1
|
Fischer EO, Tsukerman A, Machour M, Shuhmaher M, Silverstein A, Yaakov M, Bar-Am O, Debbi L, Levenberg S. Bioprinting Perfusable and Vascularized Skeletal Muscle Flaps for the Treatment of Volumetric Muscle Loss. Adv Healthc Mater 2025; 14:e2404542. [PMID: 39887963 DOI: 10.1002/adhm.202404542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Volumetric muscle loss (VML) refers to muscle tissue loss exceeding 20% within a functional area due to trauma or surgery, often leading to physical disabilities. VML treatment relies on the transplantation of autologous flaps harvested from a healthy-donor site while minimizing the probability of immune rejection. However, this approach often leads to donor-site morbidity and relies on a restricted supply of muscle tissue. Current solutions in tissue engineering focus on engineered grafts lacking hierarchical vasculature with a feeding vessel, thus limited by diffusion. This study expanded upon a new approach of multimodal bioprinting which enabled the fabrication of thick hierarchical vascular muscle flaps composed of bioprinted and vascularized skeletal muscle tissue, and a 3D-printed engineered macrovessel, which successfully repaired VML injury in-vivo. The flaps are implanted by anastomosing the macrovessel via microsurgery to the femoral artery in proximity to an induced VML injury in Sprague-Dawley rat hindlimbs. Immediate perfusion of the flaps is demonstrated, as is flap endurance to physiological blood pressure, flow, and shear stress. Flap implantation enhanced myocyte differentiation, and vascular ingrowth and facilitated tissue viability and integration. These results obtained by utilizing human-origin cells provide a foundation for fabricating patient-specific flaps for the treatment of extensive soft tissue defects.
Collapse
Affiliation(s)
- Eliana O Fischer
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Anna Tsukerman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Interdisciplinary Program for Biotechnology Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Majd Machour
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Margarita Shuhmaher
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Asaf Silverstein
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Yaakov
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Orit Bar-Am
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lior Debbi
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shulamit Levenberg
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
2
|
Xie W, Lin C, Li K, Xiong J, Lei K, Lu C. Unleashing the power of aminated phenolic lignin in strengthening gel-spun high-performance polyacrylonitrile fibers for next-generation UV-resistant textiles. Int J Biol Macromol 2025; 311:143748. [PMID: 40316073 DOI: 10.1016/j.ijbiomac.2025.143748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Lignin has been employed as a bio-based reinforcing additive for polyacrylonitrile (PAN) fibers. However, its interconnected amorphous structure results in poor compatibility within the blending system and disrupts the molecular ordering of PAN polymer chains. These limitations significantly hinder the mechanical performance of PAN-based composite fibers, as well as subsequent textile manufacturing processes and product durability. To enhance the lignin-PAN interaction, improve fibers' mechanical properties, and expand their applicability in functional textiles, this study synthesized aminated phenolic lignin (APL) via a two-step process involving phenolization and amination, using amination reagents with varying chain lengths. Four types of 5 % APL additives were incorporated into gel-spun PAN fibers. Notably, the PAN-based fibers containing 5 % APL synthesized with phenol and diethylenetriamine exhibited optimal mechanical performance, achieving a tensile strength of 241 MPa and a Young's modulus of 8.17 GPa. The resulting composite fibers demonstrated excellent potential for functional fabrics, particularly in UV protection, with an outstanding ultraviolet protection factor (UPF) of 333.95 and a remarkably low T(UV-A) of 2.33 %. This work provides critical insights into the development of high-performance modified lignin/PAN fibers, paving the way for their application in advanced functional textiles.
Collapse
Affiliation(s)
- Wen Xie
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; College of Textiles, Donghua University, Shanghai 201620, China
| | - Canhui Lin
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; College of Textiles, Donghua University, Shanghai 201620, China
| | - Kexin Li
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; College of Textiles, Donghua University, Shanghai 201620, China
| | - Jieyu Xiong
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; College of Textiles, Donghua University, Shanghai 201620, China
| | - Kaiqiang Lei
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; College of Textiles, Donghua University, Shanghai 201620, China
| | - Chunhong Lu
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Maksudov F, Protopopova AD, Litvinov RI, Marx KA, Weisel JW, Barsegov V. Structural Mechanisms of Forced Unfolding of Double-Stranded Fibrin Oligomers. J Phys Chem B 2025; 129:3963-3977. [PMID: 40227118 PMCID: PMC12035854 DOI: 10.1021/acs.jpcb.5c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Fibrin forms a polymeric scaffold of blood clots, which are subjected to deformation in their dynamic environment. The extensible fibrin network allows fibers to stretch without breaking, but the mechanisms of their forced elongation are not understood. We combined atomic force microscopy, computer simulations, and Machine Learning to explore the nanomechanics of double-stranded cross-linked fibrin oligomers (FO). From the experimental force-extension profiles, the median 63 pN unfolding force and median 8.1 nm peak-to-peak distance with corresponding 56 pN and 11.4 nm interquartile ranges indicate substantial scatter due to ∼3-5 nm extension fluctuation of the triple α-helical coiled-coils. From simulations, unraveling of FO is determined by coupled dissociation of the D:D interface, γ-nodules unfolding, and reversible unfolding-refolding of the coiled-coils. These can occur as single structural transitions (60% of the time) or mixed transitions (40% of the time), with an alternating order of strands in which unfolding transitions occur, i.e., if the previous transition takes place in one strand, the next transition occurs in the other strand. The double-stranded FO are less extensible but stiffer and more stable compared with the single-stranded oligomers. These findings provide important insights into the biomechanics and dynamic structural properties of fibrin necessary to understand the (sub)molecular origin of fibrin extensibility.
Collapse
Affiliation(s)
- Farkhad Maksudov
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Anna D. Protopopova
- Department
of Cell and Developmental Biology, University
of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Rustem I. Litvinov
- Department
of Cell and Developmental Biology, University
of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Kenneth A. Marx
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - John W. Weisel
- Department
of Cell and Developmental Biology, University
of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Valeri Barsegov
- Department
of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, United States
| |
Collapse
|
4
|
Xu T, Rao J, Mo Y, Lam ACH, Yang Y, Wong SWF, Wong KH, Zhao X. 3D printing in musculoskeletal interface engineering: Current progress and future directions. Adv Drug Deliv Rev 2025; 219:115552. [PMID: 40032068 DOI: 10.1016/j.addr.2025.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The musculoskeletal system relies on critical tissue interfaces for its function; however, these interfaces are often compromised by injuries and diseases. Restoration of these interfaces is complex by nature which renders traditional treatments inadequate. An emerging solution is three-dimensional printing, which allows for precise fabrication of biomimetic scaffolds to enhance tissue regeneration. This review summarizes the use of 3D printing in creating scaffolds for musculoskeletal interfaces, mainly focusing on advanced techniques such as multi-material printing, bioprinting, and 4D printing. We emphasize the significance of mimicking natural tissue gradients and the selection of appropriate biomaterials to ensure scaffold success. The review outlines state-of-the-art 3D printing technologies, varying from extrusion, inkjet and laser-assisted bioprinting, which are crucial for producing scaffolds with tailored mechanical and biological properties. Applications in cartilage-bone, intervertebral disc, tendon/ligament-bone, and muscle-tendon junction engineering are discussed, highlighting the potential for improved integration and functionality. Furthermore, we address challenges in material development, printing resolution, and the in vivo performance of scaffolds, as well as the prospects for clinical translation. The review concludes by underscoring the transformative potential of 3D printing to advance orthopedic medicine, offering a roadmap for future research at the intersection of biomaterials, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Tianpeng Xu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Jingdong Rao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yongyi Mo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Sidney Wing-Fai Wong
- Industrial Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Gosselin AR, Bargoud CG, Sawalkar A, Mathew S, Toussaint A, Greenen M, Coyle SM, Macor M, Krishnan A, Goswami J, Hanna JS, Tutwiler V. DYSREGULATED CLOT MECHANICS AND KINETICS IMPACTED BY INJURY SEVERITY, PREDICT MORTALITY AFTER TRAUMA. Shock 2025; 63:587-596. [PMID: 39847718 PMCID: PMC12068892 DOI: 10.1097/shk.0000000000002544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
ABSTRACT Introduction: Coagulopathy following traumatic injury impairs stable blood clot formation and exacerbates mortality from hemorrhage. Understanding how these alterations impact blood clot stability is critical to improving resuscitation. Furthermore, the incorporation of machine learning algorithms to assess clinical markers, coagulation assays, and biochemical assays allows us to define the contributions of these factors to mortality. In this study, we aimed to quantify changes in clot formation and mechanics after traumatic injury and their correlation to mortality. Materials and Methods: Plasma was isolated from injured patients upon arrival to the emergency department prior to blood product administration, or procedural intervention. Coagulation kinetics and mechanics of healthy donors and patient plasma were compared with rheological, turbidity and thrombin generation assays. ELISA's were performed to determine tissue plasminogen activator and D-dimer concentration. Recursive elimination with random forest models were used to assess the predictive strength of clinical and laboratory factors. Results: Sixty-three patients were included in the study. Median injury severity score was 17, median age was 38 years, and mortality was 30%. Trauma patients exhibited reduced clot stiffness, increased fibrinolysis, and reduced thrombin generation compared to healthy donors. Deceased patients exhibited the greatest deviation from healthy levels. Fibrinogen, clot stiffness, D-dimer, and tissue plasminogen activator all demonstrated significant correlation to injury severity score. Machine-learning algorithms identified the importance of coagulation kinetics and clot structure on patient outcomes. Conclusions: Rheological markers of coagulopathy and biochemical factors are associated with injury severity and are highly predictive of mortality after trauma, providing evidence for integrated predictive models and therapeutic strategies.
Collapse
Affiliation(s)
- Andrew R. Gosselin
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Christopher G. Bargoud
- Department of Surgery, Division of Acute Care Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Abhishek Sawalkar
- Department of Computer Science, Rutgers University, Piscataway, New Jersey
| | - Shane Mathew
- Department of Surgery, Division of Acute Care Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Ashley Toussaint
- Department of Surgery, Division of Acute Care Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Matthew Greenen
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Susette M. Coyle
- Department of Surgery, Division of Acute Care Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Marie Macor
- Department of Surgery, Division of Acute Care Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Anandi Krishnan
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
- Stanford University School of Medicine, Stanford University, Stanford, California
| | - Julie Goswami
- Department of Surgery, Division of Acute Care Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Rutgers Acute Care Surgery Research Laboratory (RASR), New Brunswick, New Jersey
| | - Joseph S. Hanna
- Department of Surgery, Division of Acute Care Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
- Rutgers Acute Care Surgery Research Laboratory (RASR), New Brunswick, New Jersey
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
6
|
Yoshida A, Baba K, Takahashi H, Nagese K, Shimizu T. One-step fabrication of 3D-aligned human skeletal muscle tissue and measurement of contractile force for preclinical drug testing. Mater Today Bio 2025; 31:101456. [PMID: 39896285 PMCID: PMC11783003 DOI: 10.1016/j.mtbio.2025.101456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Human muscle tissue models are critical to understanding the complex physiology of skeletal muscle in studies of drug discovery, development, and toxicity profiling in the human body. However, due to the challenges in in vitro maturation of human muscle cells, few research groups developing their own tissue engineering techniques have succeeded in producing contractile human muscle tissues. Moreover, a more sophisticated method is necessary to measure contractile forces generated by the muscle tissues for preclinical studies in muscle physiology and drug discovery. Although a few research groups have established their own tissue model systems that measure contractile force, they require multi-step fabrication processes to produce human muscle tissues sufficiently functional to be able to measure the contractile forces. To improve the usability of our tissue model system, this study focused on simplifying the tissue engineering approach to produce a practical muscle tissue model. In this study, muscle satellite cells were simply mixed with a combination of fibrinogen, thrombin, and Matrigel before gel formation. The presence of muscle satellite cells induces gel compaction and spontaneously induces unidirectional stretching of the gel, resulting in the muscle satellite cells being aligned three-dimensionally with the direction of stretching. Furthermore, this gel environment promotes the maturation of the human muscle progenitor cells into aligned myofibers, also provides the tissue with an elastic platform for muscle contraction, and allows the attachment of the muscle tissue to a device for measurement of contractile force. Therefore, this one-step tissue fabrication allowed us to produce 3D-aligned human muscle tissues and this tissue model is ready to use for the measurement of contractile forces. In fact, the muscle contractions created by electrical and chemical stimulation were quantitatively determined using our measurement system. In addition, the impact of some representative drugs on this muscle tissue were able to be monitored in real-time throughout the changes in contractile forces. In conclusion, our tissue model system, produced by a simple fabrication method, can be used for preclinical in vitro studies in muscle physiology and drug discovery.
Collapse
Affiliation(s)
- Azumi Yoshida
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kazuki Baba
- Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kenichi Nagese
- Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
- Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| |
Collapse
|
7
|
Elbaz U, Berliner O, Tabo S, Yeshayahu S, Kesner R, Cohen‐Gerassi D, Adler‐Abramovich L, Halperin‐Sternfeld M, Aviv M. In Vitro Evaluation of a Semi-Autologous Fibrin Sealant for Surgical Applications. Macromol Biosci 2025; 25:e2400165. [PMID: 39973579 PMCID: PMC11995841 DOI: 10.1002/mabi.202400165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 01/31/2025] [Indexed: 02/21/2025]
Abstract
Surgical success relies on precise tissue approximation using sutures, clips, or staples. Fibrin sealant provides a user-friendly alternative, saving time and maintaining tissue integrity. Yet, its cost and potential bioburden risk are notable drawbacks. To address these concerns, a semi-autologous fibrin sealant is produced from human cryoprecipitate and compared it to a commercial fibrin sealant. The microstructure of the semi-autologous sealant closely resembles the commercial one. Initially, the commercial sealant has superior bonding strength, however, over time, both demonstrate strong adhesive properties. Moreover, when the two sealants contain equivalent fibrinogen concentrations, they show similar bonding strength and rheological properties, including thixotropic behavior, which is essential for their application as bioadhesives. Notably, it is discovered that the mechanical properties of the adhesive are mainly governed by the fibrinogen concentration, with minimal impact of other blood components. This understanding paves the way for the development of an efficient method to boost fibrinogen in blood without extensive separation. This study indicates semi-autologous fibrin glue matches commercial sealant in adhesive properties. This may offer several advantages, such as reduced bioburden, costs, improved immunomodulation, and reduced hypersensitivity and virus transmission risks. These findings hold promising prospects for enhancing the wound healing process in various medical conditions.
Collapse
Affiliation(s)
- Uri Elbaz
- Ophthalmology DivisionRabin Medical CenterPetah‐Tikva4941492Israel
- Ophthalmology ClinicSchneider Children's Medical Center of IsraelPetah Tikva4920235Israel
- School of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Ori Berliner
- Ophthalmology DivisionRabin Medical CenterPetah‐Tikva4941492Israel
- Ophthalmology ClinicSchneider Children's Medical Center of IsraelPetah Tikva4920235Israel
- School of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Shavit Tabo
- School of Medical EngineeringAfeka Tel Aviv Academic College of EngineeringTel Aviv6910717Israel
| | - Shani Yeshayahu
- School of Medical EngineeringAfeka Tel Aviv Academic College of EngineeringTel Aviv6910717Israel
| | - Reut Kesner
- School of Medical EngineeringAfeka Tel Aviv Academic College of EngineeringTel Aviv6910717Israel
| | - Dana Cohen‐Gerassi
- Department of Materials Science and EngineeringIby and Aladar Fleischman Faculty of EngineeringTel Aviv UniversityTel Aviv6997801Israel
- Department of Oral BiologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyThe Center for the Physics and Chemistry of Living SystemsTel Aviv UniversityTel Aviv6997801Israel
| | - Lihi Adler‐Abramovich
- Department of Oral BiologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyThe Center for the Physics and Chemistry of Living SystemsTel Aviv UniversityTel Aviv6997801Israel
| | - Michal Halperin‐Sternfeld
- Department of Oral BiologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyThe Center for the Physics and Chemistry of Living SystemsTel Aviv UniversityTel Aviv6997801Israel
- Department of PeriodontologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - Moran Aviv
- Department of Oral BiologyThe Goldschleger School of Dental MedicineFaculty of Medical & Health SciencesTel Aviv UniversityTel Aviv6997801Israel
- The Center for Nanoscience and NanotechnologyThe Center for the Physics and Chemistry of Living SystemsTel Aviv UniversityTel Aviv6997801Israel
- School of Mechanical EngineeringAfeka Tel Aviv Academic College of EngineeringTel Aviv6910717Israel
| |
Collapse
|
8
|
Nencini F, Giurranna E, Borghi S, Taddei N, Fiorillo C, Becatti M. Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function. Antioxidants (Basel) 2025; 14:390. [PMID: 40298646 PMCID: PMC12024030 DOI: 10.3390/antiox14040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Fibrinogen, a pivotal plasma glycoprotein, plays an essential role in hemostasis by serving as the precursor to fibrin, which forms the structural framework of blood clots. Beyond coagulation, fibrinogen influences immune responses, inflammation, and tissue repair. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) and antioxidants, induces fibrinogen oxidation, significantly altering its structure and function. This narrative review synthesizes findings from in vitro, ex vivo, and clinical studies, emphasizing the impact of fibrinogen oxidation on clot formation, architecture, and degradation. Oxidative modifications result in denser fibrin clots with thinner fibers, reduced permeability, and heightened resistance to fibrinolysis. These structural changes exacerbate prothrombotic conditions in cardiovascular diseases, diabetes, chronic inflammatory disorders and cancer. In contrast, "low-dose" oxidative stress may elicit protective adaptations in fibrinogen, preserving its function. The review also highlights discrepancies in experimental findings due to variability in oxidation protocols and patient conditions. Understanding the interplay between oxidation and fibrinogen function could unveil therapeutic strategies targeting oxidative stress. Antioxidant therapies or selective inhibitors of detrimental oxidation hold potential for mitigating thrombotic risks. However, further research is essential to pinpoint specific fibrinogen oxidation sites, clarify their roles in clot dynamics, and bridge the gap between basic research and clinical practice.
Collapse
|
9
|
Gu B, Hou J, Filla N, Li H, Wang X. Rupture mechanics of blood clot fibrin fibers: A coarse-grained model study. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2025; 196:105998. [PMID: 39734807 PMCID: PMC11674026 DOI: 10.1016/j.jmps.2024.105998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Thrombosis, when occurring undesirably, disrupts normal blood flow and poses significant medical challenges. As the skeleton of blood clots, fibrin fibers play a vital role in the formation and fragmentation of blood clots. Thus, studying the deformation and fracture characteristics of fibrin fiber networks is the key factor to solve a series of health problems caused by thrombosis. This study employs a coarse-grained model of fibrin fibers to investigate the rupture dynamics of fibrin fiber networks. We propose a new method for generating biomimetic fibrin fiber networks to simulate their spatial geometry in blood clots. We examine the mechanical characteristics and rupture behaviors of fibrin fiber networks under various conditions, including fiber junction density, fiber tortuosity, fiber strength, and the strain limit of single fiber rupture in both tension and simple shear cases. Our findings indicate that the stress-strain relationship of the fibrin fiber network follows a similar pattern to that of individual fibers, characterized by a shortened entropy stretching phase and an extended transition phase. Fiber junction density, fiber strength, and single fiber rupture limit predominantly influence the stress of the network, while fiber tortuosity governs the strain behavior. The availability of more fibers in shear cases to bear the load results in delayed rupture compared to tension cases. With consideration of different factors of fibrin fibers in networks, this work provides a more realistic description of the mechanical deformation process in fibrin fiber networks, offering new insights into their rupture and failure mechanisms. These findings could inspire novel approaches and methodologies for understanding the fracture of fibrin networks during a surgical thrombectomy.
Collapse
Affiliation(s)
- Beikang Gu
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Jixin Hou
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Nicholas Filla
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Xianqiao Wang
- School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
10
|
Lesko L, Jungova P, Culenova M, Thurzo A, Danisovic L. Polymer-Based Scaffolds as an Implantable Material in Regenerative Dentistry: A Review. J Funct Biomater 2025; 16:80. [PMID: 40137359 PMCID: PMC11943271 DOI: 10.3390/jfb16030080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Polymer-based scaffolds have emerged as transformative materials in regenerative dentistry, enabling the restoration and replacement of dental tissues through tissue engineering approaches. These scaffolds, derived from natural and synthetic polymers, mimic the extracellular matrix to promote cellular attachment, proliferation, and differentiation. Natural polymers such as collagen, chitosan, and alginate offer biocompatibility and bioactivity, while synthetic alternatives like polylactic acid (PLA) and polycaprolactone (PCL) provide tunable mechanical properties and degradation rates. Recent advancements highlight the integration of bioactive molecules and nanotechnology to enhance the regenerative potential of these materials. Furthermore, developing hybrid scaffolds combining natural and synthetic polymers addresses biocompatibility and mechanical strength challenges, paving the way for patient-specific treatments. Innovations in 3D bioprinting and stimuli-responsive biomaterials are expected to refine scaffold design further, improving therapeutic precision and clinical outcomes. This review underscores the critical role of polymer-based scaffolds in advancing regenerative dentistry, focusing on their applications, advantages, and limitations.
Collapse
Affiliation(s)
- Lubos Lesko
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
| | - Petra Jungova
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, Dvořákovo nábrežie 4, 811 02 Bratislava, Slovakia; (P.J.); (A.T.)
| | - Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
| | - Andrej Thurzo
- Department of Orthodontics, Regenerative and Forensic Dentistry, Faculty of Medicine, Comenius University in Bratislava, Dvořákovo nábrežie 4, 811 02 Bratislava, Slovakia; (P.J.); (A.T.)
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.)
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
| |
Collapse
|
11
|
Zohravi E, Moreno N, Hawkins K, Curtis D, Ellero M. Mesoscale modelling of fibrin clots: the interplay between rheology and microstructure at the gel point. SOFT MATTER 2025; 21:1141-1151. [PMID: 39812612 DOI: 10.1039/d4sm01126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study presents a numerical model for incipient fibrin-clot formation that captures characteristic rheological and microstructural features of the clot at the gel point. Using a mesoscale-clustering framework, we evaluate the effect of gel concentration or gel volume fraction and branching on the fractal dimension, the gel time, and the viscoelastic properties of the clots. We show that variations in the gel concentration of our model can reproduce the effect of thrombin in the formation of fibrin clots. In particular, the model reproduces the fractal dimension's dependency on gel concentration and the trends in elasticity and gelation time with varying thrombin concentrations. This approach allows us to accurately recreate the gelation point of fibrin-thrombin gels, highlighting the intricate process of fibrin polymerization and gel network formation. This is critical for applications in the clinical and bioengineering fields where precise control over the gelation process is required.
Collapse
Affiliation(s)
- Elnaz Zohravi
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, Bilbao 48009, Spain.
| | - Nicolas Moreno
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, Bilbao 48009, Spain.
| | - Karl Hawkins
- Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Daniel Curtis
- Complex Fluids Research Group, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Marco Ellero
- Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, Bilbao 48009, Spain.
- Complex Fluids Research Group, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
- IKERBASQUE, Basque Foundation for Science, Calle de Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
12
|
Chung N, Yang C, Yang H, Shin J, Song CY, Min H, Kim JH, Lee K, Lee JR. Local delivery of platelet-derived factors mitigates ischemia and preserves ovarian function through angiogenic modulation: A personalized regenerative strategy for fertility preservation. Biomaterials 2025; 313:122768. [PMID: 39232332 DOI: 10.1016/j.biomaterials.2024.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
As the most prominent and ideal modality in female fertility preservation, ovarian tissue cryopreservation, and transplantation often confront the challenge of ischemic damage and follicular loss from avascular transplantation. To surmount this impediment, we engineered a novel platelet-derived factors-encapsulated fibrin hydrogel (PFH), a paradigmatic biomaterial. PFH encapsulates autologous platelet-derived factors, utilizing the physiological blood coagulation cascade for precise local delivery of bioactive molecules. In our study, PFH markedly bolstered the success of avascular ovarian tissue transplantation. Notably, the quantity and quality of follicles were preserved with improved neovascularization, accompanied by decreased DNA damage, increased ovulation, and superior embryonic development rates under a Low-concentration Platelet-rich plasma-derived factors encapsulated fibrin hydrogel (L-PFH) regimen. At a stabilized point of tissue engraftment, gene expression analysis mirrored normal ovarian tissue profiles, underscoring the effectiveness of L-PFH in mitigating the initial ischemic insult. This autologous blood-derived biomaterial, inspired by nature, capitalizes on the blood coagulation cascade, and combines biodegradability, biocompatibility, safety, and cost-effectiveness. The adjustable properties of this biomaterial, even in injectable form, extend its potential applications into the broader realm of personalized regenerative medicine. PFH emerges as a promising strategy to counter ischemic damage in tissue transplantation, signifying a broader therapeutic prospect. (197 words).
Collapse
Affiliation(s)
- Nanum Chung
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chungmo Yang
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heeseon Yang
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Jungwoo Shin
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Chae Young Song
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyewon Min
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 13496, Republic of Korea.
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Ryeol Lee
- Department of Translational Medicines, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
13
|
Hiepen C, Benamar M, Barrasa-Fano J, Condor M, Ilhan M, Münch J, Hastar N, Kerkhoff Y, Harms GS, Mielke T, Koenig B, Block S, Rocks O, Abdelilah-Seyfried S, Van Oosterwyck H, Knaus P. Endothelial tip-cell position, filopodia formation and biomechanics require BMPR2 expression and signaling. Commun Biol 2025; 8:21. [PMID: 39779836 PMCID: PMC11711618 DOI: 10.1038/s42003-024-07431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs). Targeting of Bmpr2 reduced sprouting angiogenesis in zebrafish and BMPR2-deficient human ECs formed fewer filopodia, affecting cell migration and actomyosin localization. Spheroid assays revealed a reduced sprouting of BMPR2-deficient ECs in fibrin gels. Even more strikingly, in mosaic spheroids, BMPR2-deficient ECs failed to acquire tip-cell positions. Yet, 3D traction force microscopy revealed that these distinct cell behaviors of BMPR2-deficient tip cells cannot be explained by differences in force-induced matrix deformations, even though these cells adopted distinct cone-shaped morphologies. Notably, BMPR2 positively regulates local CDC42 activity at the plasma membrane to promote filopodia formation. Our findings reveal that BMPR2 functions as a nexus integrating biochemical and biomechanical processes crucial for TCs during angiogenesis.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
- Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany.
| | - Mounir Benamar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mar Condor
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mustafa Ilhan
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Berlin School of Integrative Oncology, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Juliane Münch
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Nurcan Hastar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Gregory S Harms
- Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Cell Biology Unit, Imaging Core Facility and the Research Center for Immune Intervention, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Thorsten Mielke
- Max-Planck-Institute for Molecular Genetics, Microscopy & Cryo-Electron Microscopy, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Benjamin Koenig
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Stephan Block
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Oliver Rocks
- Charité - Universitätsmedizin Berlin, Systemic Cell Dynamics, Charitéplatz 1, 10117, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
- KU Leuven, Prometheus Division of Skeletal Tissue Engineering, Leuven, Belgium
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
14
|
Hughes MDG, Cook KR, Cussons S, Boroumand A, Tyler AII, Head D, Brockwell DJ, Dougan L. Capturing Dynamic Assembly of Nanoscale Proteins During Network Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407090. [PMID: 39533485 PMCID: PMC11707584 DOI: 10.1002/smll.202407090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The structural evolution of hierarchical structures of nanoscale biomolecules is crucial for the construction of functional networks in vivo and in vitro. Despite the ubiquity of these networks, the physical mechanisms behind their formation and self-assembly remains poorly understood. Here, this study uses photochemically cross-linked folded protein hydrogels as a model biopolymer network system, with a combined time-resolved rheology and small-angle x-ray scattering (SAXS) approach to probe both the load-bearing structures and network architectures respectively thereby providing a cross-length scale understanding of the network formation. Combining SAXS, rheology, and kinetic modeling, a dual formation mechanism consisting of a primary formation phase is proposed, where monomeric folded proteins create the preliminary protein network scaffold; and a subsequent secondary formation phase, where both additional intra-network cross-links form and larger oligomers diffuse to join the preliminary network, leading to a denser more mechanically robust structure. Identifying this as the origin of the structural and mechanical properties of protein networks creates future opportunities to understand hierarchical biomechanics in vivo and develop functional, designed-for-purpose, biomaterials.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Kalila R Cook
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Sophie Cussons
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Ahmad Boroumand
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Arwen I I Tyler
- School of Food Science and NutritionFaculty of EnvironmentUniversity of LeedsLeedsLS2 9JTUK
| | - David Head
- School of Computer ScienceFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - David J Brockwell
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Lorna Dougan
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
15
|
Mina N, Guido VS, Prezoto BC, Oliva MLV, Sousa AA. How Dendrimers Impact Fibrin Clot Formation, Structure, and Properties. ACS OMEGA 2024; 9:51306-51319. [PMID: 39758662 PMCID: PMC11696396 DOI: 10.1021/acsomega.4c08120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/08/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025]
Abstract
Polyamidoamine (PAMAM) dendrimers, with their unique structural versatility and tunable surface functionalities, have emerged as promising nanomaterials for a wide range of biomedical applications. However, their in vivo use raises concerns, as unintended interactions between dendrimers and blood components could disrupt the delicate hemostatic balance and lead to serious complications like bleeding or thrombosis. In this study, we explored the impact of low-generation PAMAM dendrimers on the kinetics of fibrin clot formation, along with their influence on the structure, properties, and resistance to lysis of the resulting clots. For this purpose, we employed a multilevel characterization approach using purified fibrinogen, human plasma, and whole blood to assess the effects of four dendrimer types: G2-NH2, G4-NH2, G3.5-COOH, and G4-OH. Among the main findings, both G2-NH2 and G4-NH2 significantly impaired thrombin generation and delayed clot formation, with G4-NH2 also promoting fibrin aggregation, increasing clot permeability, and accelerating clot lysis. When present at high concentrations, G4-OH also affected critical clotting parameters, delaying thrombin generation and prolonging clotting time. Notably, the prolongation of clotting time by G4-OH was evident in both human plasma and whole blood. Interestingly, G3.5-COOH showed potential as a safer option since it induced minimal alterations across most tested metrics. These results will be important for guiding the rational design of dendrimers and identifying safe concentrations for future clinical applications.
Collapse
Affiliation(s)
- Natasha Mina
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, SP 04044-020, Brazil
| | - Vinicius S. Guido
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, SP 04044-020, Brazil
| | - Benedito C. Prezoto
- Laboratory
of Pharmacology, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Maria Luiza V. Oliva
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, SP 04044-020, Brazil
| | - Alioscka A. Sousa
- Department
of Biochemistry, Federal University of São
Paulo, São
Paulo, SP 04044-020, Brazil
| |
Collapse
|
16
|
Ramanujam RK, Maksudov F, Risman RA, Litvinov RI, Weisel JW, Bassani JL, Barsegov V, Purohit PK, Tutwiler V. Rupture mechanics of blood clots: Influence of fibrin network structure on the rupture resistance. Acta Biomater 2024; 190:329-343. [PMID: 39395704 PMCID: PMC12068891 DOI: 10.1016/j.actbio.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Embolization is a leading cause of mortality, yet we know little about clot rupture mechanics. Fibrin provides the main structural and mechanical stability to blood clots. Previous studies have shown that altering the concentration of coagulation activators (thrombin or tissue factor (TF)) has a significant impact on fibrin structure and viscoelastic properties, but their effects on rupture properties are mostly unknown. Toughness, which corresponds to the ability to resist rupture, is independent of viscoelastic properties. We used varying TF concentrations to alter the structure and toughness of human plasma clots. We performed single-edge notch rupture tests to examine fibrin toughness under a constant strain rate and we assessed viscoelastic mechanics using rheology. We utilized fluorescent confocal and scanning electron microscopy (SEM) to quantify the fibrin network structure under varying TF concentrations. Our results revealed that increased TF concentration resulted in increased number of fibrin fibers with a reduction in network pore size, thinner and shorter fibrin fibers. Increasing TF concentration yielded a maximum toughness at mid-TF concentration, such that fibrin diameter and number of fibers underlie a complex role in influencing the rupture resistance of blood clots, resulting in a nonmonotonic relationship between TF and toughness. A simple mechanical model, built on our findings from our Fluctuating Spring (FS) computational model, adopted to estimate the fracture toughness (critical energy release rate) as a function of TF predicts trends that are in good agreement with experiments. The differences in mechanical responses point to the importance of studying the structure-function relationships of fibrin networks, which may be predictive of the tendency for embolization. STATEMENT OF SIGNIFICANCE: Fibrin, a naturally occurring biomaterial, is the main mechanical and structural scaffold of blood clots that provides the necessary strength and stability to the clot, ensuring effective stemming of bleeding. The rupture of blood clots can result in the blockage of downstream vessels thereby blocking blood flow and oxygen supply. The fibrin network structure has been shown to influence the viscoelastic mechanical properties of clots, but has not been explored for fracture mechanics. Here, we modulate the fibrin network structure by varying the concentration of Tissue Factor (TF). Interestingly, the association between TF concentration and maximum toughness of the clots is non-monotonic. The variations in mechanical responses highlight the importance of studying the structure-function relationships of fibrin networks, as these may predict the tendency for embolization.
Collapse
Affiliation(s)
| | - Farkhad Maksudov
- Department of Chemistry, University of Massachusetts Lowell, MA, USA
| | - Rebecca A Risman
- Department of Biomedical Engineering, Rutgers University, NJ, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania, PJ, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, PJ, USA
| | - John L Bassani
- Department of Cell and Developmental Biology, University of Pennsylvania, PJ, USA
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts Lowell, MA, USA
| | - Prashant K Purohit
- Department of Cell and Developmental Biology, University of Pennsylvania, PJ, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, NJ, USA.
| |
Collapse
|
17
|
Rector Iv JA, McBride L, Weber CM, Grossman K, Sorets A, Ventura-Antunes L, Holtz I, Young K, Schrag M, Lippmann ES, Bellan LM. Fabrication of endothelialized capillary-like microchannel networks using sacrificial thermoresponsive microfibers. Biofabrication 2024; 17:015023. [PMID: 39401530 PMCID: PMC11575475 DOI: 10.1088/1758-5090/ad867d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/28/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
In the body, capillary beds fulfill the metabolic needs of cells by acting as the sites of diffusive transport for vital gasses and nutrients. In artificial tissues, replicating the scale and complexity of capillaries has proved challenging, especially in a three-dimensional context. In order to better develop thick artificial tissues, it will be necessary to recreate both the form and function of capillaries. Here we demonstrate a top-down method of patterning hydrogels using sacrificial templates formed from thermoresponsive microfibers whose size and architecture approach those of natural capillaries. Within the resulting microchannels, we cultured endothelial monolayers that remain viable for over three weeks and exhibited functional barrier properties. Additionally, we cultured endothelialized microchannels within hydrogels containing fibroblasts and characterized the viability of the co-cultures to demonstrate this approach's potential when applied to cell-laden hydrogels. This method represents a step forward in the evolution of artificial tissues and a path towards producing viable capillary-scale microvasculature for engineered organs.
Collapse
Affiliation(s)
- John A Rector Iv
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Lucas McBride
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Callie M Weber
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Kira Grossman
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Alexander Sorets
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Lissa Ventura-Antunes
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Isabella Holtz
- Department of Cognitive Studies, Vanderbilt University, Nashville, TN, United States of America
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, United States of America
| | - Katherine Young
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Matthew Schrag
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - Leon M Bellan
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
18
|
Li Q, Ye J, Li Z, Xiao Q, Tan S, Hu B, Jin H. The role of neutrophils in tPA thrombolysis after stroke: a malicious troublemaker. Front Immunol 2024; 15:1477669. [PMID: 39606238 PMCID: PMC11598929 DOI: 10.3389/fimmu.2024.1477669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Acute ischemic stroke represents a critical, life-threatening condition affecting the central nervous system. Intravenous thrombolysis with tissue plasminogen activator (tPA) remains a cornerstone for achieving vascular recanalization in such patients; however, its therapeutic utility is limited, with only approximately 10% of patients benefiting due to the narrow therapeutic window and significant risk of hemorrhagic transformation. Enhancing the efficacy of tPA thrombolysis is therefore imperative. Neutrophils have been identified as key modulators of thrombolytic outcomes, interacting with tPA post-stroke to influence treatment effectiveness. The binding of tPA to low-density lipoprotein receptor-related protein 1 (LRP-1) on neutrophil surfaces induces degranulation and formation of neutrophil extracellular traps (NETs). Conversely, neutrophils impede the thrombolytic action of tPA by obstructing its interaction with fibrin and activating platelets. These findings suggest that targeting neutrophils may hold promise for improving thrombolysis outcomes. This review explores the role of neutrophils in tPA-mediated thrombolysis following acute ischemic stroke, examines neutrophil-associated biomarkers, and outlines potential strategies for enhancing tPA efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Ku JC, Pan H, Abd GM, Richter DM, Minor A, Sawyer RG, Li Y. Blood Clots Used as Natural Biomaterials for Antibiotic Delivery in Vitro. J Surg Res 2024; 303:224-232. [PMID: 39374565 DOI: 10.1016/j.jss.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/06/2024] [Accepted: 09/08/2024] [Indexed: 10/09/2024]
Abstract
INTRODUCTION The search for an optimal drug delivery system capable of addressing a wide range of wounds and defects in regenerative medicine remains a challenge. Blood clots (BCs) have been implicated as a promising candidate due to their natural occurrence, autologous nature, and potential for tissue repair. The aim of this study is to investigate BC as a vehicle for antibiotic delivery and its effectiveness in infection control. METHODS BCs derived from murine and porcine models were used to study the in vitro release of gentamicin and vancomycin over a 7-d period. Moreover, BCs conjugated with mesenchymal stem cells and these antibiotics were assessed for antimicrobial activity via microdilution and agar well diffusion, and quantification of vascular endothelial growth factor release through enzyme-linked immunosorbent assay. RESULTS Conjugated BCs maintained a sustained release of gentamicin and vancomycin throughout the 7-d period. Functional tests confirmed antimicrobial activity with zones of inhibition comparable to antibiotic controls. Vascular endothelial growth factor quantification revealed a pronounced and sustained release, especially from BCs conjugated with male mesenchymal stem cells, suggesting a gender influence on therapeutic outcomes. This sex-specific variance underscores the need for tailored therapeutic approaches in regenerative medicine applications. CONCLUSIONS We demonstrated the remarkable potential of BC as a drug delivery system through sustained antibiotic and growth factor release, both of which are key in preventing infection and promoting tissue regeneration. The ease and cost effectiveness of BC preparation as well as its favorable federal regulatory profile support the potential translational application of BCs as a natural biomaterial in regenerative medicine.
Collapse
Affiliation(s)
- Jennifer C Ku
- Medical Student, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Haiying Pan
- Department of Biomedical Engineering, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Genevieve M Abd
- Department of Biomedical Engineering, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - David M Richter
- Medical Student, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Ashley Minor
- Medical Student, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Robert G Sawyer
- Department of Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan
| | - Yong Li
- Department of Biomedical Engineering, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, Michigan.
| |
Collapse
|
20
|
Wang Z, Li W, Fan Y, Xiao C, Shi Z, Chang Y, Liang G, Liu C, Zhu Z, Yu P, Yang X, Song Z, Ning C. Localized Surface Plasmon Resonance-Enhanced Photocatalytic Antibacterial of In Situ Sprayed 0D/2D Heterojunction Composite Hydrogel for Treating Diabetic Wound. Adv Healthc Mater 2024; 13:e2303836. [PMID: 38507269 PMCID: PMC11582506 DOI: 10.1002/adhm.202303836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Chronic diabetic wounds pose significant challenges due to uncontrolled bacterial infections, prolonged inflammation, and impaired angiogenesis. The rapid advancement of photo-responsive antibacterial therapy shows promise in addressing these complex issues, particularly utilizing 2D heterojunction materials, which offer unique properties. Herein, an in situ sprayed Bi/BiOCl 0D/2D heterojunction composite fibrin gel with the characteristics of rapid formation and effective near-infrared activation is designed for the treatment of non-healing diabetes-infected wounds. The sprayed composite gel can provide protective shielding for skin tissues and promote endothelial cell proliferation, vascularization, and angiogenesis. The Bi/BiOCl 0D/2D heterojunction, with its localized surface plasmon resonance (LSPR), can overcome the wide bandgap limitation of BiOCl, enhancing the generation of local heat and reactive oxygen species under near-infrared irradiation. This facilitates bacterial elimination and reduced inflammation, supporting the accelerated healing of diabetes-infected wounds. This study underscores the potential of LSPR-enhanced heterojunctions as advanced wound therapies for chronic diabetic wounds.
Collapse
Affiliation(s)
- Zhengao Wang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Wei Li
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Youzhun Fan
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Cairong Xiao
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yunbing Chang
- Department of OrthopedicsGuangdong Provincial People's HospitalGuangzhou510080P.R. China
| | - Guoyan Liang
- Department of OrthopedicsGuangdong Provincial People's HospitalGuangzhou510080P.R. China
| | - Chengli Liu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Zurong Zhu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Peng Yu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Xuebin Yang
- Biomaterials and Tissue Engineering GroupSchool of DentistryUniversity of LeedsLeedsLS97TFUK
| | - Zhiguo Song
- School of Materials Science and EngineeringKunming University of Science and TechnologyKunming650093P.R. China
| | - Chengyun Ning
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510006P. R. China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| |
Collapse
|
21
|
Helms CC. Variability in individual native fibrin fiber mechanics. Phys Biol 2024; 21:066003. [PMID: 39433274 DOI: 10.1088/1478-3975/ad899f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Fibrin fibers are important structural elements in blood coagulation. They form a mesh network that acts as a scaffold and imparts mechanical strength to the clot. A review of published work measuring the mechanics of fibrin fibers reveals a range of values for fiber extensibility. This study investigates fibrinogen concentration as a variable responsible for variability in fibrin mechanics. It expands previous work to describe the modulus, strain hardening, extensibility, and the force required for fiber failure when fibers are formed with different fibrinogen concentrations using lateral force atomic force microscopy. Analysis of the mechanical properties showed fibers formed from 1 mg ml-1and 2 mg ml-1fibrinogen had significantly different mechanical properties. To help clarify our findings we developed two behavior profiles to describe individual fiber mechanics. The first describes a fiber with low initial modulus and high extensible, that undergoes significant strain hardening, and has moderate strength. Most fibers formed with 1 mg ml-1fibrinogen had this behavior profile. The second profile describes a fiber with a high initial modulus, minimal strain hardening, high strength, and low extensibility. Most fibrin fibers formed with 2 mg ml-1fibrinogen were described by this second profile. In conclusion, we see a range of behaviors from fibers formed from native fibrinogen molecules but various fibrinogen concentrations. Potential differences in fiber formation are investigated with SEM. It is likely this range of behaviors also occursin vivo. Understanding the variability in mechanical properties could contribute to a deeper understanding of pathophysiology of coagulative disorders.
Collapse
Affiliation(s)
- Christine C Helms
- Department of Physics, University of Richmond, Richmond, VA 23235, United States of America
| |
Collapse
|
22
|
Strunk T, Joshi A, Moeinkhah M, Renzelmann T, Dierker L, Grotheer D, Graupner N, Müssig J, Brüggemann D. Structure, Properties and Degradation of Self-Assembled Fibrinogen Nanofiber Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:6186-6200. [PMID: 39226515 PMCID: PMC11409215 DOI: 10.1021/acsabm.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Self-assembled fibrinogen nanofibers are promising candidates for skin tissue engineering due to their biocompatibility and ability to mimic the native blood clot architecture. Here, we studied the structure-property relationship and degradation of rehydrated fibrinogen nanofibers prepared by salt-induced self-assembly, focusing on the effect of scaffold layering, cross-linking time and freeze-drying. Optimal fiber stability was achieved with cross-linking by formaldehyde (FA) vapor, while treatment with liquid aldehydes, genipin, EDC, and transglutaminase failed to preserve the nanofibrous architecture upon rehydration. Scaffold layering did not significantly influence the mechanical properties but changed the scaffold architecture, with bulk fiber scaffolds being more compact than layered scaffolds. Freeze-drying maintained the mechanical properties and interconnected pore network with average pore diameters around 20 μm, which will enhance the storage stability of self-assembled fibrinogen scaffolds. Varying cross-linking times altered the scaffold mechanics without affecting the swelling behavior, indicating that scaffold hydration can be controlled independently of the mechanical characteristics. Cross-linking times of 240 min increased scaffold stiffness and decreased elongation, while 30 min resulted in mechanical properties similar to native skin. Cross-linking for 120 min was found to reduce scaffold degradation by various enzymes in comparison to 60 min. Overall, after 35 days of incubation, plasmin and a combination of urokinase and plasminogen exhibited the strongest degradative effect, with nanofibers being more susceptible to enzymatic degradation than planar fibrinogen due to their higher specific surface area. Based on these results, self-assembled fibrinogen fiber scaffolds show great potential for future applications in soft tissue engineering that require controlled structure-function relationships and degradation characteristics.
Collapse
Affiliation(s)
- Till Strunk
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Arundhati Joshi
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Mahta Moeinkhah
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Timon Renzelmann
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Lea Dierker
- Hochschule
Bremen − City University of Applied Sciences, Neustadtswall 30, 28199 Bremen, Germany
| | - Dietmar Grotheer
- Chemical
Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Nina Graupner
- HSB
− City University of Applied Sciences, Department of Biomimetics, The Biological Materials Group, Neustadtswall 30, 28199 Bremen, Germany
| | - Jörg Müssig
- HSB
− City University of Applied Sciences, Department of Biomimetics, The Biological Materials Group, Neustadtswall 30, 28199 Bremen, Germany
| | - Dorothea Brüggemann
- Institute
for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, 28359 Bremen, Germany
| |
Collapse
|
23
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
24
|
Nieto-Fabregat F, Lenza MP, Marseglia A, Di Carluccio C, Molinaro A, Silipo A, Marchetti R. Computational toolbox for the analysis of protein-glycan interactions. Beilstein J Org Chem 2024; 20:2084-2107. [PMID: 39189002 PMCID: PMC11346309 DOI: 10.3762/bjoc.20.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Protein-glycan interactions play pivotal roles in numerous biological processes, ranging from cellular recognition to immune response modulation. Understanding the intricate details of these interactions is crucial for deciphering the molecular mechanisms underlying various physiological and pathological conditions. Computational techniques have emerged as powerful tools that can help in drawing, building and visualising complex biomolecules and provide insights into their dynamic behaviour at atomic and molecular levels. This review provides an overview of the main computational tools useful for studying biomolecular systems, particularly glycans, both in free state and in complex with proteins, also with reference to the principles, methodologies, and applications of all-atom molecular dynamics simulations. Herein, we focused on the programs that are generally employed for preparing protein and glycan input files to execute molecular dynamics simulations and analyse the corresponding results. The presented computational toolbox represents a valuable resource for researchers studying protein-glycan interactions and incorporates advanced computational methods for building, visualising and predicting protein/glycan structures, modelling protein-ligand complexes, and analyse MD outcomes. Moreover, selected case studies have been reported to highlight the importance of computational tools in studying protein-glycan systems, revealing the capability of these tools to provide valuable insights into the binding kinetics, energetics, and structural determinants that govern specific molecular interactions.
Collapse
Affiliation(s)
- Ferran Nieto-Fabregat
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Maria Pia Lenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Angela Marseglia
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Italy
| |
Collapse
|
25
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Peng Q, Zhu J, Ren X. Thromboelastogram and coagulation function index: relevance for female breast cancer. Front Oncol 2024; 14:1342439. [PMID: 39087022 PMCID: PMC11288955 DOI: 10.3389/fonc.2024.1342439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Screening and postoperative intervention of breast tumors are critical for the effective diagnosis and treatment of disease development, and reliable diagnostic/screening methods become a key link. Objective Thromboelastogram (TEG), routine platelet (PLT) count, and the coagulation function indicators in patients with different breast diseases were determined and analyzed to explore their predictive value in secondary bleeding disorders. Methods A total of 131 patients with breast diseases, admitted to Jiangsu University Affiliated Hospital from January 2019 to December 2022, were selected as the research subjects. The detection items were analyzed using the receiver operating curve (ROC) after grouping for secondary bleeding disorders of patients with breast cancer. Results The reaction (R) and the coagulation (K) times were lower in the malignant breast disease group, while the coagulation angle (α), maximum amplitude (MA), coagulation index (CI), fibrinogen (FIB), and D-dimer (D-D) were higher than those in the benign breast disease group. The t-tests proved that the MA and FIB values were statistically significant (p < 0.05) in the benign and malignant breast disease groups. The R and K in patients with breast diseases were positively correlated with the activated partial thromboplastin time (aPTT) and D-D, but were negatively correlated with PLT. The α angle was negatively correlated with aPTT and D-D, but was positively correlated with PLT. The MA for PLT function was positively correlated with FIB and PLT. CI was negatively correlated with aPTT, thrombin time (TT), and D-D, but was positively correlated with PLT. ROC curve analysis showed that the CI and α angle had a significant predictive value, whereas the correlation of the other indicators was relatively low. Conclusion Coagulation tests showed significant differences in patients with breast cancer, differing from those with benign breast diseases. TEG combined with conventional coagulation indicators is potentially valuable for the prediction of secondary bleeding disorders in patients with breast cancer.
Collapse
Affiliation(s)
- Qiongle Peng
- Department of Blood Transfusion, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinmei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaoling Ren
- Department of Medical Laboratory, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| |
Collapse
|
27
|
Lammers A, Hsu HH, Sundaram S, Gagnon KA, Kim S, Lee JH, Tung YC, Eyckmans J, Chen CS. Rapid Tissue Perfusion Using Sacrificial Percolation of Anisotropic Networks. MATTER 2024; 7:2184-2204. [PMID: 39221109 PMCID: PMC11360881 DOI: 10.1016/j.matt.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tissue engineering has long sought to rapidly generate perfusable vascularized tissues with vessel sizes spanning those seen in humans. Current techniques such as biological 3D printing (top-down) and cellular self-assembly (bottom-up) are resource intensive and have not overcome the inherent tradeoff between vessel resolution and assembly time, limiting their utility and scalability for engineering tissues. We present a flexible and scalable technique termed SPAN - Sacrificial Percolation of Anisotropic Networks, where a network of perfusable channels is created throughout a tissue in minutes, irrespective of its size. Conduits with length scales spanning arterioles to capillaries are generated using pipettable alginate fibers that interconnect above a percolation density threshold and are then degraded within constructs of arbitrary size and shape. SPAN is readily used within common tissue engineering processes, can be used to generate endothelial cell-lined vasculature in a multi-cell type construct, and paves the way for rapid assembly of perfusable tissues.
Collapse
Affiliation(s)
- Alex Lammers
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Heng-Hua Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Subramanian Sundaram
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Keith A. Gagnon
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sudong Kim
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua H. Lee
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jeroen Eyckmans
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher S. Chen
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
28
|
Ramanujam RK, Garyfallogiannis K, Litvinov RI, Bassani JL, Weisel JW, Purohit PK, Tutwiler V. Mechanics and microstructure of blood plasma clots in shear driven rupture. SOFT MATTER 2024; 20:4184-4196. [PMID: 38686609 PMCID: PMC11135145 DOI: 10.1039/d4sm00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Intravascular blood clots are subject to hydrodynamic shear and other forces that cause clot deformation and rupture (embolization). A portion of the ruptured clot can block blood flow in downstream vessels. The mechanical stability of blood clots is determined primarily by the 3D polymeric fibrin network that forms a gel. Previous studies have primarily focused on the rupture of blood plasma clots under tensile loading (Mode I), our current study investigates the rupture of fibrin induced by shear loading (Mode II), dominating under physiological conditions induced by blood flow. Using experimental and theoretical approaches, we show that fracture toughness, i.e. the critical energy release rate, is relatively independent of the type of loading and is therefore a fundamental property of the gel. Ultrastructural studies and finite element simulations demonstrate that cracks propagate perpendicular to the direction of maximum stretch at the crack tip. These observations indicate that locally, the mechanism of rupture is predominantly tensile. Knowledge gained from this study will aid in the development of methods for prediction/prevention of thrombotic embolization.
Collapse
Affiliation(s)
- Ranjini K Ramanujam
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| | | | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - John L Bassani
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
29
|
Kim KW, Lee C, Im G, Kang HJ, Jo MS, Jeon SJ, Kim JS, Lee SB, Kim MU, Choi YH, Kim HH. Optimal thrombin injection method for the treatment of femoral artery pseudoaneurysm. J Thromb Haemost 2024; 22:1389-1398. [PMID: 38278416 DOI: 10.1016/j.jtha.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Iatrogenic femoral artery pseudoaneurysm (IFP) incidence is increasing with increase in diagnostic and therapeutic angiography, and so, the less invasive percutaneous thrombin injection (PTI) is the most widely used treatment. Moreover, studies that minimize PTI complications and highlight therapeutic effects are lacking. OBJECTIVES This study performed in vitro thrombosis modeling of pseudoaneurysms and analyzed thrombosis within and thromboembolism outside the sac during thrombin injection. METHODS We evaluated PTI in terms of thrombin injection location (at the junction of the IFP sac and neck, the center, and the dome, located farthest from the neck of the sac), thrombin injection time (5 and 8 seconds), and blood flow rate (ranging from 210 mL/min to 300 mL/min). Porcine blood was used as the working fluid in this study. RESULTS Thrombin injection at the junction of the IFP sac and the pseudoaneurysm neck led to less thrombosis within the sac but substantial thrombi consistently outside the sac, whereas thrombin injected at the sac center mostly led to complete thrombosis within the sac, preventing further blood flow into the sac and reducing likelihood of thrombi outside the sac. A longer thrombin injection time enhanced the therapeutic effect and decreased the possibility of thromboembolism. Thromboembolism occurred more frequently at flow rates of >240 mL/min. CONCLUSION The thrombin injection site in a pseudoaneurysm significantly influences thrombogenesis within and thromboembolism outside the sac. Thus, slow and deliberate injection of thrombin into the center of the sac could potentially reduce complications and enhance treatment efficacy.
Collapse
Affiliation(s)
- Kyung-Wuk Kim
- Department of Mechanical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Changje Lee
- Research Institute of Maritime Industry, Korea Maritime and Ocean University, Busan, Republic of Korea
| | - Gyeongtae Im
- Process Analysis Team, Mirae Energy & Environment, Hazardous Material & Health, and Safety & Security-code Research Institute, Iljik-ro, Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Hyo-Jeong Kang
- School of Mechanical Material Convergence Engineering, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Mun-Seong Jo
- School of Mechanical Material Convergence Engineering, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Sang-Jin Jeon
- School of Mechanical Material Convergence Engineering, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Jeong-Sik Kim
- School of Mechanical Material Convergence Engineering, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Seung Bae Lee
- Department of Urology, Sheikh Khalifa Specialty Hospital, United Arab Emirates
| | - Min Uk Kim
- Department of Radiology, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea
| | - Young Ho Choi
- Department of Radiology, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Dongjak-gu, Seoul, Republic of Korea.
| | - Hyoung-Ho Kim
- School of Mechanical Material Convergence Engineering, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea.
| |
Collapse
|
30
|
Liu S, Bahmani A, Ghezelbash F, Li J. Fibrin clot fracture under cyclic fatigue and variable rate loading. Acta Biomater 2024; 177:265-277. [PMID: 38336270 DOI: 10.1016/j.actbio.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Fibrin clot is a vital class of fibrous materials, governing the mechanical response of blood clots. Fracture behavior of fibrin clots under complex physiological load is relevant for hemostasis and thrombosis. But how they fracture under cyclic and variable rate loading has not been reported. Here we conduct cyclic fatigue and monotonic variable rate loading tests on fibrin clots to characterize their fracture properties in terms of fatigue threshold and rate-dependent fracture toughness. We demonstrate that the fracture behavior of fibrin clots is sensitive to the amplitude of cyclic load and the loading rate. The cyclic fatigue tests show the fatigue threshold of fibrin clots at 1.66 J/m2, compared to the overall fracture toughness 15.8 J/m2. Furthermore, we rationalize the fatigue threshold using a semi-empirical model parameterized by 3D morphometric quantification to account for the hierarchical molecular structure of fibrin fibers. The variable loading tests reveal rate dependence of the overall fracture toughness of fibrin clots. Our analysis with a viscoelastic fracture model suggests the viscoelastic origin of the rate-dependent fracture toughness. The toughening mechanism of fibrin clots is further compared with biological tissues and hydrogels. This study advances the understanding and modeling of fatigue and fracture of blood clots and would motivate further investigation on the mechanics of fibrous materials. STATEMENT OF SIGNIFICANCE: Fibrin clot is a soft fibrous gel, exhibiting nonlinear mechanical responses under complex physiological loads. It is the main load-bearing constituent of blood clots where red blood cells, platelets and other cells are trapped. How the fibrin clot fractures under complex mechanical loads is critical for hemostasis and thrombosis. We study the fracture behavior of fibrin clots under cyclic fatigue and monotonic variable rate loads. We characterize the fatigue-threshold and viscous energy dissipation of fibrin clots. We compare the toughness enhancement of fibrin clots with hydrogels. The findings offer new insights into the fatigue and fracture of blood clots and fibrous materials, which could improve design guidelines for bioengineered materials.
Collapse
Affiliation(s)
- Shiyu Liu
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Aram Bahmani
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada; Department of Biomedical Engineering, McGill University, 817 Sherbrooke St W, Montreal, QC H3A 0C3, Canada.
| |
Collapse
|
31
|
Martinez-Torres C, Grimbergen J, Koopman J, Koenderink GH. Interplay of fibrinogen α EC globular domains and factor XIIIa cross-linking dictates the extensibility and strain stiffening of fibrin networks. J Thromb Haemost 2024; 22:715-726. [PMID: 37940047 DOI: 10.1016/j.jtha.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Fibrinogen is a plasma protein forming the fibrin scaffold of blood clots. Its mechanical properties therefore affect the risk of bleeding as well as thrombosis. There has been much recent interest in the biophysical mechanisms controlling fibrin mechanics; however, the role of molecular heterogeneity of the circulating fibrinogen in determining clot mechanical function remains poorly characterized. OBJECTIVES By comparing 2 fibrinogen variants where the only difference is the Aα-chain length, with one variant having a globular domain at its C-terminus, this study aimed to reveal how the molecular structure impacts the structure and mechanics of fibrin networks. METHODS We characterized the mechanical response to large shear for networks formed from 2 recombinant fibrinogen variants: the most prevalent variant in circulation with a molecular weight of 340 kDa (recombinant human fibrinogen [rFib] 340) and a minor variant with a molecular weight of 420 kDa (rFib420). RESULTS We show that the elastic properties of the 2 variants are identical when fibrin is cross-linked with factor XIIIa but differ strongly in its absence. Uncross-linked rFib420 networks are softer and up to 3-fold more extensible than rFib340 networks. Electron microscopy imaging showed that the 2 variants formed networks with a comparable structure, except at 4 mg/mL, where rFib420 formed denser networks. CONCLUSION We propose that the αEC domains of rFib420 increase the extensibility of uncross-linked fibrin networks by promoting protofibril sliding, which is blocked by FXIIIa cross-linking. Our findings can help explain the functional role of different circulating fibrinogen variants in blood clot mechanics and tissue repair.
Collapse
Affiliation(s)
- Cristina Martinez-Torres
- AMOLF, Amsterdam, The Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | | | | | - Gijsje H Koenderink
- AMOLF, Amsterdam, The Netherlands; Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
32
|
Risman RA, Belcher HA, Ramanujam RK, Weisel JW, Hudson NE, Tutwiler V. Comprehensive Analysis of the Role of Fibrinogen and Thrombin in Clot Formation and Structure for Plasma and Purified Fibrinogen. Biomolecules 2024; 14:230. [PMID: 38397467 PMCID: PMC10886591 DOI: 10.3390/biom14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Altered properties of fibrin clots have been associated with bleeding and thrombotic disorders, including hemophilia or trauma and heart attack or stroke. Clotting factors, such as thrombin and tissue factor, or blood plasma proteins, such as fibrinogen, play critical roles in fibrin network polymerization. The concentrations and combinations of these proteins affect the structure and stability of clots, which can lead to downstream complications. The present work includes clots made from plasma and purified fibrinogen and shows how varying fibrinogen and activation factor concentrations affect the fibrin properties under both conditions. We used a combination of scanning electron microscopy, confocal microscopy, and turbidimetry to analyze clot/fiber structure and polymerization. We quantified the structural and polymerization features and found similar trends with increasing/decreasing fibrinogen and thrombin concentrations for both purified fibrinogen and plasma clots. Using our compiled results, we were able to generate multiple linear regressions that predict structural and polymerization features using various fibrinogen and clotting agent concentrations. This study provides an analysis of structural and polymerization features of clots made with purified fibrinogen or plasma at various fibrinogen and clotting agent concentrations. Our results could be utilized to aid in interpreting results, designing future experiments, or developing relevant mathematical models.
Collapse
Affiliation(s)
- Rebecca A. Risman
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (R.A.R.); (R.K.R.)
| | - Heather A. Belcher
- Department of Physics, East Carolina University, Greenville, NC 27858, USA; (H.A.B.); (N.E.H.)
| | - Ranjini K. Ramanujam
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (R.A.R.); (R.K.R.)
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nathan E. Hudson
- Department of Physics, East Carolina University, Greenville, NC 27858, USA; (H.A.B.); (N.E.H.)
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (R.A.R.); (R.K.R.)
| |
Collapse
|
33
|
Gosselin AR, Bargoud CG, Sawalkar A, Mathew S, Toussaint A, Greenen M, Coyle SM, Macor M, Krishnan A, Goswami J, Hanna JS, Tutwiler V. Injury Severity is a Key Contributor to Coagulation Dysregulation and Fibrinogen Consumption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575945. [PMID: 38293104 PMCID: PMC10827148 DOI: 10.1101/2024.01.16.575945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Traumatic injury is a leading cause of death for those under the age of 45, with 40% occurring due to hemorrhage. Severe tissue injury and hypoperfusion lead to marked changes in coagulation, thereby preventing formation of a stable blood clot and increasing hemorrhage associated mortality. Objectives We aimed to quantify changes in clot formation and mechanics occurring after traumatic injury and the relationship to coagulation kinetics, and fibrinolysis. Methods Plasma was isolated from injured patients upon arrival to the emergency department. Coagulation kinetics and mechanics of healthy donors and patient plasma were compared with rheological, turbidimetric and thrombin generation assays. ELISA's were performed to determine tissue plasminogen activator (tPA) and D-dimer concentration, as fibrinolytic markers. Results Sixty-three patients were included in the study. The median injury severity score (ISS) was 17, median age was 37.5 years old, and mortality rate was 30%. Rheological, turbidimetric and thrombin generation assays indicated that trauma patients on average, and especially deceased patients, exhibited reduced clot stiffness, increased fibrinolysis and reduced thrombin generation compared to healthy donors. Fibrinogen concentration, clot stiffness, D-dimer and tPA all demonstrated significant direct correlation to increasing ISS. Machine learning algorithms identified and highlighted the importance of clinical factors on determining patient outcomes. Conclusions Viscoelastic and biochemical assays indicate significant contributors and predictors of mortality for improved patient treatment and therapeutic target detection. ESSENTIALS Traumatic injury may lead to alterations in a patient's ability to form stable blood clotsA study was performed to assess how trauma severity affects coagulation kineticsKey alterations were observed in trauma patients, who exhibit weaker and slower forming clotsPaired with machine learning methods, the results indicate key aspects contributing to mortality.
Collapse
|
34
|
Garyfallogiannis K, Purohit PK, Bassani JL. Cracks in tensile-contracting and tensile-dilating poroelastic materials. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 2024; 286-287:112563. [PMID: 38130319 PMCID: PMC10732463 DOI: 10.1016/j.ijsolstr.2023.112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Fibrous gels such as cartilage, blood clots, and carbon-nanotube-based sponges with absorbed oils suffer a reduction in volume by the expulsion of liquid under uniaxial tension, and this directly affects crack-tip fields and energy release rates. A continuum model is formulated for isotropic fibrous gels that exhibit a range of behaviors from volume increasing to volume decreasing in uniaxial tension by changing the ratio of two material parameters. The motion of liquid in the pores of such gels is modeled using poroelasticity. The direction of liquid fluxes around cracks is shown to depend on whether the gel locally increases or decreases in volume. The energy release rate for cracks is computed using a surface-independent integral and it is shown to have two contributions - one from the stresses in the solid network, and another from the flow of liquid. The contribution to the integral from liquid permeation tends to be negative when the gel exhibits volume decrease, which effectively is a crack shielding mechanism.
Collapse
Affiliation(s)
| | - Prashant K. Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John L. Bassani
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Dang Z, Ma X, Yang Z, Wen X, Zhao P. Electrospun Nanofiber Scaffolds Loaded with Metal-Based Nanoparticles for Wound Healing. Polymers (Basel) 2023; 16:24. [PMID: 38201687 PMCID: PMC10780332 DOI: 10.3390/polym16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Failures of wound healing have been a focus of research worldwide. With the continuous development of materials science, electrospun nanofiber scaffolds loaded with metal-based nanoparticles provide new ideas and methods for research into new tissue engineering materials due to their excellent antibacterial, anti-inflammatory, and wound healing abilities. In this review, the stages of extracellular matrix and wound healing, electrospun nanofiber scaffolds, metal-based nanoparticles, and metal-based nanoparticles supported by electrospun nanofiber scaffolds are reviewed, and their characteristics and applications are introduced. We discuss in detail the current research on wound healing of metal-based nanoparticles and electrospun nanofiber scaffolds loaded with metal-based nanoparticles, and we highlight the potential mechanisms and promising applications of these scaffolds for promoting wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (Z.D.); (X.M.); (Z.Y.); (X.W.)
| |
Collapse
|
36
|
Haghniaz R, Montazerian H, Rabbani A, Baidya A, Usui B, Zhu Y, Tavafoghi M, Wahid F, Kim H, Sheikhi A, Khademhosseini A. Injectable, Antibacterial, and Hemostatic Tissue Sealant Hydrogels. Adv Healthc Mater 2023; 12:e2301551. [PMID: 37300448 PMCID: PMC10710521 DOI: 10.1002/adhm.202301551] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Hemorrhage and bacterial infections are major hurdles in the management of life-threatening surgical wounds. Most bioadhesives for wound closure lack sufficient hemostatic and antibacterial properties. Furthermore, they suffer from weak sealing efficacy, particularly for stretchable organs, such as the lung and bladder. Accordingly, there is an unmet need for mechanically robust hemostatic sealants with simultaneous antibacterial effects. Here, an injectable, photocrosslinkable, and stretchable hydrogel sealant based on gelatin methacryloyl (GelMA), supplemented with antibacterial zinc ferrite (ZF) nanoparticles and hemostatic silicate nanoplatelets (SNs) for rapid blood coagulation is nanoengineered. The hydrogel reduces the in vitro viability of Staphylococcus aureus by more than 90%. The addition of SNs (2% w/v) and ZF nanoparticles (1.5 mg mL-1 ) to GelMA (20% w/v) improves the burst pressure of perforated ex vivo porcine lungs by more than 40%. Such enhancement translated to ≈250% improvement in the tissue sealing capability compared with a commercial hemostatic sealant, Evicel. Furthermore, the hydrogels reduce bleeding by ≈50% in rat bleeding models. The nanoengineered hydrogel may open new translational opportunities for the effective sealing of complex wounds that require mechanical flexibility, infection management, and hemostasis.
Collapse
Affiliation(s)
- Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
- Department of BioengineeringUniversity of California, Los Angeles410 Westwood PlazaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of California, Los Angeles570 Westwood PlazaLos AngelesCA90095USA
| | - Hossein Montazerian
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
- Department of BioengineeringUniversity of California, Los Angeles410 Westwood PlazaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of California, Los Angeles570 Westwood PlazaLos AngelesCA90095USA
| | - Atiya Rabbani
- Department of BioengineeringUniversity of California, Los Angeles410 Westwood PlazaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of California, Los Angeles570 Westwood PlazaLos AngelesCA90095USA
- Akhtar Saeed Medical CollegeBahria Golf City46000Pakistan
| | - Avijit Baidya
- Department of Chemical and Biomolecular EngineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of ChemistryFaculty of Engineering and TechnologySRM Institute of Science and TechnologyKattankulathurTamil Nadu603203India
| | - Brent Usui
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
- Franklin W. Olin College of Engineering1000 Olin WayNeedhamMA02492USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
| | - Maryam Tavafoghi
- Department of BioengineeringUniversity of California, Los Angeles410 Westwood PlazaLos AngelesCA90095USA
- California NanoSystems InstituteUniversity of California, Los Angeles570 Westwood PlazaLos AngelesCA90095USA
| | - Fazli Wahid
- Department of Biomedical SciencesPak‐Austria FachhochschuleInstitute of Applied Sciences and TechnologyHaripur22620Pakistan
| | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | - Amir Sheikhi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation11570 W Olympic BlvdLos AngelesCA90024USA
| |
Collapse
|
37
|
Heilala M, Lehtonen A, Arasalo O, Peura A, Pokki J, Ikkala O, Nonappa, Klefström J, Munne PM. Fibrin Stiffness Regulates Phenotypic Plasticity of Metastatic Breast Cancer Cells. Adv Healthc Mater 2023; 12:e2301137. [PMID: 37671812 PMCID: PMC11469292 DOI: 10.1002/adhm.202301137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/18/2023] [Indexed: 09/07/2023]
Abstract
The extracellular matrix (ECM)-regulated phenotypic plasticity is crucial for metastatic progression of triple negative breast cancer (TNBC). While ECM faithful cell-based models are available for in situ and invasive tumors, such as cell aggregate cultures in reconstituted basement membrane and in collagenous gels, there are no ECM faithful models for metastatic circulating tumor cells (CTCs). Such models are essential to represent the stage of metastasis where clinical relevance and therapeutic opportunities are significant. Here, CTC-like DU4475 TNBC cells are cultured in mechanically tunable 3D fibrin hydrogels. This is motivated, as in circulation fibrin aids CTC survival by forming a protective coating reducing shear stress and immune cell-mediated cytotoxicity and promotes several stages of late metastatic processes at the interface between circulation and tissue. This work shows that fibrin hydrogels support DU4475 cell growth, resulting in spheroid formation. Furthermore, increasing fibrin stiffness from 57 to 175 Pa leads to highly motile, actin and tubulin containing cellular protrusions, which are associated with specific cell morphology and gene expression patterns that markedly differ from basement membrane or suspension cultures. Thus, mechanically tunable fibrin gels reveal specific matrix-based regulation of TNBC cell phenotype and offer scaffolds for CTC-like cells with better mechano-biological properties than liquid.
Collapse
Affiliation(s)
- Maria Heilala
- Department of Applied PhysicsAalto UniversityP.O. Box 15100AaltoEspooFI‐00076Finland
| | - Arttu Lehtonen
- Department of Electrical Engineering and AutomationAalto UniversityP.O. Box 12200AaltoEspooFI‐00076Finland
| | - Ossi Arasalo
- Department of Electrical Engineering and AutomationAalto UniversityP.O. Box 12200AaltoEspooFI‐00076Finland
| | - Aino Peura
- Finnish Cancer Institute and FICAN SouthHelsinki University Hospital & Cancer Cell Circuitry LaboratoryTranslational Cancer MedicineMedical FacultyUniversity of HelsinkiP.O. Box 63 (Haartmaninkatu 8)Helsinki00014Finland
| | - Juho Pokki
- Department of Electrical Engineering and AutomationAalto UniversityP.O. Box 12200AaltoEspooFI‐00076Finland
| | - Olli Ikkala
- Department of Applied PhysicsAalto UniversityP.O. Box 15100AaltoEspooFI‐00076Finland
| | - Nonappa
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33720Finland
| | - Juha Klefström
- Finnish Cancer Institute and FICAN SouthHelsinki University Hospital & Cancer Cell Circuitry LaboratoryTranslational Cancer MedicineMedical FacultyUniversity of HelsinkiP.O. Box 63 (Haartmaninkatu 8)Helsinki00014Finland
| | - Pauliina M. Munne
- Finnish Cancer Institute and FICAN SouthHelsinki University Hospital & Cancer Cell Circuitry LaboratoryTranslational Cancer MedicineMedical FacultyUniversity of HelsinkiP.O. Box 63 (Haartmaninkatu 8)Helsinki00014Finland
| |
Collapse
|
38
|
Vardar E, Nam HY, Vythilingam G, Tan HL, Mohamad Wali HA, Engelhardt EM, Kamarul T, Zambelli PY, Samara E. A New Bioactive Fibrin Formulation Provided Superior Cartilage Regeneration in a Caprine Model. Int J Mol Sci 2023; 24:16945. [PMID: 38069268 PMCID: PMC10707130 DOI: 10.3390/ijms242316945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
The effective and long-term treatment of cartilage defects is an unmet need among patients worldwide. In the past, several synthetic and natural biomaterials have been designed to support functional articular cartilage formation. However, they have mostly failed to enhance the terminal stage of chondrogenic differentiation, leading to scar tissue formation after the operation. Growth factors substantially regulate cartilage regeneration by acting on receptors to trigger intracellular signaling and cell recruitment for tissue regeneration. In this study, we investigated the effect of recombinant insulin-like growth factor 1 (rIGF-1), loaded in fibrin microbeads (FibIGF1), on cartilage regeneration. rIGF-1-loaded fibrin microbeads were injected into full-thickness cartilage defects in the knees of goats. The stability, integration, and quality of tissue repair were evaluated at 1 and 6 months by gross morphology, histology, and collagen type II staining. The in vivo results showed that compared to plain fibrin samples, particularly at 6 months, FibIGF1 improved the functional cartilage formation, confirmed through gross morphology, histology, and collagen type II immunostaining. FibIGF1 could be a promising candidate for cartilage repair in the clinic.
Collapse
Affiliation(s)
- Elif Vardar
- Pediatric Orthopedic Department, Children’s Hospital, Chémin de Montétan 16, 1004 Lausanne, Switzerland; (E.V.); (E.-M.E.); (P.-Y.Z.)
| | - Hui Yin Nam
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (H.Y.N.); (H.L.T.)
- Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ganesh Vythilingam
- Pediatric Surgery Unit, Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Han Ling Tan
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (H.Y.N.); (H.L.T.)
| | | | - Eva-Maria Engelhardt
- Pediatric Orthopedic Department, Children’s Hospital, Chémin de Montétan 16, 1004 Lausanne, Switzerland; (E.V.); (E.-M.E.); (P.-Y.Z.)
| | - Tunku Kamarul
- Tissue Engineering Group, Department of Orthopaedic Surgery (NOCERAL), Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (H.Y.N.); (H.L.T.)
| | - Pierre-Yves Zambelli
- Pediatric Orthopedic Department, Children’s Hospital, Chémin de Montétan 16, 1004 Lausanne, Switzerland; (E.V.); (E.-M.E.); (P.-Y.Z.)
| | - Eleftheria Samara
- Pediatric Orthopedic Department, Children’s Hospital, Chémin de Montétan 16, 1004 Lausanne, Switzerland; (E.V.); (E.-M.E.); (P.-Y.Z.)
| |
Collapse
|
39
|
Abalymov A, Pinchasik BE, Akasov RA, Lomova M, Parakhonskiy BV. Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules 2023; 24:4532-4552. [PMID: 37812143 DOI: 10.1021/acs.biomac.3c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Roman A Akasov
- Sechenov University and Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 101000 Moscow, Russia
| | - Maria Lomova
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
40
|
Piglionico SS, Varga B, Pall O, Romieu O, Gergely C, Cuisinier F, Levallois B, Panayotov IV. Biomechanical characterization of a fibrinogen-blood hydrogel for human dental pulp regeneration. Biomater Sci 2023; 11:6919-6930. [PMID: 37655620 DOI: 10.1039/d3bm00515a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In dental practice, Regenerative Endodontic Treatment (RET) is applied as an alternative to classical endodontic treatments of immature necrotic teeth. This procedure, also known as dental pulp revitalization, relies on the formation of a blood clot inside the root canal leading to the formation of a reparative vascularized tissue similar to dental pulp, which would provide vitality to the affected tooth. Despite the benefit of this technique, it lacks reproducibility due to the fast degradation and poor mechanical properties of blood clots. This work presents a method for constructing a fibrinogen-blood hydrogel that mimics the viscoelastic properties of human dental pulp while preserving the biological properties of blood for application in RET. By varying the blood and fibrinogen concentrations, gels with different biomechanical and biological properties were obtained. Rheology and atomic force microscopy (AFM) were combined to study the viscoelastic properties. AFM was used to evaluate the elasticity of human dental pulp. The degradation and swelling rates were assessed by measuring weight changes. The biomimetic properties of the gels were demonstrated by studying the cell survival and proliferation of dental pulp cells (DPCs) for 14 days. The formation of an extracellular matrix (ECM) was assessed by multiphoton microscopy (MPM). The angiogenic potential was evaluated by an ex vivo aortic ring assay, in which the endothelial cells were observed by histological staining after migration. The results show that the Fbg-blood gel prepared with 9 mg ml-1 fibrinogen and 50% blood of the Fbg solution volume has similar elasticity to human dental pulp and adequate degradation and swelling rates. It also allows cell survival and ECM secretion and enhances endothelial cell migration and formation of neovessel-like structures.
Collapse
Affiliation(s)
- Sofia Silvia Piglionico
- LBN, Univ Montpellier, Montpellier, France.
- Centro de Investigaciones Odontológicas, National University of Cuyo, Argentina
| | - Bela Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
41
|
Ramanujam RK, Maksudov F, Litvinov RI, Nagaswami C, Weisel JW, Tutwiler V, Barsegov V. Biomechanics, Energetics, and Structural Basis of Rupture of Fibrin Networks. Adv Healthc Mater 2023; 12:e2300096. [PMID: 37611209 PMCID: PMC11468835 DOI: 10.1002/adhm.202300096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/06/2023] [Indexed: 08/25/2023]
Abstract
Fibrin provides the main structural integrity and mechanical strength to blood clots. Failure of fibrin clots can result in life-threating complications, such as stroke or pulmonary embolism. The dependence of rupture resistance of fibrin networks (uncracked and cracked) on fibrin(ogen) concentrations in the (patho)physiological 1-5 g L-1 range is explored by performing the ultrastructural studies and theoretical analysis of the experimental stress-strain profiles available from mechanical tensile loading assays. Fibrin fibers in the uncracked network stretched evenly, whereas, in the cracked network, fibers around the crack tip showed greater deformation. Unlike fibrin fibers in cracked networks formed at the lower 1-2.7 g L-1 fibrinogen concentrations, fibers formed at the higher 2.7-5 g L-1 concentrations align and stretch simultaneously. Cracked fibrin networks formed in higher fibrinogen solutions are tougher yet less extensible. Statistical modeling revealed that the characteristic strain for fiber alignment, crack size, and fracture toughness of fibrin networks control their rupture resistance. The results obtained provide a structural and biomechanical basis to quantitatively understand the material properties of blood plasma clots and to illuminate the mechanisms of their rupture.
Collapse
Affiliation(s)
- Ranjini K. Ramanujam
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Farkhad Maksudov
- Department of ChemistryUniversity of MassachusettsLowellMA01854USA
| | - Rustem I. Litvinov
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - John W. Weisel
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA19104USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Valeri Barsegov
- Department of ChemistryUniversity of MassachusettsLowellMA01854USA
| |
Collapse
|
42
|
Driever EG, Muntz I, Patel V, Adelmeijer J, Bernal W, Koenderink GH, Lisman T. Fibrin clots from patients with acute-on-chronic liver failure are weaker than those from healthy individuals and patients with sepsis without underlying liver disease. J Thromb Haemost 2023; 21:2747-2758. [PMID: 37336436 DOI: 10.1016/j.jtha.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/09/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Previous studies identified decreased clot permeability, without differences in fibrin fiber density in clots, from patients with cirrhosis compared with those from healthy controls (HCs). Fibrinogen hypersialylation could be the reason for this discrepancy. OBJECTIVES The aim of this work was to study mechanical properties of clots and reassess clot permeability in relation to hypersialylation in patients with stable cirrhosis, acute decompensation, and acute-on-chronic liver failure (ACLF). Sepsis patients without liver disease were included to distinguish between liver-specific and inflammation-driven phenotypes. METHODS Pooled plasma was used for rheology and permeability experiments. Permeability was assessed with compression using a rheometer and by liquid permeation. Purified fibrinogen treated with neuraminidase was used to study the effects of fibrinogen hypersialylation on liquid permeation. RESULTS Mechanical properties of clots from patients with stable cirrhosis and acute decompensation were similar to those of clots from HCs, but clots from patients with ACLF were softer and ruptured at lower shear stress. Clots from sepsis patients without liver disease were stiffer than those from the other groups, but this effect disappeared after adjusting for increased plasma fibrinogen concentrations. Permeability was similar between clots under compression from HCs and clots under compression from patients but decreased with increasing disease severity in liquid permeation. Removal of fibrinogen sialic acid residues increased permeability more in patients than in controls. CONCLUSION Clots from patients with ACLF have weak mechanical properties despite unaltered fibrin fiber density. Previous liquid permeation experiments may have erroneously concluded that clots from patients with ACLF are prothrombotic as fibrinogen hypersialylation leads to underestimation of clot permeability in this setting, presumably due to enhanced water retention.
Collapse
Affiliation(s)
- Ellen G Driever
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Iain Muntz
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Vishal Patel
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Jelle Adelmeijer
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - William Bernal
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
43
|
Shang Y, Zeng J, Matsusaki M. Construction of enzyme digested holes on hydrogel surface inspired by cell migration processes. Biochem Biophys Res Commun 2023; 674:69-74. [PMID: 37413707 DOI: 10.1016/j.bbrc.2023.06.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
The construction of in vitro capillary network models for drug testing and toxicity evaluation has become a major challenge in the field of tissue engineering. Previously, we discovered a novel phenomenon of hole formation by endothelial cell migration on the surface of fibrin gels. Interestingly, the hole characteristics, such as depth and number, were strongly influenced by the gel stiffness, but the details of hole formation are not to be clarified. In this study, we tried to understand the effect of hydrogel stiffness on the hole formation by dropping collagenase solution onto the surface of the hydrogels because the endothelial cell migration was made possible by the metalloproteinases' digestion. We found that smaller hole structures were formed on stiffer fibrin gels, but larger ones were formed on softer fibrin gels after the hydrogel digestion of the collagenase. This is consistent with our previous results in experiments on hole structures formed by endothelial cells. Furthermore, deep and small hole structures were successfully obtained by optimizing the volume of collagenase solution and incubation time. This unique approach inspired by endothelial cell hole formation may provide new methods of fabricating hydrogels with opening hole structures.
Collapse
Affiliation(s)
- Yucheng Shang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan; Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
44
|
Hughes MDG, Cussons S, Hanson BS, Cook KR, Feller T, Mahmoudi N, Baker DL, Ariëns R, Head DA, Brockwell DJ, Dougan L. Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks. Nat Commun 2023; 14:5593. [PMID: 37696784 PMCID: PMC10495373 DOI: 10.1038/s41467-023-40921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Fibrous networks constructed from high aspect ratio protein building blocks are ubiquitous in nature. Despite this ubiquity, the functional advantage of such building blocks over globular proteins is not understood. To answer this question, we engineered hydrogel network building blocks with varying numbers of protein L domains to control the aspect ratio. The mechanical and structural properties of photochemically crosslinked protein L networks were then characterised using shear rheology and small angle neutron scattering. We show that aspect ratio is a crucial property that defines network architecture and mechanics, by shifting the formation from translationally diffusion dominated to rotationally diffusion dominated. Additionally, we demonstrate that a similar transition is observed in the model living system: fibrin blood clot networks. The functional advantages of this transition are increased mechanical strength and the rapid assembly of homogenous networks above a critical protein concentration, crucial for in vivo biological processes such as blood clotting. In addition, manipulating aspect ratio also provides a parameter in the design of future bio-mimetic and bio-inspired materials.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Benjamin S Hanson
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Kalila R Cook
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Tímea Feller
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - Daniel L Baker
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Robert Ariëns
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - David A Head
- School of Computing, Faculty of Engineering and Physical Science, University of Leeds, Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
45
|
Jiang N, Su Z, Sun Y, Ren R, Zhou J, Bi R, Zhu S. Spatial Heterogeneity Directs Energy Dissipation in Condylar Fibrocartilage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301051. [PMID: 37156747 DOI: 10.1002/smll.202301051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Condylar fibrocartilage with structural and compositional heterogeneity can efficiently orchestrate load-bearing and energy dissipation, making the temporomandibular joint (TMJ) survive high occlusion loads for a prolonged lifetime. How the thin condylar fibrocartilage can achieve efficient energy dissipation to cushion enormous stresses remains an open question in biology and tissue engineering. Here, three distinct zones in the condylar fibrocartilage are identified by analyzing the components and structure from the macro-and microscale to the nanoscale. Specific proteins are highly expressed in each zone related to its mechanics. The heterogeneity of condylar fibrocartilage can direct energy dissipation through the nano-micron-macro gradient spatial scale, by atomic force microscope (AFM), nanoindentation, dynamic mechanical analyzer assay (DMA), and the corresponding energy dissipation mechanisms are exclusive for each distinct zone. This study reveals the significance of the heterogeneity of condylar fibrocartilage in mechanical behavior and provides new insights into the research methods for cartilage biomechanics and the design of energy-dissipative materials.
Collapse
Affiliation(s)
- Nan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhan Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahao Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
46
|
Michael C, Pancaldi F, Britton S, Kim OV, Peshkova AD, Vo K, Xu Z, Litvinov RI, Weisel JW, Alber M. Combined computational modeling and experimental study of the biomechanical mechanisms of platelet-driven contraction of fibrin clots. Commun Biol 2023; 6:869. [PMID: 37620422 PMCID: PMC10449797 DOI: 10.1038/s42003-023-05240-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
While blood clot formation has been relatively well studied, little is known about the mechanisms underlying the subsequent structural and mechanical clot remodeling called contraction or retraction. Impairment of the clot contraction process is associated with both life-threatening bleeding and thrombotic conditions, such as ischemic stroke, venous thromboembolism, and others. Recently, blood clot contraction was observed to be hindered in patients with COVID-19. A three-dimensional multiscale computational model is developed and used to quantify biomechanical mechanisms of the kinetics of clot contraction driven by platelet-fibrin pulling interactions. These results provide important biological insights into contraction of platelet filopodia, the mechanically active thin protrusions of the plasma membrane, described previously as performing mostly a sensory function. The biomechanical mechanisms and modeling approach described can potentially apply to studying other systems in which cells are embedded in a filamentous network and exert forces on the extracellular matrix modulated by the substrate stiffness.
Collapse
Affiliation(s)
- Christian Michael
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Samuel Britton
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Oleg V Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
- Department of Biomedical Engineering and Mechanics, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Khoi Vo
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA.
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA.
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
47
|
Wolff-Trombini L, Ceripa A, Moreau J, Galinat H, James C, Westbrook N, Allain JM. Microrheology and structural quantification of hypercoagulable clots. BIOMEDICAL OPTICS EXPRESS 2023; 14:4179-4189. [PMID: 37799698 PMCID: PMC10549726 DOI: 10.1364/boe.492669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/07/2023]
Abstract
Hypercoagulability is a pathology that remains difficult to explain today in most cases. It is likely due to a modification of the conditions of polymerization of the fibrin, the main clot component. Using passive microrheology, we measured the mechanical properties of clots and correlated them under the same conditions with structural information obtained with confocal microscopy. We tested our approach with known alterations: an excess of fibrinogen and of coagulation Factor VIII. We observed simultaneously a rigidification and densification of the fibrin network, showing the potential of microrheology for hypercoagulability diagnosis.
Collapse
Affiliation(s)
- Laura Wolff-Trombini
- Université de Bordeaux, UMR1034, Inserm, Biology of Cardiovascular Diseases, Pessac, France
| | - Adrien Ceripa
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Palaiseau, France
| | - Julien Moreau
- Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Hubert Galinat
- CHU de Brest, Service d'Hématologie Biologique, Brest, France
| | - Chloe James
- Université de Bordeaux, UMR1034, Inserm, Biology of Cardiovascular Diseases, Pessac, France
- CHU de Bordeaux, Laboratoire d’Hématologie, Pessac, France
| | - Nathalie Westbrook
- Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau, France
| | - Jean-Marc Allain
- LMS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Palaiseau, France
| |
Collapse
|
48
|
Angelidakis E, Chen S, Zhang S, Wan Z, Kamm RD, Shelton SE. Impact of Fibrinogen, Fibrin Thrombi, and Thrombin on Cancer Cell Extravasation Using In Vitro Microvascular Networks. Adv Healthc Mater 2023; 12:e2202984. [PMID: 37119127 PMCID: PMC10524192 DOI: 10.1002/adhm.202202984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/25/2023] [Indexed: 04/30/2023]
Abstract
A bidirectional association exists between metastatic dissemination and the hypercoagulable state associated with many types of cancer. As such, clinical studies have provided evidence that markers associated with elevated levels of coagulation and fibrinolysis correlate with decreased patient survival. However, elucidating the mechanisms underpinning the effects of different components of the coagulation system on metastasis formation is challenging both in animal models and 2D models lacking the complex cellular interactions necessary to model both thrombosis and metastasis. Here, an in vitro, 3D, microvascular model for observing the formation of fibrin thrombi is described, which is in turn used to study how different aspects of the hypercoagulable state associated with cancer affect the endothelium. Using this platform, cancer cells expressing ICAM-1 are shown to form a fibrinogen-dependent bridge and transmigrate through the endothelium more effectively. Cancer cells are also demonstrated to interact with fibrin thrombi, using them to adhere, spread, and enhance their extravasation efficiency. Finally, thrombin is also shown to enhance cancer cell extravasation. This system presents a physiologically relevant model of fibrin clot formation in the human microvasculature, enabling in-depth investigation of the cellular interactions between cancer cells and the coagulation system affecting cancer cell extravasation.
Collapse
Affiliation(s)
- Emmanouil Angelidakis
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sophia Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Shun Zhang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Zhengpeng Wan
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah E. Shelton
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Medical OncologyDana Farber Cancer InstituteBostonMA02215USA
| |
Collapse
|
49
|
Bader KB, Flores Basterrechea K, Hendley SA. In silico assessment of histotripsy-induced changes in catheter-directed thrombolytic delivery. Front Physiol 2023; 14:1225804. [PMID: 37449013 PMCID: PMC10336328 DOI: 10.3389/fphys.2023.1225804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: For venous thrombosis patients, catheter-directed thrombolytic therapy is the standard-of-care to recanalize the occluded vessel. Limitations with thrombolytic drugs make the development of adjuvant treatments an active area of research. One potential adjuvant is histotripsy, a focused ultrasound therapy that lyses red blood cells within thrombus via the spontaneous generation of bubbles. Histotripsy has also been shown to improve the efficacy of thrombolytic drugs, though the precise mechanism of enhancement has not been elucidated. In this study, in silico calculations were performed to determine the contribution of histotripsy-induced changes in thrombus diffusivity to alter catheter-directed therapy. Methods: An established and validated Monte Carlo calculation was used to predict the extent of histotripsy bubble activity. The distribution of thrombolytic drug was computed with a finite-difference time domain (FDTD) solution of the perfusion-diffusion equation. The FDTD calculation included changes in thrombus diffusivity based on outcomes of the Monte Carlo calculation. Fibrin degradation was determined using the known reaction rate of thrombolytic drug. Results: In the absence of histotripsy, thrombolytic delivery was restricted in close proximity to the catheter. Thrombolytic perfused throughout the focal region for calculations that included the effects of histotripsy, resulting in an increased degree of fibrinolysis. Discussion: These results were consistent with the outcomes of in vitro studies, suggesting histotripsy-induced changes in the thrombus diffusivity are a primary mechanism for enhancement of thrombolytic drugs.
Collapse
Affiliation(s)
- Kenneth B. Bader
- Department of Radiology, University of Chicago, Chicago, IL, United States
| | | | | |
Collapse
|
50
|
Nzulumike ANO, Thormann E. Fibrin Adsorption on Cardiovascular Biomaterials and Medical Devices. ACS APPLIED BIO MATERIALS 2023. [PMID: 37368548 DOI: 10.1021/acsabm.2c01057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Medical devices that are inserted in blood vessels always risk eliciting thrombosis, and the surface properties of such devices are thus of major importance. The initiating step for surface-induced pathological coagulation has been associated with adsorption of fibrinogen protein on biomaterial surfaces and subsequent polymerization into an insoluble fibrin clot. This issue gives rise to an inherent challenge in biomaterial design as varied surface materials must fulfill specialized roles while also minimizing thrombotic complications from spontaneous fibrin(ogen) recruitment. We have aimed to characterize the thrombogenic properties of state-of-the-art cardiovascular biomaterials and medical devices by quantifying the relative surface-dependent adsorption and formation of fibrin followed by analysis of the resulting morphologies. We identified stainless steel and amorphous fluoropolymer as comparatively preferable biomaterials based on their low fibrin(ogen) recruitment, in comparison to other metallic and polymeric biomaterials, respectively. In addition, we observed a morphological trend that fibrin forms fiber structures on metallic surfaces and fractal branched structures on polymeric surfaces. Finally, we used vascular guidewires as clotting substrates and found that fibrin adsorption depends on parts of the guidewire that are exposed, and we correlated the morphologies on uncoated guidewires with those formed on raw stainless-steel biomaterials.
Collapse
Affiliation(s)
- Achebe N O Nzulumike
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|