1
|
Chanpanitkitchote P, Nuanpirom J, Pongsapich W, Asavapanumas N, Mendler S, Wiesmann N, Brieger J, Jinawath N. EMILIN-1 Suppresses Cell Proliferation through Altered Cell Cycle Regulation in Head and Neck Squamous Cell Carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:995-1012. [PMID: 39892781 DOI: 10.1016/j.ajpath.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Extracellular matrix (ECM) proteins play an important role in the pathological processes of tumor development and progression. Elastic microfibril interface located protein-1 (EMILIN-1), an ECM glycoprotein, is linked to cell adhesion and migration. It was identified from head and neck squamous cell carcinoma (HNSCC) tissues that down-regulated EMILIN-1. It is associated with an increased risk of secondary primary malignancy development in HNSCC and hypothesized to function as a tumor suppressor in HNSCC. This study showed that EMILIN-1 expression in HNSCC tissues was specific to the stromal area, and secreted-EMILIN-1 level was higher in fibroblasts isolated from HNSCC tissues than in HNSCC cells. EMILIN-1 overexpression decreased cell proliferation, migration, and invasion in FaDu and CAL27 cells. Knockdown of EMILIN-1 in HNSCC cancer-associated fibroblasts induced cell proliferation and migration. The conditioned medium from EMILIN-1 knockdown cancer-associated fibroblasts increased HNSCC cell proliferation, and the co-culture system enhanced cancer cell migration and invasion. RNA-sequencing analysis revealed that the cell cycle and aurora kinase signaling were the most significant enrichment pathways, confirmed at the protein level. Furthermore, in an in ovo chick chorioallantoic membrane model, overexpression of EMILIN-1 in FaDu cells reduced tumor size and Ki-67-positivity and increased cleaved caspase-3-positive cells. These findings suggest that EMILIN-1 suppresses HNSCC growth partly through the down-regulation of cell cycle and aurora kinase signaling pathways.
Collapse
Affiliation(s)
| | - Jiratchaya Nuanpirom
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand; Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Warut Pongsapich
- Department of Otorhinolaryngology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Simone Mendler
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Natini Jinawath
- Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand; Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
Rossi F, Luppi S, Fejza A, Giolo E, Ricci G, Andreuzzi E. Extracellular matrix and pregnancy: functions and opportunities caught in the net. Reprod Biol Endocrinol 2025; 23:24. [PMID: 39953593 PMCID: PMC11827249 DOI: 10.1186/s12958-025-01348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/24/2025] [Indexed: 02/17/2025] Open
Abstract
The extracellular matrix is a complex network of macromolecules that support the growth and homeostatic development of organisms. By conveying multiple signaling cascades, it impacts on several biological processes and influences the behaviour of numerous cell types. During the endometrial cycle and the key events necessary for a correct embryo implantation and placentation, this bioactive meshwork is substantially modified to favour endometrial receptivity and vascular adaptation, trophoblast cell migration, and immune activation as well. A correct extracellular remodeling is fundamental for the establishment of a physiological pregnancy; indeed, the occurrence of altered matrix modifications associates with gestational disorders such as preeclampsia. In the present review, we will critically evaluate the role of pivotal matrix constituents in regulating the key steps of embryo implantation and placentation, provide up-to-date information concerning their primary mechanisms of action and discuss on their potential as a novel source of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Francesca Rossi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Stefania Luppi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Albina Fejza
- UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina, 10000, Kosovo
| | - Elena Giolo
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Eva Andreuzzi
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, 34137, Italy.
| |
Collapse
|
3
|
Fan X, Lv C, Xue M, Meng P, Qian X. Fe 3O 4 nanoparticles containing gambogic acid inhibit metastasis in colorectal cancer via the RORB/EMILIN1 axis. Cell Adh Migr 2024; 18:38-53. [PMID: 39533963 PMCID: PMC11562916 DOI: 10.1080/19336918.2024.2427585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This research aims to study the effect of magnetic nanoparticles of Fe3O4 (MNP Fe3O4) containing gambogic acid (GA-MNP Fe3O4) on colorectal cancer (CRC). MNP Fe3O4 enhanced the antitumor effect of GA by inhibiting the malignant behavior of CRC cells. RORB was a target of GA, and GA activated RORB expression to inhibit metastasis of CRC. Knockdown of RORB impaired the effect of GA-MNP Fe3O4 on CRC metastasis. EMILIN1 was a target of RORB, and RORB promoted transcription of EMILIN1. Overexpression of EMILIN1 reversed the effect of knockdown of RORB on GA-MNP Fe3O4 and inhibited metastasis in CRC. These findings revealed that MNP Fe3O4 enhanced the antitumor effect of GA and activated RORB to promote EMILIN1 transcription and inhibit CRC metastasis.
Collapse
Affiliation(s)
- Xiaodong Fan
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Thyroid and Breast Oncological Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaian, China
| | - Chunyang Lv
- Department of Hepatobiliary Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaian, China
| | - Meiling Xue
- Department of Thyroid and Breast Oncological Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huaian, China
| | - Peng Meng
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Oncology, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Xiaoping Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Zhong G, Shi R, Chen Q, Zheng Y, Fan X, Sun Y, Wang S, Li M. Metabolomics reveals the potential metabolic mechanism of infliximab against DSS-induced acute and chronic ulcerative colitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8815-8824. [PMID: 38847830 DOI: 10.1007/s00210-024-03201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/29/2024] [Indexed: 10/30/2024]
Abstract
Inflammatory bowel disease (IBD) is often accompanied by metabolic imbalance, and infliximab (IFX) can alleviate IBD symptoms, but its metabolic mechanisms remain unclear. To investigate the relationship between IBD, metabolism, and IFX, an acute and chronic ulcerative colitis (UC) model induced by dextran sulfate sodium (DSS) was established. Plasma samples were analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, followed by multivariate statistical analysis. The results showed that IFX could alleviate colonic shortening and reduce colonic pathological damage in acute and chronic mouse colitis, improve acute and chronic UC, and ameliorate metabolic disturbances. Among the 104 elevated metabolites and 170 decreased metabolites, these metabolites mainly belonged to amino acids, glucose, and purines. The changes in these metabolites were mainly associated with drug metabolism-other enzymes, riboflavin metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phosphonate and phosphinate metabolism, and phenylalanine metabolism. In summary, this study provides a valuable approach to explore the metabolic mechanisms of IFX in treating acute and chronic UC from a metabolomics perspective.
Collapse
Affiliation(s)
- Guoqiang Zhong
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runjie Shi
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiusan Chen
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zheng
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiujing Fan
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Capuano A, Vescovo M, Canesi S, Pivetta E, Doliana R, Nadin MG, Yamamoto M, Tsukamoto T, Nomura S, Pilozzi E, Palumbo A, Canzonieri V, Cannizzaro R, Scanziani E, Baldassarre G, Mongiat M, Spessotto P. The extracellular matrix protein EMILIN-1 impacts on the microenvironment by hampering gastric cancer development and progression. Gastric Cancer 2024; 27:1016-1030. [PMID: 38941035 PMCID: PMC11335817 DOI: 10.1007/s10120-024-01528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The contribution of the tumor microenvironment and extracellular matrix to the aggressive biology of Gastric Cancer (GC) has been recently characterized; however, the role of EMILIN-1 in this context is unknown. EMILIN-1 is an essential structural element for the maintenance of lymphatic vessel (LV) integrity and displays anti-proliferative properties as demonstrated in skin and colon cancer. Given the key role of LVs in GC progression, the aim of this study was to investigate the role of EMILIN-1 in GC mouse models. METHODS We used the syngeneic YTN16 cells which were injected subcutaneously and intraperitoneally in genetically modified EMILIN-1 mice. In alternative, carcinogenesis was induced using N-Methyl-N-nitrosourea (MNU). Mouse-derived samples and human biopsies were analyzed by IHC and IF to the possible correlation between EMILIN-1 expression and LV pattern. RESULTS Transgenic mice developed tumors earlier compared to WT animals. 20 days post-injection tumors developed in EMILIN-1 mutant mice were larger and displayed a significant increase of lymphangiogenesis. Treatment of transgenic mice with MNU associated with an increased number of tumors, exacerbated aggressive lesions and higher levels of LV abnormalities. A significant correlation between the levels of EMILIN-1 and podoplanin was detected also in human samples, confirming the results obtained with the pre-clinical models. CONCLUSIONS This study demonstrates for the first time that loss of EMILIN-1 in GC leads to lymphatic dysfunction and proliferative advantages that sustain tumorigenesis, and assess the use of our animal model as a valuable tool to verify the fate of GC upon loss of EMILIN-1.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maddalena Vescovo
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Simone Canesi
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, Milan, Italy
| | - Eliana Pivetta
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
- Clinical Pathology Unit, Ospedale Santa Maria Degli Angeli, Pordenone, Italy
| | - Roberto Doliana
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maria Grazia Nadin
- Oncological Gastroenterology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Sachiyo Nomura
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Azienda Ospedaliero-Universitaria Sant'Andrea, Rome, Italy
| | - Antonio Palumbo
- Pathology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Eugenio Scanziani
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, Milan, Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maurizio Mongiat
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Paola Spessotto
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy.
| |
Collapse
|
6
|
Wang N, Sieng S, Liang T, Xu J, Han Q. Intestine proteomic and metabolomic alterations in dogs infected with Toxocara canis. Acta Trop 2024; 252:107140. [PMID: 38341054 DOI: 10.1016/j.actatropica.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Toxocariasis is an important zoonotic parasitic disease. Toxocaris canis adults live and reproduce in the intestinal tract of dogs and other canine hosts, and the infectious eggs are continuously excreted in feces, which causes environmental contamination and has an important public health significance. In this study, TMT proteomic and untargeted metabolomic methods were used to explore the physiological and pathological effects on the intestinal tract of dogs which infected with T. canis, and a series of bioinformatics analyses were conducted to identify differentially expressed proteins (DEPs) and differentially expressed metabolites (DEMs). The proteomics results showed that 198 DEPs were mainly enriched in the immune system and signal transduction pathway, and involved in the regulation of the occurrence and development of cancer and infectious diseases. T. canis could disrupt intestinal permeability by increasing the expression of proteins such as zinc finger protein DZIP1L and myosin heavy chain 10. Additionally, T. canis infection could also inhibit the host immune response by decreasing the expression of MHC-II, NF-κB, DLA and other immune-related molecules. While, the metabolomics results revealed that the expression of oxoglutaric acid, glutamate, d-aspartate, arginine, taurochenodeoxycholic acid and taurocholic acid which participated in tricarboxylic acid (TCA) cycle, glycolysis/gluconeogenesis, bile secretion, biosynthesis of amino acids pathway were significantly decreased. The correlation results of proteomics and metabolomics showed that DEPs and DEMs were mainly co-enriched in bile secretion pathway to regulate intestinal peristalsis. Analyzing DEPs and DEMs will not only provide insights into the mechanisms of host parasite interaction, but also aid in identifying potential targets for therapy and diagnosis, thus setting the groundwork for effectively preventing and managing toxocariasis.
Collapse
Affiliation(s)
- Na Wang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Soben Sieng
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China
| | - Tian Liang
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China
| | - Jingyun Xu
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China.
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, College of Life and Health, Hainan University, Haikou, Hainan, 570228, China; Collaborative Innovation Center of One Health, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
7
|
Deng Y, Huang X, Chen X, Wang M, Tian L, Zhou H, Yang W, He F, Yin W. Chemopreventive Effects of Polysaccharides and Flavonoids from Okra Flowers in Azomethane/Dextran Sulfate Sodium-Induced Murine Colitis-Associated Cancer. Nutrients 2023; 15:4820. [PMID: 38004214 PMCID: PMC10674164 DOI: 10.3390/nu15224820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Okra flowers are a good source of polysaccharides and flavonoids, with biological activities of anti-inflammatory action and modulation of the gut microbiota. Previously, we reported that flavonoid-rich extracts from okra flowers (AFE) presented effective anti-colorectal cancer (CRC) activity in CRC cells as well as xenograft models, but their role in colitis-associated cancer (CAC) is unidentified. In this study, we aimed to evaluate the effects of AFE and APE (polysaccharides extracted from okra flowers) on the CAC symptoms of azoxymethane (AOM)/dextran sodium sulfate (DSS)-intervened mice. The results showed that APE and AFE exert potent efficacy in inhibiting colitis and colorectal tumorigenesis stimulated by AOM/DSS, characterized by decreased colonic shortening, DAI score, and tumor numbers. Compared with the control group, APE/AFE alleviated the microbiota dysbiosis driven by AOM/DSS. In addition, AFE elicited its anticancer activity through regulation of NFκB/IL-6/Stat3, JAK2/Stat3, MAPKs, PI3K/AKT, and Wnt/β-catenin signal transductions in AOM/DSS mice, which was consistent with a vitro model of CT26 cells, while APE treatment exhibited anticancer activity through regulation of Nrf2/IL-6, MAPKs, PI3K/AKT, and Wnt/β-catenin signal transductions in the AOM/DSS mouse model. Collectively, our studies revealed, for the first time, that flavonoids and polysaccharides from okra flowers possess the ability to attenuate colitis and colorectal tumorigenesis, with them having great potential to become promising candidates against CRC.
Collapse
Affiliation(s)
- Yuanle Deng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Department of Clinical Nutrition, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xiaoyi Huang
- Department of Clinical Nutrition, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiaotong Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Pharmaceutical Engineering, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Li Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Heting Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wenyu Yang
- Pharmaceutical Engineering, School of Food Science and Bioengineering, Xihua University, Chengdu 610039, China
| | - Fang He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Fejza A, Carobolante G, Poletto E, Camicia L, Schinello G, Di Siena E, Ricci G, Mongiat M, Andreuzzi E. The entanglement of extracellular matrix molecules and immune checkpoint inhibitors in cancer: a systematic review of the literature. Front Immunol 2023; 14:1270981. [PMID: 37854588 PMCID: PMC10579931 DOI: 10.3389/fimmu.2023.1270981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Immune-checkpoint inhibitors (ICIs) have emerged as a core pillar of cancer therapy as single agents or in combination regimens both in adults and children. Unfortunately, ICIs provide a long-lasting therapeutic effect in only one third of the patients. Thus, the search for predictive biomarkers of responsiveness to ICIs remains an urgent clinical need. The efficacy of ICIs treatments is strongly affected not only by the specific characteristics of cancer cells and the levels of immune checkpoint ligands, but also by other components of the tumor microenvironment, among which the extracellular matrix (ECM) is emerging as key player. With the aim to comprehensively describe the relation between ECM and ICIs' efficacy in cancer patients, the present review systematically evaluated the current literature regarding ECM remodeling in association with immunotherapeutic approaches. Methods This review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and was registered at the International Prospective Register of Systematic Reviews (PROSPERO, CRD42022351180). PubMed, Web of Science, and Scopus databases were comprehensively searched from inception to January 2023. Titles, abstracts and full text screening was performed to exclude non eligible articles. The risk of bias was assessed using the QUADAS-2 tool. Results After employing relevant MeSH and key terms, we identified a total of 5070 studies. Among them, 2540 duplicates, 1521 reviews or commentaries were found and excluded. Following title and abstract screening, the full text was analyzed, and 47 studies meeting the eligibility criteria were retained. The studies included in this systematic review comprehensively recapitulate the latest observations associating changes of the ECM composition following remodeling with the traits of the tumor immune cell infiltration. The present study provides for the first time a broad view of the tight association between ECM molecules and ICIs efficacy in different tumor types, highlighting the importance of ECM-derived proteolytic products as promising liquid biopsy-based biomarkers to predict the efficacy of ICIs. Conclusion ECM remodeling has an important impact on the immune traits of different tumor types. Increasing evidence pinpoint at ECM-derived molecules as putative biomarkers to identify the patients that would most likely benefit from ICIs treatments. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351180, identifier CRD42022351180.
Collapse
Affiliation(s)
- Albina Fejza
- Department of Biochemistry, Faculty of Medical Sciences, UBT-Higher Education Institute, Prishtina, Kosovo
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giorgia Schinello
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Emanuele Di Siena
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
9
|
Iacucci M, Jeffery L, Acharjee A, Grisan E, Buda A, Nardone OM, Smith SCL, Labarile N, Zardo D, Ungar B, Hunter S, Mao R, Cannatelli R, Shivaji UN, Parigi TL, Reynolds GM, Gkoutos GV, Ghosh S. Computer-Aided Imaging Analysis of Probe-Based Confocal Laser Endomicroscopy With Molecular Labeling and Gene Expression Identifies Markers of Response to Biological Therapy in IBD Patients: The Endo-Omics Study. Inflamm Bowel Dis 2023; 29:1409-1420. [PMID: 36378498 PMCID: PMC10472745 DOI: 10.1093/ibd/izac233] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND We aimed to predict response to biologics in inflammatory bowel disease (IBD) using computerized image analysis of probe confocal laser endomicroscopy (pCLE) in vivo and assess the binding of fluorescent-labeled biologics ex vivo. Additionally, we investigated genes predictive of anti-tumor necrosis factor (TNF) response. METHODS Twenty-nine patients (15 with Crohn's disease [CD], 14 with ulcerative colitis [UC]) underwent colonoscopy with pCLE before and 12 to 14 weeks after starting anti-TNF or anti-integrin α4β7 therapy. Biopsies were taken for fluorescein isothiocyanate-labeled infliximab and vedolizumab staining and gene expression analysis. Computer-aided quantitative image analysis of pCLE was performed. Differentially expressed genes predictive of response were determined and validated in a public cohort. RESULTS In vivo, vessel tortuosity, crypt morphology, and fluorescein leakage predicted response in UC (area under the receiver-operating characteristic curve [AUROC], 0.93; accuracy 85%, positive predictive value [PPV] 89%; negative predictive value [NPV] 75%) and CD (AUROC, 0.79; accuracy 80%; PPV 75%; NPV 83%) patients. Ex vivo, increased binding of labeled biologic at baseline predicted response in UC (UC) (AUROC, 83%; accuracy 77%; PPV 89%; NPV 50%) but not in Crohn's disease (AUROC 58%). A total of 325 differentially expressed genes distinguished responders from nonresponders, 86 of which fell within the most enriched pathways. A panel including ACTN1, CXCL6, LAMA4, EMILIN1, CRIP2, CXCL13, and MAPKAPK2 showed good prediction of anti-TNF response (AUROC >0.7). CONCLUSIONS Higher mucosal binding of the drug target is associated with response to therapy in UC. In vivo, mucosal and microvascular changes detected by pCLE are associated with response to biologics in inflammatory bowel disease. Anti-TNF-responsive UC patients have a less inflamed and fibrotic state pretreatment. Chemotactic pathways involving CXCL6 or CXCL13 may be novel targets for therapy in nonresponders.
Collapse
Affiliation(s)
- Marietta Iacucci
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Louisa Jeffery
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Enrico Grisan
- Department of Information Engineering, University of Padova, Padova, Italy
- School of Engineering Computer Science and Informatics, London South Bank University, London, UK
| | - Andrea Buda
- Gastroenterology Unit, Department of Gastrointestinal Oncological Surgery, S. Maria del Prato Hospital, Feltre, Italy
| | - Olga M Nardone
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Samuel C L Smith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Nunzia Labarile
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Davide Zardo
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Bella Ungar
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Stuart Hunter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rosanna Cannatelli
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Uday N Shivaji
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Gary M Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Georgios V Gkoutos
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Subrata Ghosh
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Deng C, Zhong ME, Chen Y, Pan M, Xu L, Xiao Y, Gao Y, Wu B. Proteomic profiling and functional characterization of serum-derived extracellular vesicles in the mucinous and non-mucinous colon adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:9285-9300. [PMID: 37204515 DOI: 10.1007/s00432-023-04851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE Mucinous adenocarcinoma (MC) is a distinct pathological subtype of colon adenocarcinoma, which is associated with a worse prognosis compared with non-mucinous adenocarcinoma (AC). However, clear distinctions between MC and AC remain unknown. Extracellular vesicles (EVs) are a class of enclosed vesicles containing proteins, lipids, and nucleic acids that are secreted by cells into surrounding tissues or into serum. The EVs could facilitate tumorigenesis by regulating tumor cell proliferation, invasiveness, metastasis, angiogenesis, and evasion of immune surveillance. METHODS Quantitative proteomics analysis was performed to determine the characterization and biological differences of serum-derived EVs in two subtypes of colon adenocarcinoma (MC and AC). Serum-derived EVs from patients with MC, AC, and healthy volunteers were included in this study. The role of PLA2G2A in cell migration and invasion were evaluate with transwell assay, and its prognostic predictive value was further assessed based on TCGA database. RESULTS Quantitative proteomics analysis revealed 846 differentially expressed proteins (DEPs) in EVs from MC patients compared with those from AC patients. Bioinformatics analysis revealed that the most prominent protein cluster included those involved in cell migration and the tumor microenvironment. Overexpression of PLA2G2A, one of the key EV proteins upregulated in patients with MC, in colon cancer cell line SW480 promoted the cell invasion and migration ability. In addition, the high level of PLA2G2A is associated with poor prognosis of colon cancer patients harboring BRAF mutations. Further, after EV stimulation, proteomic analysis of recipient SW480 cells showed that MC-derived EVs activated multiple cancer-related pathways, including the Wnt/β-Catenin signaling pathway, and might promote the malignancy of mucinous adenocarcinoma through these pathways. CONCLUSIONS The identification of differential protein profiles between MC and AC helps to elucidate the underlying molecular mechanisms of MC pathogenesis. The PLA2G2A in EVs is a potential prognostic predictive marker for those patients harboring with BRAF mutations.
Collapse
Affiliation(s)
- Chaolin Deng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Min-Er Zhong
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology &, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Meng Pan
- State Key Laboratory of Medical Molecular Biology &, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology &, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
11
|
EMILIN-1 deficiency promotes chronic inflammatory disease through TGFβ signaling alteration and impairment of the gC1q/α4β1 integrin interaction. Matrix Biol 2022; 111:133-152. [PMID: 35764213 DOI: 10.1016/j.matbio.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
Abstract
Alterations in extracellular matrix (ECM) components that modulate inflammatory cell behavior have been shown to serve as early starters for multifactorial diseases such as fibrosis and cancer. Here, we demonstrated that loss of the ECM glycoprotein EMILIN-1 alters the inflammatory context in skin during IMQ-induced psoriasis, a disease characterized by a prominent inflammatory infiltrate and alteration of vessels that appear dilated and tortuous. Abrogation of EMILIN-1 expression or expression of the EMILIN-1 mutant E933A impairs macrophage polarization and leads to imbalanced tissue homeostasis. We found that EMILIN-1 deficiency is associated with dilated lymphatic vessels, increased macrophage recruitment and psoriasis severity. Importantly, the null or mutant EMILIN-1 background was characterized by the induction of a myofibroblast phenotype, which in turn drove macrophages towards the M1 phenotype. By using the transgenic mouse model carrying the E933A mutation in the gC1q domain of EMILIN-1, which abolishes the interaction with α4- and α9-integrins, we demonstrated that the observed changes in TGFβ signaling were due to both the EMI and gC1q domains of EMILIN-1. gC1q may exert multiple functions in psoriasis, in the context of a final, more consistent inflammatory condition by controlling skin homeostasis via interaction with both keratinocytes and fibroblasts, influencing non-canonical TGFβ signaling, and likely acting on lymphatic vessel structure and function. The analyses of human psoriatic lesions, in which lower levels of EMILIN-1 were present with a very rare association with lymphatic vessels, support the multifaceted role of this ECM component in the skin inflammatory scenario.
Collapse
|
12
|
Ucaryilmaz Metin C, Ozcan G. Comprehensive bioinformatic analysis reveals a cancer-associated fibroblast gene signature as a poor prognostic factor and potential therapeutic target in gastric cancer. BMC Cancer 2022; 22:692. [PMID: 35739492 PMCID: PMC9229147 DOI: 10.1186/s12885-022-09736-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gastric cancer is one of the deadliest cancers, currently available therapies have limited success. Cancer-associated fibroblasts (CAFs) are pivotal cells in the stroma of gastric tumors posing a great risk for progression and chemoresistance. The poor prognostic signature for CAFs is not clear in gastric cancer, and drugs that target CAFs are lacking in the clinic. In this study, we aim to identify a poor prognostic gene signature for CAFs, targeting which may increase the therapeutic success in gastric cancer. METHODS We analyzed four GEO datasets with a network-based approach and validated key CAF markers in The Cancer Genome Atlas (TCGA) and The Asian Cancer Research Group (ACRG) cohorts. We implemented stepwise multivariate Cox regression guided by a pan-cancer analysis in TCGA to identify a poor prognostic gene signature for CAF infiltration in gastric cancer. Lastly, we conducted a database search for drugs targeting the signature genes. RESULTS Our study revealed the COL1A1, COL1A2, COL3A1, COL5A1, FN1, and SPARC as the key CAF markers in gastric cancer. Analysis of the TCGA and ACRG cohorts validated their upregulation and poor prognostic significance. The stepwise multivariate Cox regression elucidated COL1A1 and COL5A1, together with ITGA4, Emilin1, and TSPAN9 as poor prognostic signature genes for CAF infiltration. The search on drug databases revealed collagenase clostridium histolyticum, ocriplasmin, halofuginone, natalizumab, firategrast, and BIO-1211 as the potential drugs for further investigation. CONCLUSIONS Our study demonstrated the central role of extracellular matrix components secreted and remodeled by CAFs in gastric cancer. The gene signature we identified in this study carries high potential as a predictive tool for poor prognosis in gastric cancer patients. Elucidating the mechanisms by which the signature genes contribute to poor patient outcomes can lead to the discovery of more potent molecular-targeted agents and increase the therapeutic success in gastric cancer.
Collapse
Affiliation(s)
| | - Gulnihal Ozcan
- Department of Medical Pharmacology, Koc University School of Medicine, 34450, Istanbul, Turkey.
| |
Collapse
|
13
|
Chemically Induced Colitis-Associated Cancer Models in Rodents for Pharmacological Modulation: A Systematic Review. J Clin Med 2022; 11:jcm11102739. [PMID: 35628865 PMCID: PMC9146029 DOI: 10.3390/jcm11102739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Animal models for colitis-associated colorectal cancer (CACC) represent an important tool to explore the mechanistic basis of cancer-related inflammation, providing important evidence that several inflammatory mediators play specific roles in the initiation and perpetuation of colitis and CACC. Although several original articles have been published describing the CACC model in rodents, there is no consensus about the induction method. This review aims to identify, summarize, compare, and discuss the chemical methods for the induction of CACC through the PRISMA methodology. METHODS We searched MEDLINE via the Pubmed platform for studies published through March 2021, using a highly sensitive search expression. The inclusion criteria were only original articles, articles where a chemically-induced animal model of CACC is described, preclinical studies in vivo with rodents, and articles published in English. RESULTS Chemically inducible models typically begin with the administration of a carcinogenic compound (as azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)), and inflammation is caused by repeated cycles of colitis-inducing agents (such as 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS)). The strains mostly used are C57BL/6 and Balb/c with 5-6 weeks. To characterize the preclinical model, the parameters more used include body weight, stool consistency and morbidity, inflammatory biomarkers such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, angiogenesis markers such as proliferating cell nuclear antigen (PCNA), marker of proliferation Ki-67, and caspase 3, the presence of ulcers, thickness or hyperemia in the colon, and histological evaluation of inflammation. CONCLUSION The AOM administration seems to be important to the CACC induction method, since the carcinogenic effect is achieved with just one administration. DSS has been the more used inflammatory agent; however, the TNBS contribution should be more studied, since it allows a reliable, robust, and a highly reproducible animal model of intestinal inflammation.
Collapse
|
14
|
Andreuzzi E, Fejza A, Polano M, Poletto E, Camicia L, Carobolante G, Tarticchio G, Todaro F, Di Carlo E, Scarpa M, Scarpa M, Paulitti A, Capuano A, Canzonieri V, Maiero S, Fornasarig M, Cannizzaro R, Doliana R, Colombatti A, Spessotto P, Mongiat M. Colorectal cancer development is affected by the ECM molecule EMILIN-2 hinging on macrophage polarization via the TLR-4/MyD88 pathway. J Exp Clin Cancer Res 2022; 41:60. [PMID: 35148799 PMCID: PMC8840294 DOI: 10.1186/s13046-022-02271-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/22/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Colorectal cancer is one of the most frequent and deadly tumors. Among the key regulators of CRC growth and progression, the microenvironment has emerged as a crucial player and as a possible route for the development of new therapeutic opportunities. More specifically, the extracellular matrix acts directly on cancer cells and indirectly affecting the behavior of stromal and inflammatory cells, as well as the bioavailability of growth factors. Among the ECM molecules, EMILIN-2 is frequently down-regulated by methylation in CRC and the purpose of this study was to verify the impact of EMILIN-2 loss in CRC development and its possible value as a prognostic biomarker. METHODS The AOM/DSS CRC protocol was applied to Emilin-2 null and wild type mice. Tumor development was monitored by endoscopy, the molecular analyses performed by IHC, IF and WB and the immune subpopulations characterized by flow cytometry. Ex vivo cultures of monocyte/macrophages from the murine models were used to verify the molecular pathways. Publicly available datasets were exploited to determine the CRC patients' expression profile; Spearman's correlation analyses and Cox regression were applied to evaluate the association with the inflammatory response; the clinical outcome was predicted by Kaplan-Meier survival curves. Pearson correlation analyses were also applied to a cohort of patients enrolled in our Institute. RESULTS In preclinical settings, loss of EMILIN-2 associated with an increased number of tumor lesions upon AOM/DSS treatment. In addition, in the early stages of the disease, the Emilin-2 knockout mice displayed a myeloid-derived suppressor cells-rich infiltrate. Instead, in the late stages, lack of EMILIN-2 associated with a decreased number of M1 macrophages, resulting in a higher percentage of the tumor-promoting M2 macrophages. Mechanistically, EMILIN-2 triggered the activation of the Toll-like Receptor 4/MyD88/NF-κB pathway, instrumental for the polarization of macrophages towards the M1 phenotype. Accordingly, dataset and immunofluorescence analyses indicated that low EMILIN-2 expression levels correlated with an increased M2/M1 ratio and with poor CRC patients' prognosis. CONCLUSIONS These novel results indicate that EMILIN-2 is a key regulator of the tumor-associated inflammatory environment and may represent a promising prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giulia Tarticchio
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Federico Todaro
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Melania Scarpa
- Ricerca Traslazionale Avanzata, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Marco Scarpa
- Clinica Chirurgica I- Azienda Ospedaliera di Padova, Padua, Italy
| | - Alice Paulitti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Stefania Maiero
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Renato Cannizzaro
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alfonso Colombatti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| |
Collapse
|
15
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
16
|
Wang S, Huang J, Tan KS, Deng L, Liu F, Tan W. Isosteviol Sodium Ameliorates Dextran Sodium Sulfate-Induced Chronic Colitis through the Regulation of Metabolic Profiling, Macrophage Polarization, and NF- κB Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4636618. [PMID: 35126813 PMCID: PMC8813272 DOI: 10.1155/2022/4636618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBDs) constitute a group of chronic intestinal conditions prominently featuring deranged metabolism. Effective pharmacological treatments for IBDs are lacking. Isosteviol sodium (STV-Na) exhibits anti-inflammatory activity and may offer therapeutic benefits in chronic colitis. However, the associated mechanism remains unclear. This study is aimed at exploring the therapeutic effects of STV-Na against chronic colitis in terms of metabolic reprogramming and macrophage polarization. Results show that STV-Na attenuated weight loss and colonic pathological damage and restored the hematological and biochemical parameters in chronic colitis mice models. STV-Na also restored intestinal permeability by increasing the goblet cell numbers, which was accompanied by lowered plasma lipopolysaccharide and diamine oxidase levels. Metabolomic analysis highlighted 102 candidate biomarkers and 5 vital pathways that may be crucial in the potential pharmacological mechanism of STV-Na in regulating intestinal inflammation and oxidative stress. These pathways were glycerophospholipid metabolism, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, the pentose phosphate pathway, and phosphonate and phosphinate metabolism. Furthermore, STV-Na significantly decreased M1 macrophage polarization in the spleen and colon. The mRNA and protein levels of IL-1β, TNF-α, and NF-κB/p65 in colonic tissue from the colitis mice were decreased after the STV-Na treatment. Overall, STV-Na could alleviate chronic colitis by suppressing oxidative stress and inflammation levels, reprogramming the metabolic profile, inhibiting macrophage polarization, and suppressing the NF-κB/p65 signaling pathway. STV-Na remains a promising candidate drug for treating IBDs.
Collapse
Affiliation(s)
- Shanping Wang
- 1Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiandong Huang
- 1Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Keai Sinn Tan
- 2College of Pharmacy, Jinan University, Guangzhou 510632, China
- 3Post-Doctoral Innovation Site, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd., Hengqin New District, Zhuhai, Guangdong 51900, China
| | - Liangjun Deng
- 1Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Liu
- 1Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Tan
- 3Post-Doctoral Innovation Site, Jinan University Affiliation, Yuanzhi Health Technology Co, Ltd., Hengqin New District, Zhuhai, Guangdong 51900, China
- 4Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| |
Collapse
|
17
|
Boby N, Cao X, Ransom A, Pace BT, Mabee C, Shroyer MN, Das A, Didier PJ, Srivastav SK, Porter E, Sha Q, Pahar B. Identification, Characterization, and Transcriptional Reprogramming of Epithelial Stem Cells and Intestinal Enteroids in Simian Immunodeficiency Virus Infected Rhesus Macaques. Front Immunol 2021; 12:769990. [PMID: 34887863 PMCID: PMC8650114 DOI: 10.3389/fimmu.2021.769990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.
Collapse
Affiliation(s)
- Nongthombam Boby
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Alyssa Ransom
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Barcley T Pace
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Christopher Mabee
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Monica N Shroyer
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Sudesh K Srivastav
- Department of Biostatistics, Tulane University, New Orleans, LA, United States
| | - Edith Porter
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.,Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, United States
| |
Collapse
|
18
|
Fejza A, Poletto E, Carobolante G, Camicia L, Andreuzzi E, Capuano A, Pivetta E, Pellicani R, Colladel R, Marastoni S, Doliana R, Iozzo RV, Spessotto P, Mongiat M. Multimerin-2 orchestrates the cross-talk between endothelial cells and pericytes: A mechanism to maintain vascular stability. Matrix Biol Plus 2021; 11:100068. [PMID: 34435184 PMCID: PMC8377000 DOI: 10.1016/j.mbplus.2021.100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
The ECM Multimerin-2 is a substrate for pericyte adhesion. The recruitment of pericytes leads to enhanced Multimerin-2 expression by endothelial cells. Multimerin-2 induces the expression of important cytokines both in endothelial cells and pericytes. The deposition of Multimerin-2 is key for the endothelial cell/pericyte crosstalk required for the establishment of vascular stability.
Tumor angiogenesis is vital for the growth and development of various solid cancers and as such is a valid and promising therapeutic target. Unfortunately, the use of the currently available anti-angiogenic drugs increases the progression-free survival by only a few months. Conversely, targeting angiogenesis to prompt both vessel reduction and normalization, has been recently viewed as a promising approach to improve therapeutic efficacy. As a double-edged sword, this line of attack may on one side halt tumor growth as a consequence of the reduction of nutrients and oxygen supplied to the tumor cells, and on the other side improve drug delivery and, hence, efficacy. Thus, it is of upmost importance to better characterize the mechanisms regulating vascular stability. In this context, recruitment of pericytes along the blood vessels is crucial to their maturation and stabilization. As the extracellular matrix molecule Multimerin-2 is secreted by endothelial cells and deposited also in juxtaposition between endothelial cells and pericytes, we explored Multimerin-2 role in the cross-talk between the two cell types. We discovered that Multimerin-2 is an adhesion substrate for pericytes. Interestingly, and consistent with the notion that Multimerin-2 is a homeostatic molecule deposited in the later stages of vessel formation, we found that the interaction between endothelial cells and pericytes promoted the expression of Multimerin-2. Furthermore, we found that Multimerin-2 modulated the expression of key cytokines both in endothelial cells and pericytes. Collectively, our findings posit Multimerin-2 as a key molecule in the cross-talk between endothelial cells and pericytes and suggest that the expression of this glycoprotein is required to maintain vascular stability.
Collapse
Key Words
- Ang-2, Angiopeietin-2
- Angiogenesis
- CD248, cluster of differentiation 248
- CD93, cluster of differentiation 93
- ECM, extracellular matrix
- EDEN, EMI Domain ENdowed
- Extracellular matrix
- HB-EGF, heparin binding epidermal growth factor
- HBVP, human brain vascular pericytes
- HDMEC, human dermal vascular endothelial cells
- HUVEC, human umbilical vein endothelial cells
- Notch-3-R, Notch Receptor 3
- PDGF, platelet-derived growth factor
- VEGFA, vascular endothelial growth factor A
- VEGFR2, vascular endothelial growth factor receptor 2
- VSMCs, vascular smooth muscle cells
- Vascular stability
Collapse
Affiliation(s)
- Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Rosanna Pellicani
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Roberta Colladel
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Stefano Marastoni
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| |
Collapse
|
19
|
Inactivation of EMILIN-1 by Proteolysis and Secretion in Small Extracellular Vesicles Favors Melanoma Progression and Metastasis. Int J Mol Sci 2021; 22:ijms22147406. [PMID: 34299025 PMCID: PMC8303474 DOI: 10.3390/ijms22147406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Several studies have demonstrated that melanoma-derived extracellular vesicles (EVs) are involved in lymph node metastasis; however, the molecular mechanisms involved are not completely defined. Here, we found that EMILIN-1 is proteolyzed and secreted in small EVs (sEVs) as a novel mechanism to reduce its intracellular levels favoring metastasis in mouse melanoma lymph node metastatic cells. Interestingly, we observed that EMILIN-1 has intrinsic tumor and metastasis suppressive-like properties reducing effective migration, cell viability, primary tumor growth, and metastasis. Overall, our analysis suggests that the inactivation of EMILIN-1 by proteolysis and secretion in sEVs reduce its intrinsic tumor suppressive activities in melanoma favoring tumor progression and metastasis.
Collapse
|
20
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021. [DOI: 10.3390/cancers13112759
expr 955442319 + 839973387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
21
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021; 13:cancers13112759. [PMID: 34199373 PMCID: PMC8199582 DOI: 10.3390/cancers13112759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Local and distant metastasis of patients affected by squamous cell carcinoma of the upper aerodigestive tract predicts poor prognosis. In the latest years, the introduction of new therapeutic approaches, including targeted and immune therapies, has improved the overall survival. However, a large number of these patients do not benefit from these treatments. Thus, the identification of suitable prognostic and predictive biomarkers, as well as the discovery of new therapeutic targets have emerged as a crucial clinical need. In this context, the extracellular matrix represents a suitable target for the development of such therapeutic tools. In fact, the extracellular matrix is composed by complex molecules able to interact with a plethora of receptors and growth factors, thus modulating the dynamic crosstalk between cancer cells and the tumor microenvironment. In this review, we summarize the current knowledge of the role of the extracellular matrix in affecting squamous cell carcinoma growth and dissemination. Despite extracellular matrix is known to affect the development of many cancer types, only a restricted number of these molecules have been recognized to impact on squamous cell carcinoma progression. Thus, we consider that a thorough analysis of these molecules may be key to develop new potential therapeutic targets/biomarkers. Abstract Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
22
|
Shimshoni E, Adir I, Afik R, Solomonov I, Shenoy A, Adler M, Puricelli L, Sabino F, Savickas S, Mouhadeb O, Gluck N, Fishman S, Werner L, Salame TM, Shouval DS, Varol C, Auf dem Keller U, Podestà A, Geiger T, Milani P, Alon U, Sagi I. Distinct extracellular-matrix remodeling events precede symptoms of inflammation. Matrix Biol 2021; 96:47-68. [PMID: 33246101 DOI: 10.1016/j.matbio.2020.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/04/2023]
Abstract
Identification of early processes leading to complex tissue pathologies, such as inflammatory bowel diseases, poses a major scientific and clinical challenge that is imperative for improved diagnosis and treatment. Most studies of inflammation onset focus on cellular processes and signaling molecules, while overlooking the environment in which they take place, the continuously remodeled extracellular matrix. In this study, we used colitis models for investigating extracellular-matrix dynamics during disease onset, while treating the matrix as a complete and defined entity. Through the analysis of matrix structure, stiffness and composition, we unexpectedly revealed that even prior to the first clinical symptoms, the colon displays its own unique extracellular-matrix signature and found specific markers of clinical potential, which were also validated in human subjects. We also show that the emergence of this pre-symptomatic matrix is mediated by subclinical infiltration of immune cells bearing remodeling enzymes. Remarkably, whether the inflammation is chronic or acute, its matrix signature converges at pre-symptomatic states. We suggest that the existence of a pre-symptomatic extracellular-matrix is general and relevant to a wide range of diseases.
Collapse
Affiliation(s)
- Elee Shimshoni
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel
| | - Idan Adir
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel
| | - Ran Afik
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel
| | - Inna Solomonov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel
| | - Anjana Shenoy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Miri Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Luca Puricelli
- CIMAINA and Department of Physics, Università degli Studi di Milano, Milano, Italy
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Simonas Savickas
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Odelia Mouhadeb
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nathan Gluck
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Sigal Fishman
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Chen Varol
- Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alessandro Podestà
- CIMAINA and Department of Physics, Università degli Studi di Milano, Milano, Italy
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Paolo Milani
- CIMAINA and Department of Physics, Università degli Studi di Milano, Milano, Italy
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, IL 76100, Israel.
| |
Collapse
|
23
|
Iozzo RV, Theocharis AD, Neill T, Karamanos NK. Complexity of matrix phenotypes. Matrix Biol Plus 2020; 6-7:100038. [PMID: 33543032 PMCID: PMC7852209 DOI: 10.1016/j.mbplus.2020.100038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix is engaged in an ever-evolving and elegant ballet of dynamic reciprocity that directly and bi-directionally regulates cell behavior. Homeostatic and pathophysiological changes in cell-matrix signaling cascades manifest as complex matrix phenotypes. Indeed, the extracellular matrix can be implicated in virtually every known human disease, thus, making it the most critical and dynamic "organ" in the human body. The overall goal of this Special Issue is to provide an accurate and inclusive functional definition that addresses the inherent complexity of matrix phenotypes. This goal is summarily achieved via a corpus of expertly written articles, reviews and original research, focused at answering this question empirically and fundamentally via state-of-the-art methods and research strategies.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinases
- AGE, advanced glycation end products
- Angiogenesis
- Cancer
- Collagen
- DDR1, discoidin domain receptor 1
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMILIN1, elastin microfibril interfacer 1
- EMILIN2, elastin microfibril interfacer 2
- EMT, epithelial-mesenchymal transition
- ERα, estrogen receptor α
- ERβ, estrogen receptor β
- GBM, glioblastoma
- HA, hyaluronan
- HAS2, hyaluronan synthase 2
- HAS2-AS1, HAS2 antisense 1
- HB-EGF, heparin binding EGF
- HMGA2, high-mobility group AT-Hook 2
- IBC, inflammatory breast cancer
- IGF-IR, insulin growth factor I receptor
- IR-A, insulin receptor A
- LEKTI, lympho-epithelial Kazal-type inhibitor
- LOX, lysyl oxidases
- LTBP, latent TGFβ-binding proteins
- MAGP, microfibril-associated glycoproteins
- MET, mesenchymal-epithelial transition
- MMP, matrix metalloproteinases
- Methodologies
- OB, osteoblast
- OI, osteogenesis imperfecta
- PARs, protease activated receptors
- PG, proteoglycans
- PLL, poly-l-lysine
- Proteoglycans
- ROS, reactive oxygen species
- RTK, receptor tyrosine kinase
- SLRP, small leucine rich proteoglycans
- SSR, solar-simulated radiation
- TGFβ, transforming growth factor β
- TNT, tunneling nanotubes
- UVR, ultraviolet radiation
- VEGF, vascular endothelial growth factor
- miR, microRNA
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
Collapse
Affiliation(s)
- Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
24
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
25
|
Andreuzzi E, Fejza A, Capuano A, Poletto E, Pivetta E, Doliana R, Pellicani R, Favero A, Maiero S, Fornasarig M, Cannizzaro R, Iozzo RV, Spessotto P, Mongiat M. Deregulated expression of Elastin Microfibril Interfacer 2 (EMILIN2) in gastric cancer affects tumor growth and angiogenesis. Matrix Biol Plus 2020; 6-7:100029. [PMID: 33543026 PMCID: PMC7852313 DOI: 10.1016/j.mbplus.2020.100029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a frequent human tumor and often a lethal disease. Targeted therapy for gastric carcinomas is far behind vis-à-vis other solid tumors, primarily because of the paucity of cancer-driving mutations that could be efficiently and specifically targeted by current therapy. Thus, there is a need to discover actionable pathways/proteins and new diagnostic and prognostic biomarkers. In this study, we explored the role of the extracellular matrix glycoprotein EMILIN2, Elastin Microfibril Interfacer 2, in a cohort of gastric cancer patients. We discovered that EMILIN2 expression was consistently suppressed in gastric cancer and high expression levels of this glycoprotein were linked to abnormal vascular density. Furthermore, we found that EMILIN2 had a dual effect on gastric carcinoma cells: on one hand, it decreased tumor cell proliferation by triggering apoptosis, and on the other hand, it evoked the production of a number of cytokines involved in angiogenesis and inflammation, such as IL-8. Collectively, our findings posit EMILIN2 as an important onco-regulator exerting pleiotropic effects on the gastric cancer microenvironment. EMILIN2 is localized in the gastric lamina propria and its expression is down-regulated in gastric cancer. High levels of EMILIN2 associate with elevated vascular density. EMILIN2 impairs the proliferation of gastric cancer cells by evoking apoptosis. Surprisingly, EMILIN2 triggers the expression of pro-angiogenic and pro-inflammatory cytokines.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Angiogenesis
- CAFCA, Centrifugal Assay for Fluorescence-based Cell Adhesion
- CD31, cluster of differentiation 31 also known as PECAM-1
- ECM, extracellular matrix
- EGFR, epidermalgrowth factor receptor
- EMILIN 2, Elastin Microfibril Interfacer 2
- Extracellular matrix
- GC, gastric cancer
- Gastric cancer
- HER2, human epidermal growth factor receptor 2
- IGFBP2, insulin growth factor-binding protein 2
- Inflammation
- PFS, progression free survival
- Serpin 1, serine protease inhibitor 1
- Tumor microenvironment
- VEGFA, vascular endothelial growth factor A
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Rosanna Pellicani
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Stefania Maiero
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Mara Fornasarig
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| |
Collapse
|