normal fibroblast function in severe eosinophilic esophagitis. J Allergy Clin Immunol 2021; 148:486-494. [PMID: 33556465 PMCID: PMC8342625 DOI: 10.1016/j.jaci.2021.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic TH2 disorder complicated by tissue fibrosis and loss of esophageal luminal patency. The fibrostenotic esophagus does not respond well to therapy, but profibrotic therapeutic targets are largely unclear. OBJECTIVE Our aim was to utilize proteomics and primary cells as a novel approach to determine relevant profibrotic factors. METHODS We utilized primary esophageal EoE and normal fibroblasts, their derivative extracellular matrixes (ECMs), an approach of fibroblast culture on autologous versus nonautologous ECM, and proteomics to elucidate EoE ECM proteins that dysregulate cellular function. RESULTS We cultured esophageal fibroblasts from normal esophagi and esophagi from patients with severe EoE on autologous versus nonautologous ECM. The EoE ECM proteome shifted normal esophageal fibroblast protein expression. Proteomic analysis demonstrated that thrombospondin-1 is detected only in the EoE ECM, is central in the EoE ECM protein-protein interactome, is found at significantly elevated levels in biopsy specimens from patients with active EoE, and induces fibroblast collagen I production. CONCLUSION Fibroblasts from patients with EoE secrete a unique ECM proteome that reflects their in vivo state and induces collagen I and α-smooth muscle actin protein expression from normal fibroblasts. Thrombospondin-1 is a previously unappreciated profibrotic molecule in EoE.
Collapse
Affiliation(s)
- Lance Y Hsieh
- Department of Pediatrics, University of California, San Diego, La Jolla, Calif; Division of Allergy Immunology, University of California, San Diego, La Jolla, Calif
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, Calif; Department of Bioengineering, University of California, San Diego, La Jolla, Calif
| | - Loan D Duong
- Department of Pediatrics, University of California, San Diego, La Jolla, Calif; Division of Allergy Immunology, University of California, San Diego, La Jolla, Calif
| | - Chih-Chung Kuo
- Department of Bioengineering, University of California, San Diego, La Jolla, Calif
| | - Stephanie X Dong
- Department of Pediatrics, University of California, San Diego, La Jolla, Calif; Division of Allergy Immunology, University of California, San Diego, La Jolla, Calif
| | - Ranjan Dohil
- Department of Pediatrics, University of California, San Diego, La Jolla, Calif; Division of Gastroenterology, University of California, San Diego, La Jolla, Calif; Rady Children's Hospital San Diego, Calif, San Diego, Calif
| | - Richard Kurten
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, Ark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, Calif; Department of Bioengineering, University of California, San Diego, La Jolla, Calif
| | - Seema S Aceves
- Department of Pediatrics, University of California, San Diego, La Jolla, Calif; Division of Allergy Immunology, University of California, San Diego, La Jolla, Calif; Rady Children's Hospital San Diego, Calif, San Diego, Calif; Department of Medicine, University of California, San Diego, La Jolla, Calif.
| |
Collapse
|
18
|
Kaur S, Bronson SM, Pal-Nath D, Miller TW, Soto-Pantoja DR, Roberts DD. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int J Mol Sci 2021; 22:4570. [PMID: 33925464 PMCID: PMC8123789 DOI: 10.3390/ijms22094570] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Steven M. Bronson
- Department of Internal Medicine, Section of Molecular Medicine, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Thomas W. Miller
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, 13273 Marseille, France
| | - David R. Soto-Pantoja
- Department of Surgery and Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| |
Collapse
|
19
|
Asparuhova MB, Stähli A, Guldener K, Sculean A. A Novel Volume-Stable Collagen Matrix Induces Changes in the Behavior of Primary Human Oral Fibroblasts, Periodontal Ligament, and Endothelial Cells. Int J Mol Sci 2021; 22:ijms22084051. [PMID: 33919968 PMCID: PMC8070954 DOI: 10.3390/ijms22084051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to investigate the influence of a novel volume-stable collagen matrix (vCM) on early wound healing events including cellular migration and adhesion, protein adsorption and release, and the dynamics of the hemostatic system. For this purpose, we utilized transwell migration and crystal violet adhesion assays, ELISAs for quantification of adsorbed and released from the matrix growth factors, and qRT-PCR for quantification of gene expression in cells grown on the matrix. Our results demonstrated that primary human oral fibroblasts, periodontal ligament, and endothelial cells exhibited increased migration toward vCM compared to control cells that migrated in the absence of the matrix. Cellular adhesive properties on vCM were significantly increased compared to controls. Growth factors TGF-β1, PDGF-BB, FGF-2, and GDF-5 were adsorbed on vCM with great efficiency and continuously delivered in the medium after an initial burst release within hours. We observed statistically significant upregulation of genes encoding the antifibrinolytic thrombomodulin, plasminogen activator inhibitor type 1, thrombospondin 1, and thromboplastin, as well as strong downregulation of genes encoding the profibrinolytic tissue plasminogen activator, urokinase-type plasminogen activator, its receptor, and the matrix metalloproteinase 14 in cells grown on vCM. As a general trend, the stimulatory effect of the vCM on the expression of antifibrinolytic genes was synergistically enhanced by TGF-β1, PDGF-BB, or FGF-2, whereas the strong inhibitory effect of the vCM on the expression of profibrinolytic genes was reversed by PDGF-BB, FGF-2, or GDF-5. Taken together, our data strongly support the effect of the novel vCM on fibrin clot stabilization and coagulation/fibrinolysis equilibrium, thus facilitating progression to the next stages of the soft tissue healing process.
Collapse
Affiliation(s)
- Maria B. Asparuhova
- Dental Research Center, Laboratory of Oral Cell Biology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
- Correspondence:
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Kevin Guldener
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (K.G.); (A.S.)
| |
Collapse
|
20
|
Carminati L, Taraboletti G. Thrombospondins in bone remodeling and metastatic bone disease. Am J Physiol Cell Physiol 2020; 319:C980-C990. [PMID: 32936697 DOI: 10.1152/ajpcell.00383.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondins (TSPs) are a family of five multimeric matricellular proteins. Through a wide range of interactions, TSPs play pleiotropic roles in embryogenesis and in tissue remodeling in adult physiology as well as in pathological conditions, including cancer development and metastasis. TSPs are active in bone remodeling, the process of bone resorption (osteolysis) and deposition (osteogenesis) that maintains bone homeostasis. TSPs are particularly involved in aberrant bone remodeling, including osteolytic and osteoblastic skeletal cancer metastasis, frequent in advanced cancers such as breast and prostate carcinoma. TSPs are major players in the bone metastasis microenvironment, where they finely tune the cross talk between tumor cells and bone resident cells in the metastatic niche. Each TSP family member has different effects on the differentiation and activity of bone cells-including the bone-degrading osteoclasts and the bone-forming osteoblasts-with different outcomes on the development and growth of osteolytic and osteoblastic metastases. Here, we overview the involvement of TSP family members in the bone tissue microenvironment, focusing on their activity on osteoclasts and osteoblasts in bone remodeling, and present the evidence to date of their roles in bone metastasis establishment and growth.
Collapse
Affiliation(s)
- Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
21
|
Lin X, Patil S, Gao YG, Qian A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front Pharmacol 2020; 11:757. [PMID: 32528290 PMCID: PMC7264100 DOI: 10.3389/fphar.2020.00757] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Bone regeneration repairs bone tissue lost due to trauma, fractures, and tumors, or absent due to congenital disorders. The extracellular matrix (ECM) is an intricate dynamic bio-environment with precisely regulated mechanical and biochemical properties. In bone, ECMs are involved in regulating cell adhesion, proliferation, and responses to growth factors, differentiation, and ultimately, the functional characteristics of the mature bone. Bone ECM can induce the production of new bone by osteoblast-lineage cells, such as MSCs, osteoblasts, and osteocytes and the absorption of bone by osteoclasts. With the rapid development of bone regenerative medicine, the osteoinductive, osteoconductive, and osteogenic potential of ECM-based scaffolds has attracted increasing attention. ECM-based scaffolds for bone tissue engineering can be divided into two types, that is, ECM-modified biomaterial scaffold and decellularized ECM scaffold. Tissue engineering strategies that utilize the functional ECM are superior at guiding the formation of specific tissues at the implantation site. In this review, we provide an overview of the function of various types of bone ECMs in bone tissue and their regulation roles in the behaviors of osteoblast-lineage cells and osteoclasts. We also summarize the application of bone ECM in bone repair and regeneration. A better understanding of the role of bone ECM in guiding cellular behavior and tissue function is essential for its future applications in bone repair and regenerative medicine.
Collapse
Affiliation(s)
| | | | - Yong-Guang Gao
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
22
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
23
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
24
|
Huang R, Chen Z, Li W, Fan C, Liu J. Immune system‑associated genes increase malignant progression and can be used to predict clinical outcome in patients with hepatocellular carcinoma. Int J Oncol 2020; 56:1199-1211. [PMID: 32319580 PMCID: PMC7115743 DOI: 10.3892/ijo.2020.4998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/07/2020] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant types of cancer, and is associated with high recurrence rates and a poor response to chemotherapy. Immune signatures in the microenvironment of HCC have not been well explored systematically. The aim of the present study was to identify prognostic immune signatures and build a nomogram for use in clinical evaluation. Using bioinformatics analysis, RNA‑seq data and overall survival (OS) information on 370 HCC cases from TCGA and 232 HCC cases from ICGC were analyzed. The differential expression of select immune genes, based on previously published studies, between HCC and adjacent tissue were analyzed using the limma package in R. Enrichment of pathways and gene ontology analysis was performed using clusterProfiler. Subsequently, univariate Cox regression analysis, Lasso penalty linear regression and multivariate Cox regression models were used to construct a model for immune risk score (IRS). The R packages, survival and survivalROC, were used to plot survival and the associated receiver operating characteristic curves. Infiltration of immune cells was calculated using Tumor IMmune Estimation Resource, with significance examined using a Pearson's correlation test. P<0.05 was considered significant. Based on the analysis, expression of 200 immune genes were upregulated and 47 immune genes were downregulated immune genes. In the multivariate Cox model, 5 genes (enhancer of zest homology 2, ferritin light chain, complement factor H related 3, isthmin 2, cyclin dependent kinase 5) were used to generate the IRS. By stratifying according to the median IRS, it was shown that patients with a high IRS had poor OS rates after 1, 2, 3 and 5 years, and this result was consistent across the testing, training and independent validation cohorts. Additionally, the IRS was correlated with the abundance of infiltrating immune cells. The nomogram built using IRS and clinical characteristics, was able to predict 1, 3 and 5 year OS with area under the curve values of >0.8. These results suggest that the model developed to calculate the IRS may be used to monitor the effectiveness of treatment strategies and for prognostic prediction.
Collapse
Affiliation(s)
- Rongfu Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian 362000
| | - Zheng Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200000
| | | | - Chunmei Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, Fujian 362000
| | - Jun Liu
- Department of Clinical Laboratory, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong 512026, P.R. China
| |
Collapse
|
25
|
Wang T, Hill RC, Dzieciatkowska M, Zhu L, Infante AM, Hu G, Hansen KC, Pei M. Site-Dependent Lineage Preference of Adipose Stem Cells. Front Cell Dev Biol 2020; 8:237. [PMID: 32351957 PMCID: PMC7174673 DOI: 10.3389/fcell.2020.00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/20/2020] [Indexed: 12/15/2022] Open
Abstract
Adult stem cells have unique properties in both proliferation and differentiation preference. In this study, we hypothesized that adipose stem cells have a depot-dependent lineage preference. Four rabbits were used to provide donor-matched adipose stem cells from either subcutaneous adipose tissue (ScAT) or infrapatellar fat pad (IPFP). Proliferation and multi-lineage differentiation were evaluated in adipose stem cells from donor-matched ScAT and IPFP. RNA sequencing (RNA-seq) and proteomics were conducted to uncover potential molecular discrepancy in adipose stem cells and their corresponding matrix microenvironments. We found that stem cells from ScAT exhibited significantly higher proliferation and adipogenic capacity compared to those from donor-matched IPFP while stem cells from IPFP displayed significantly higher chondrogenic potential compared to those from donor-matched ScAT. Our findings are strongly endorsed by supportive data from transcriptome and proteomics analyses, indicating a site-dependent lineage preference of adipose stem cells.
Collapse
Affiliation(s)
- Tingliang Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopedics, West Virginia University, Morgantown, WV, United States
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ryan C. Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aniello M. Infante
- Bioinformatics Core Facility, West Virginia University, Morgantown, WV, United States
| | - Gangqing Hu
- Bioinformatics Core Facility, West Virginia University, Morgantown, WV, United States
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, United States
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopedics, West Virginia University, Morgantown, WV, United States
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
26
|
Extracellular matrix: the gatekeeper of tumor angiogenesis. Biochem Soc Trans 2020; 47:1543-1555. [PMID: 31652436 DOI: 10.1042/bst20190653] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.
Collapse
|
27
|
Garoffolo G, Ruiter MS, Piola M, Brioschi M, Thomas AC, Agrifoglio M, Polvani G, Coppadoro L, Zoli S, Saccu C, Spinetti G, Banfi C, Fiore GB, Madeddu P, Soncini M, Pesce M. Coronary artery mechanics induces human saphenous vein remodelling via recruitment of adventitial myofibroblast-like cells mediated by Thrombospondin-1. Am J Cancer Res 2020; 10:2597-2611. [PMID: 32194822 PMCID: PMC7052885 DOI: 10.7150/thno.40595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
Rationale: Despite the preferred application of arterial conduits, the greater saphenous vein (SV) remains indispensable for coronary bypass grafting (CABG), especially in multi-vessel coronary artery disease (CAD). The objective of the present work was to address the role of mechanical forces in the activation of maladaptive vein bypass remodeling, a process determining progressive occlusion and recurrence of ischemic heart disease. Methods: We employed a custom bioreactor to mimic the coronary shear and wall mechanics in human SV vascular conduits and reproduce experimentally the biomechanical conditions of coronary grafting and analyzed vein remodeling process by histology, histochemistry and immunofluorescence. We also subjected vein-derived cells to cyclic uniaxial mechanical stimulation in culture, followed by phenotypic and molecular characterization using RNA and proteomic methods. We finally validated our results in vitro and using a model of SV carotid interposition in pigs. Results: Exposure to pulsatile flow determined a remodeling process of the vascular wall involving reduction in media thickness. Smooth muscle cells (SMCs) underwent conversion from contractile to synthetic phenotype. A time-dependent increase in proliferating cells expressing mesenchymal (CD44) and early SMC (SM22α) markers, apparently recruited from the SV adventitia, was observed especially in CABG-stimulated vessels. Mechanically stimulated SMCs underwent transition from contractile to synthetic phenotype. MALDI-TOF-based secretome analysis revealed a consistent release of Thrombospondin-1 (TSP-1), a matricellular protein involved in TGF-β-dependent signaling. TSP-1 had a direct chemotactic effect on SV adventitia resident progenitors (SVPs); this effects was inhibited by blocking TSP-1 receptor CD47. The involvement of TSP-1 in adventitial progenitor cells differentiation and graft intima hyperplasia was finally contextualized in the TGF-β-dependent pathway, and validated in a saphenous vein into carotid interposition pig model. Conclusions: Our results provide the evidence of a matricellular mechanism involved in the human vein arterialization process controlled by alterations in tissue mechanics, and open the way to novel potential strategies to block VGD progression based on targeting cell mechanosensing-related effectors.
Collapse
|
28
|
Xu X, Khoong YM, Gu S, Huang X, Ren JY, Gu YH, Li H, Gao Y, Wang Z, Zan T. Investigating the potential of LSKL peptide as a novel hypertrophic scar treatment. Biomed Pharmacother 2020; 124:109824. [PMID: 31972355 DOI: 10.1016/j.biopha.2020.109824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/31/2019] [Indexed: 01/07/2023] Open
Abstract
Hypertrophic scar (HTS) is a common pathologic dermal fibroproliferative disease after skin injury. Transforming growth factor β (TGF-β) plays a central role in HTS formation and development. Thrombospondin-1 (TSP-1) activates latent TGF-β by binding to latency-associated peptide-β on TGF-β structure. So far, LSKL peptide was shown to selectively antagonize TSP-1. In this study, TSP-1 was first confirmed to be highly expressed in HTS. LSKL peptide was proven to inhibit the overexpression of extracellular matrix and contractile ability of HTS fibroblasts. In vivo, LSKL could attenuate the thickness of HTS, distortion of collagen alignment and fibrogenesis. Results also demonstrated that LSKL peptide not only remarkably attenuated cell proliferation and migration, but also induced cell apoptosis of HTS fibroblasts. Western blot analysis further revealed that LSKL peptide significantly suppressed the phosphorylation of PI3K, AKT, and mTOR, while not affecting the phosphorylation of Smad2/3 and MEK/ERK. These findings suggested that LSKL might be a promising anti-fibrosis agent to HTS through PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiangwen Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Min Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haizhou Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yashan Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
29
|
Muraya K, Kawasaki T, Yamamoto T, Akutsu H. Enhancement of Cellular Adhesion and Proliferation in Human Mesenchymal Stromal Cells by the Direct Addition of Recombinant Collagen I Peptide to the Culture Medium. Biores Open Access 2019; 8:210-218. [PMID: 31763065 PMCID: PMC6873350 DOI: 10.1089/biores.2019.0012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have considerable potential for a wide range of clinical applications and regenerative medicine and cell therapy. As a consequence, there is considerable interest in developing robust culture methods for producing large number of MSCs for use in repair of injured tissues or treatment of diseases. In general, tissue culture plates or flasks that have been precoated with substrates derived from animal tissues are used in the production of MSCs. However, these substrates can potentially cause serious problems due to contamination of the MSCs with animal-derived components. In this study, we evaluated the use of a type I collagen-based recombinant peptide (RCP) for MSC culture in an attempt to avoid the problems associated with animal cell-derived substances. This RCP is xeno free, has an increased RGD (Arg–Gly–Asp) sequence, and has high molecular weight uniformity. The effect of RCP on promotion of cellular adhesion and proliferation of MSCs was investigated in cultures in which RCP was included in the culture medium. The effects of RCP on promotion of cellular adhesion and proliferation of MSCs were investigated by comparing cultures in which the additive was present in the culture medium and those where the culture plates were coated with RCP. In addition, changes in gene expression profiles during cell culture were monitored by real time-polymerase chain reaction. Our analyses showed that RCP enhanced cellular adhesion and proliferation in cultures in which the additive was included in the culture medium. Our findings indicate that adding RCP to the culture medium could save time and cost in MSC culture. Our gene expression analysis indicated that RCP enhanced expression of genes encoding proteins associated with the extracellular matrix and cell adhesion.
Collapse
Affiliation(s)
- Koji Muraya
- Bioscience and Technology Development Center, FUJIFILM Corporation, Kanagawa, Japan
| | - Tomoyuki Kawasaki
- Department of Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Takeshi Yamamoto
- Bioscience and Technology Development Center, FUJIFILM Corporation, Kanagawa, Japan
| | - Hidenori Akutsu
- Department of Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
30
|
Freem L, Summers KM, Gheyas AA, Psifidi A, Boulton K, MacCallum A, Harne R, O’Dell J, Bush SJ, Hume DA. Analysis of the Progeny of Sibling Matings Reveals Regulatory Variation Impacting the Transcriptome of Immune Cells in Commercial Chickens. Front Genet 2019; 10:1032. [PMID: 31803225 PMCID: PMC6870463 DOI: 10.3389/fgene.2019.01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 01/05/2023] Open
Abstract
There is increasing recognition that the underlying genetic variation contributing to complex traits influences transcriptional regulation and can be detected at a population level as expression quantitative trait loci. At the level of an individual, allelic variation in transcriptional regulation of individual genes can be detected by measuring allele-specific expression in RNAseq data. We reasoned that extreme variants in gene expression could be identified by analysis of inbred progeny with shared grandparents. Commercial chickens have been intensively selected for production traits. Selection is associated with large blocks of linkage disequilibrium with considerable potential for co-selection of closely linked "hitch-hiker alleles" affecting traits unrelated to the feature being selected, such as immune function, with potential impact on the productivity and welfare of the animals. To test this hypothesis that there is extreme allelic variation in immune-associated genes we sequenced a founder population of commercial broiler and layer birds. These birds clearly segregated genetically based upon breed type. Each genome contained numerous candidate null mutations, protein-coding variants predicted to be deleterious and extensive non-coding polymorphism. We mated selected broiler-layer pairs then generated cohorts of F2 birds by sibling mating of the F1 generation. Despite the predicted prevalence of deleterious coding variation in the genomic sequence of the founders, clear detrimental impacts of inbreeding on survival and post-hatch development were detected in only one F2 sibship of 15. There was no effect on circulating leukocyte populations in hatchlings. In selected F2 sibships we performed RNAseq analysis of the spleen and isolated bone marrow-derived macrophages (with and without lipopolysaccharide stimulation). The results confirm the predicted emergence of very large differences in expression of individual genes and sets of genes. Network analysis of the results identified clusters of co-expressed genes that vary between individuals and suggested the existence of trans-acting variation in the expression in macrophages of the interferon response factor family that distinguishes the parental broiler and layer birds and influences the global response to lipopolysaccharide. This study shows that the impact of inbreeding on immune cell gene expression can be substantial at the transcriptional level, and potentially opens a route to accelerate selection using specific alleles known to be associated with desirable expression levels.
Collapse
Affiliation(s)
- Lucy Freem
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Almas A. Gheyas
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Androniki Psifidi
- Department of Clinical Sciences and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Kay Boulton
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amanda MacCallum
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rakhi Harne
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jenny O’Dell
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
31
|
Murphy-Ullrich JE. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease. J Histochem Cytochem 2019; 67:683-699. [PMID: 31116066 PMCID: PMC6713974 DOI: 10.1369/0022155419851103] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
Thrombospondin 1 (TSP1) is a matricellular extracellular matrix protein that has diverse roles in regulating cellular processes important for the pathogenesis of fibrotic diseases. We will present evidence for the importance of TSP1 control of latent transforming growth factor beta activation in renal fibrosis with an emphasis on diabetic nephropathy. Other functions of TSP1 that affect renal fibrosis, including regulation of inflammation and capillary density, will be addressed. Emerging roles for TSP1 N-terminal domain regulation of collagen matrix assembly, direct effects of TSP1-collagen binding, and intracellular functions of TSP1 in mediating endoplasmic reticulum stress responses in extracellular matrix remodeling and fibrosis, which could potentially affect renal fibrogenesis, will also be discussed. Finally, we will address possible strategies for targeting TSP1 functions to treat fibrotic renal disease.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Departments of Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
32
|
Betaglycan drives the mesenchymal stromal cell osteogenic program and prostate cancer-induced osteogenesis. Oncogene 2019; 38:6959-6969. [PMID: 31409900 DOI: 10.1038/s41388-019-0913-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Bone metastatic prostate cancer provokes extensive osteogenesis by driving the recruitment and osteoblastic differentiation of mesenchymal stromal cells (MSCs). The resulting lesions greatly contribute to patient morbidity and mortality, underscoring the need for defining how prostate metastases subvert the MSC-osteoblast differentiation program. To gain insights into this process we profiled the effects of co-culture of primary MSCs with validated bone metastatic prostate cancer cell line models. These analyses revealed a cast of shared differentially induced genes in MSC, including betaglycan, a co-receptor for TGFβ. Betaglycan has not been studied in the context of bone metastatic disease previously. Here we report that loss of betaglycan in MSC is sufficient to augment TGFβ signaling, proliferation and migration, and completely blocks the MSC-osteoblast differentiation program. Further, betaglycan was revealed as necessary for prostate cancer-induced osteogenesis in vivo. Mechanistically, gene expression analysis revealed betaglycan controls the expression of a large repertoire of genes in MSCs, and that betaglycan loss provokes >60-fold increase in the expression of Wnt5a that plays important roles in stemness. In accord with the increased Wnt5a levels, there was a marked induction of canonical Wnt signaling in betaglycan ablated MSCs, and the addition of recombinant Wnt5a to MSCs was sufficient to impair osteogenic differentiation. Finally, the addition of Wnt5a neutralizing antibody was sufficient to induce the expression of osteogenic genes in betaglycan-ablated MSCs. Collectively, these findings suggest a betaglycan-Wnt5a circuit represents an attractive vulnerability to ameliorate prostate cancer-induced osteogenesis.
Collapse
|
33
|
Mizukami A, Thomé CH, Ferreira GA, Lanfredi GP, Covas DT, Pitteri SJ, Swiech K, Faça VM. Proteomic Identification and Time-Course Monitoring of Secreted Proteins During Expansion of Human Mesenchymal Stem/Stromal in Stirred-Tank Bioreactor. Front Bioeng Biotechnol 2019; 7:154. [PMID: 31297369 PMCID: PMC6607109 DOI: 10.3389/fbioe.2019.00154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
The therapeutic potential of mesenchymal stem/stromal cells (MSC) is widely recognized for the treatment of several diseases, including acute graft-vs.-host disease (GVHD), hematological malignancies, cardiovascular, bone, and cartilage diseases. More recently, this therapeutic efficacy has been attributed to the bioactive molecules that these cells secrete (secretome), now being referred as medicinal signaling cells. This fact raises the opportunity of therapeutically using MSC-derived soluble factors rather than cells themselves, enabling their translation into the clinic. Indeed, many clinical trials are now studying the effects of MSC-secretome in the context of cell-free therapy. MSC secretome profile varies between donors, source, and culture conditions, making their therapeutic use very challenging. Therefore, identifying these soluble proteins and evaluating their production in a reproducible and scalable manner is even more relevant. In this work, we analyzed the global profile of proteins secreted by umbilical cord matrix (UCM) derived-MSC in static conditions by using mass spectrometry, enabling the identification of thousands of proteins. Afterwards, relevant proteins were chosen and monitored in the supernatant of a fully-controllable, closed and scalable system (bioreactor) by using multiple reaction monitoring (MRM) mass spectrometric technique in a time-dependent manner. The results showed that the majority of interesting proteins were enriched through time in culture, with the last day of culture being the ideal time for supernatant collection. The use of this regenerative "soup," which is frequently discarded, could represent a step toward a safe, robust and reproducible cell-free product to be used in the medical therapeutic field. The future use of chemically defined culture-media will certainly facilitate secretome production according to Good Manufacturing Practice (GMP) standards.
Collapse
Affiliation(s)
- Amanda Mizukami
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Hassibe Thomé
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Germano Aguiar Ferreira
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Guilherme Pauperio Lanfredi
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, United States
| | - Kamilla Swiech
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vitor Marcel Faça
- Faculty of Medicine of Ribeirão Preto, Hemotherapy Center of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
34
|
Derakhshani M, Abbaszadeh H, Movassaghpour AA, Mehdizadeh A, Ebrahimi-Warkiani M, Yousefi M. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci 2019; 232:116598. [PMID: 31247209 DOI: 10.1016/j.lfs.2019.116598] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem cells (HSCs) are a rare cell population in adult bone marrow, mobilized peripheral blood, and umbilical cord blood possessing self-renewal and differentiation capability into a full spectrum of blood cells. Bone marrow HSC transplantation has been considered as an ideal option for certain disorders treatment including hematologic diseases, leukemia, immunodeficiency, bone marrow failure syndrome, genetic defects such as thalassemia, sickle cell anemia, autoimmune disease, and certain solid cancers. Ex vivo proliferation of these cells prior to transplantation has been proposed as a potential solution against limited number of stem cells. In such culture process, MSCs have also been shown to exhibit high capacity for secretion of soluble mediators contributing to the principle biological and therapeutic activities of HSCs. In addition, endothelial cells have been introduced to bridge the blood and sub tissues in the bone marrow, as well as, HSCs regeneration induction and survival. Cell culture in the laboratory environment requires cell growth strict control to protect against contamination, symmetrical cell division and optimal conditions for maximum yield. In this regard, microfluidic systems provide culture and analysis capabilities in micro volume scales. Moreover, two-dimensional cultures cannot fully demonstrate extracellular matrix found in different tissues and organs as an abstract representation of three dimensional cell structure. Microfluidic systems can also strongly describe the effects of physical factors such as temperature and pressure on cell behavior.
Collapse
Affiliation(s)
- Mehdi Derakhshani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Abbaszadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ebrahimi-Warkiani
- School of Biomedical Engineering, University Technology of Sydney, Sydney, New South Wales, 2007, Australia
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Yang C, Yang Y, Ma L, Zhang GX, Shi FD, Yan Y, Chang G. Study of the cytological features of bone marrow mesenchymal stem cells from patients with neuromyelitis optica. Int J Mol Med 2019; 43:1395-1405. [PMID: 30628649 PMCID: PMC6365084 DOI: 10.3892/ijmm.2019.4056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/04/2019] [Indexed: 12/22/2022] Open
Abstract
Neuromyelitis optica (NMO) is a refractory autoimmune inflammatory disease of the central nervous system without an effective cure. Autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) are considered to be promising therapeutic agents for this disease due to their potential regenerative, immune regulatory and neurotrophic effects. However, little is known about the cytological features of BM-MSCs from patients with NMO, which may influence any therapeutic effects. The present study aimed to compare the proliferation, differentiation and senescence of BM-MSCs from patients with NMO with that of age- and sex-matched healthy subjects. It was revealed that there were no significant differences in terms of cell morphology or differentiation capacities in the BM-MSCs from the patients with NMO. However, in comparison with healthy controls, BM-MSCs derived from the Patients with NMO exhibited a decreased proliferation rate, in addition to a decreased expression of several cell cycle-promoting and proliferation-associated genes. Furthermore, the cell death rate increased in BM-MSCs from patients under normal culture conditions and an assessment of the gene expression profile further confirmed that the BM-MSCs from patients with NMO were more vulnerable to senescence. Platelet-derived growth factor (PDGF), as a major mitotic stimulatory factor for MSCs and a potent therapeutic cytokine in demyelinating disease, was able to overcome the decreased proliferation rate and increased senescence defects in BM-MSCs from the patients with NMO. Taken together, the results from the present study have enabled the proposition of the possibility of combining the application of autologous BM-MSCs and PDGF for refractory and severe patients with NMO in order to elicit improved therapeutic effects, or, at the least, to include PDGF as a necessary and standard growth factor in the current in vitro formula for the culture of NMO patient-derived BM-MSCs.
Collapse
Affiliation(s)
- Chunsheng Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300052, P.R. China
| | - Li Ma
- Department of Neurosurgery and Neuro‑Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yaping Yan
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guoqiang Chang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
36
|
Buras ED, Converso-Baran K, Davis CS, Akama T, Hikage F, Michele DE, Brooks SV, Chun TH. Fibro-Adipogenic Remodeling of the Diaphragm in Obesity-Associated Respiratory Dysfunction. Diabetes 2019; 68:45-56. [PMID: 30361289 PMCID: PMC6302533 DOI: 10.2337/db18-0209] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Respiratory dysfunction is a common complication of obesity, conferring cardiovascular morbidity and increased mortality and often necessitating mechanical ventilatory support. While impaired lung expansion in the setting of increased adipose mass and reduced central response to hypercapnia have been implicated as pathophysiological drivers, the impact of obesity on respiratory muscles-in particular, the diaphragm-has not been investigated in detail. Here, we demonstrate that chronic high-fat diet (HFD) feeding impairs diaphragm muscle function, as assessed in vivo by ultrasonography and ex vivo by measurement of contractile force. During an HFD time course, progressive adipose tissue expansion and collagen deposition within the diaphragm parallel contractile deficits. Moreover, intradiaphragmatic fibro-adipogenic progenitors (FAPs) proliferate with long-term HFD feeding while giving rise to adipocytes and type I collagen-depositing fibroblasts. Thrombospondin 1 (THBS1), a circulating adipokine, increases with obesity and induces FAP proliferation. These findings suggest a novel role for FAP-mediated fibro-adipogenic diaphragm remodeling in obesity-associated respiratory dysfunction.
Collapse
Affiliation(s)
- Eric D Buras
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Kimber Converso-Baran
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Carol S Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Takeshi Akama
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Fumihito Hikage
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| | - Daniel E Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Susan V Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Tae-Hwa Chun
- Division of Metabolism Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
37
|
Binsker U, Kohler TP, Hammerschmidt S. Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria. J Innate Immun 2019; 11:303-315. [PMID: 30814475 PMCID: PMC6738282 DOI: 10.1159/000496033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
A successful colonization of different compartments of the human host requires multifactorial contacts between bacterial surface proteins and host factors. Extracellular matrix proteins and matricellular proteins such as thrombospondin-1 play a pivotal role as adhesive substrates to ensure a strong interaction with pathobionts like the Gram-positive Streptococcus pneumoniae and Staphylococcus aureus. The human glycoprotein thrombospondin-1 is a component of the extracellular matrix and is highly abundant in the bloodstream during bacteremia. Human platelets secrete thrombospondin-1, which is then acquired by invading pathogens to facilitate colonization and immune evasion. Gram-positive bacteria express a broad spectrum of surface-exposed proteins, some of which also recognize thrombospondin-1. This review highlights the importance of thrombospondin-1 as an adhesion substrate to facilitate colonization, and we summarize the variety of thrombospondin-1-binding proteins of S. pneumoniae and S. aureus.
Collapse
Affiliation(s)
- Ulrike Binsker
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
- Department of Microbiology, NYU Langone Health, Alexandria Center for the Life Sciences, New York City, New York, USA
| | - Thomas P Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany,
| |
Collapse
|
38
|
Zhao C, Isenberg JS, Popel AS. Human expression patterns: qualitative and quantitative analysis of thrombospondin-1 under physiological and pathological conditions. J Cell Mol Med 2018; 22:2086-2097. [PMID: 29441713 PMCID: PMC5867078 DOI: 10.1111/jcmm.13565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/07/2018] [Indexed: 12/12/2022] Open
Abstract
Thrombospondin-1 (TSP-1), a matricellular protein and one of the first endogenous anti-angiogenic molecules identified, has long been considered a potent modulator of human diseases. While the therapeutic effect of TSP-1 to suppress cancer was investigated in both research and clinical settings, the mechanisms of how TSP-1 is regulated in cancer remain elusive, and the scientific answers to the question of whether TSP-1 expressions can be utilized as diagnostic or prognostic marker for patients with cancer are largely inconsistent. Moreover, TSP-1 plays crucial functions in angiogenesis, inflammation and tissue remodelling, which are essential biological processes in the progression of many cardiovascular diseases, and therefore, its dysregulated expressions in such conditions may have therapeutic significance. Herein, we critically analysed the literature pertaining to TSP-1 expression in circulating blood and pathological tissues in various types of cancer as well as cardiovascular and inflammation-related diseases in humans. We compare the secretion rates of TSP-1 by different cancer and non-cancer cells and discuss the potential connection between the expression changes of TSP-1 and vascular endothelial growth factor (VEGF) observed in patients with cancer. Moreover, the pattern and emerging significance of TSP-1 profiles in cardiovascular disease, such as peripheral arterial disease, diabetes and other related non-cancer disorders, are highlighted. The analysis of published TSP-1 data presented in this review may have implications for the future exploration of novel TSP-1-based treatment strategies for cancer and cardiovascular-related diseases.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical CareDepartment of MedicineHeart, Lung, Blood and Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Aleksander S. Popel
- Department of Biomedical EngineeringSchool of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
39
|
Li L, Zhao Q, Kong W. Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol 2018; 68-69:490-506. [PMID: 29371055 DOI: 10.1016/j.matbio.2018.01.013] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
Cardiac fibrosis, characterized by excessive deposition of extracellular matrix (ECM) proteins in the myocardium, distorts the architecture of the myocardium, facilitates the progression of arrhythmia and cardiac dysfunction, and influences the clinical course and outcome in patients with heart failure. This review describes the composition and homeostasis in normal cardiac interstitial matrix and introduces cellular and molecular mechanisms involved in cardiac fibrosis. We also characterize the ECM alteration in the fibrotic response under diverse cardiac pathological conditions and depict the role of matricellular proteins in the pathogenesis of cardiac fibrosis. Moreover, the diagnosis of cardiac fibrosis based on imaging and biomarker detection and the therapeutic strategies are addressed. Understanding the comprehensive molecules and pathways involved in ECM homeostasis and remodeling may provide important novel potential targets for preventing and treating cardiac fibrosis.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
40
|
Sierra-Parraga JM, Eijken M, Hunter J, Moers C, Leuvenink H, Møller B, Ploeg RJ, Baan CC, Jespersen B, Hoogduijn MJ. Mesenchymal Stromal Cells as Anti-Inflammatory and Regenerative Mediators for Donor Kidneys During Normothermic Machine Perfusion. Stem Cells Dev 2017; 26:1162-1170. [PMID: 28557562 DOI: 10.1089/scd.2017.0030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is great demand for transplant kidneys for the treatment of end-stage kidney disease patients. To expand the donor pool, organs from older and comorbid brain death donors, so-called expanded criteria donors (ECD), as well as donation after circulatory death donors, are considered for transplantation. However, the quality of these organs may be inferior to standard donor organs. A major issue affecting graft function and survival is ischemia/reperfusion injury, which particularly affects kidneys from deceased donors. The development of hypothermic machine perfusion has been introduced in kidney transplantation as a preservation technique and has improved outcomes in ECD and marginal organs compared to static cold storage. Normothermic machine perfusion (NMP) is the most recent evolution of perfusion technology and allows assessment of the donor organ before transplantation. The possibility to control the content of the perfusion fluid offers opportunities for damage control and reparative therapies during machine perfusion. Mesenchymal stromal cells (MSC) have been demonstrated to possess potent regenerative properties via the release of paracrine effectors. The combination of NMP and MSC administration at the same time is a promising procedure in the field of transplantation. Therefore, the MePEP consortium has been created to study this novel modality of treatment in preparation for human trials. MePEP aims to assess the therapeutic effects of MSC administered ex vivo by NMP in the mechanisms of injury and repair in a porcine kidney autotransplantation model.
Collapse
Affiliation(s)
- Jesus Maria Sierra-Parraga
- 1 Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center , Rotterdam, the Netherlands
| | - Marco Eijken
- 2 Institute of Clinical Medicine, Department of Medicine and Nephrology C, Aarhus University , Aarhus, Denmark
| | - James Hunter
- 3 Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford , Oxford, United Kingdom
| | - Cyril Moers
- 4 Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen , Groningen, the Netherlands
| | - Henri Leuvenink
- 4 Department of Surgery-Organ Donation and Transplantation, University of Medical Center Groningen , Groningen, the Netherlands
| | - Bjarne Møller
- 5 Department of Clinical Immunology, Aarhus University Hospital , Aarhus, Denmark
| | - Rutger J Ploeg
- 3 Nuffield Department of Surgical Sciences, Oxford Biomedical Research Centre, University of Oxford , Oxford, United Kingdom
| | - Carla C Baan
- 1 Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center , Rotterdam, the Netherlands
| | - Bente Jespersen
- 6 Department of Renal Medicine, Aarhus University Hospital , Aarhus, Denmark
| | - Martin J Hoogduijn
- 1 Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center , Rotterdam, the Netherlands
| |
Collapse
|
41
|
Schaefer L, Tredup C, Gubbiotti MA, Iozzo RV. Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J 2017; 284:10-26. [PMID: 27860287 PMCID: PMC5226885 DOI: 10.1111/febs.13963] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/27/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022]
Abstract
Inflammation and autophagy have emerged as prominent issues in the context of proteoglycan signaling. In particular, two small, leucine-rich proteoglycans, biglycan and decorin, play pivotal roles in the regulation of these vital cellular pathways and, as such, are intrinsically involved in cancer initiation and progression. In this minireview, we will address novel functions of biglycan and decorin in inflammation and autophagy, and analyze new emerging signaling events triggered by these proteoglycans, which directly or indirectly modulate these processes. We will critically discuss the dual role of proteoglycan-driven inflammation and autophagy in tumor biology, and delineate the potential mechanisms through which soluble extracellular matrix constituents affect the microenvironment associated with inflammatory and neoplastic diseases.
Collapse
Affiliation(s)
- Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Claudia Tredup
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Maria A. Gubbiotti
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
42
|
Zhang GP, Zhang J, Zhu CH, Lin L, Wang J, Zhang HJ, Li J, Yu XG, Zhao ZS, Dong W, Liu GB. MicroRNA-98 regulates osteogenic differentiation of human bone mesenchymal stromal cells by targeting BMP2. J Cell Mol Med 2016; 21:254-264. [PMID: 27860183 PMCID: PMC5264139 DOI: 10.1111/jcmm.12961] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022] Open
Abstract
To study the effects of microRNA‐98 (miR‐98) on human bone mesenchymal stromal cells (hBMSCs). The patients undergoing hip arthroplasty were selected by inclusion/exclusion criteria for this study. The extracted hBMSCs were detected of osteogenic differentiation by alizarin red S staining, and of cell phenotype by flow cytometry. Bioinformatics, dual luciferase report, western blotting, RT‐PCR and immunoblotting were used in our study. The hBMSCs were divided into miR‐98 mimics, miR‐98 negative control (NC), miR‐98 inhibitors, Mock and miR‐98 inhibitors + siBMP2 groups. Human bone mesenchymal stromal cells were extracted and purified in vitro and had specific cytological morphology, surface markers and abilities of self‐renewal and differentiation. Compared with the NC group and Mock group, the miR‐98 mimics group showed increased miR‐98 level while the miR‐98 inhibitors group decreased miR‐98 level (both P < 0.01). Dual luciferase reporter showed BMP2 was the target gene of miR‐98. The levels of mRNA and protein expression of BMP2, protein expression of RUNX2, alkaline phosphatase activity and osteocalcin content significantly decreased in the miR‐98 mimics group while increased in the miR‐98 inhibitors group and showed no changes in the NC group and Mock group (all P < 0.05). The miR‐98 mimics group showed obviously declined stained red particles and the miR‐98 inhibitors group showed opposite result. After lowering the expression of miR‐98, osteogenic differentiation ability of hBMSCs rose, which was weakened by the transfection with siBMP2. miR‐98 may regulate osteogenic differentiation of hBMSCs by targeting BMP2.
Collapse
Affiliation(s)
- Guo-Ping Zhang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zhang
- Medical Physics Department of Basic Medical College of Hebei Medical University, Shijiazhuang, China
| | - Chao-Hua Zhu
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Lin
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Wang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hai-Jing Zhang
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Li
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Guang Yu
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhen-Shuan Zhao
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Dong
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo-Bin Liu
- Department of Orthopedics, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|