1
|
Girão AF, Barroca N, Hernández-Martín Y, Completo A, Marques PAAP, Serrano MC. 3D nanofibrous frameworks with on-demand engineered gray and white matters for reconstructing the injured spinal cord. BIOMATERIALS ADVANCES 2025; 170:214200. [PMID: 39904017 DOI: 10.1016/j.bioadv.2025.214200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/27/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Spinal cord injury (SCI) is a disruptive and heterogeneous medical condition affecting millions of patients worldwide. Due to the absence of medical treatments to effectively restore the lost sensorimotor and autonomic functions, there is an ongoing pursuit of scaffolds aiming to bridge the injured spinal area. Herein, a novel electrospinning modality to construct 3D nanofibrous frameworks (NFFs) in accordance with distinct spinal cord microenvironments is used to engineer a biomimetic hemicord. This scaffolding concept gravitates around the possibility of customizing NFFs with on-demand engineered gray and white matters to replicate the native spinal cytoarchitecture. In particular, a 3D reduced graphene oxide-based fibrous-porous system is developed to imitate the gray matter, while a 3D polycaprolactone (PCL)-chitosan nanofibrous network combined with PCL-graphene microfibers intends to mimic the white matter. The scaffolding components are tested in vitro with embryonic neural progenitor cells, integrated into the biomimetic NFF, and then tested in vivo in paralyzed rats with cervical hemisection. After 4 months of implantation, the scaffold generates both neuroprotective (e.g., limited infiltration of vimentin+ and ED1+ cells) and neuroregenerative (e.g., presence of new blood vessels and neurites) features accompanied with promising signs of forelimb function recovery.
Collapse
Affiliation(s)
- André F Girão
- Center for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal; Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain.
| | - Nathalie Barroca
- Center for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - Yasmina Hernández-Martín
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo 45071, Spain
| | - António Completo
- Center for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - Paula A A P Marques
- Center for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, Madrid 28049, Spain.
| |
Collapse
|
2
|
Sanati M, Manavi MA, Noruzi M, Behmadi H, Akbari T, Jalali S, Sharifzadeh M, Khoobi M. Carbohydrates and neurotrophic factors: A promising partnership for spinal cord injury rehabilitation. BIOMATERIALS ADVANCES 2025; 166:214054. [PMID: 39332344 DOI: 10.1016/j.bioadv.2024.214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) leaves a temporary or enduring motor, sensory, and autonomic function loss, significantly impacting the patient's quality of life. Given their biocompatibility, bioactivity, and tunable attributes, three-dimensional scaffolds frequently employ carbohydrates to facilitate spinal cord regeneration. These scaffolds have also been engineered to be novel local delivery platforms that present distinct advantages in the targeted transportation of drug candidates to the damaged spinal cord, ensuring the right dosage and duration of administration. Neurotrophic factors have emerged as promising therapeutic candidates, preserved neuron survival and encouraged severed axons repair, although their local and continuous delivery is believed to produce considerable spinal cord rehabilitation. This study aims to discuss breakthroughs in scaffold engineering, exploiting carbohydrates as an essential part of their structure, and highlight their impact on spinal cord regeneration and sustained neurotrophic factors delivery to treat SCI.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Sara Jalali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran.
| |
Collapse
|
3
|
Li N, He J. Hydrogel-based therapeutic strategies for spinal cord injury repair: Recent advances and future prospects. Int J Biol Macromol 2024; 277:134591. [PMID: 39127289 DOI: 10.1016/j.ijbiomac.2024.134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord injury (SCI) is a debilitating condition that can result in significant functional impairment and loss of quality of life. There is a growing interest in developing new therapies for SCI, and hydrogel-based multimodal therapeutic strategies have emerged as a promising approach. They offer several advantages for SCI repair, including biocompatibility, tunable mechanical properties, low immunogenicity, and the ability to deliver therapeutic agents. This article provides an overview of the recent advances in hydrogel-based therapy strategies for SCI repair, particularly within the past three years. We summarize the SCI hydrogels with varied characteristics such as phase-change hydrogels, self-healing hydrogel, oriented fibers hydrogel, and self-assembled microspheres hydrogel, as well as different functional hydrogels such as conductive hydrogels, stimuli-responsive hydrogels, adhesive hydrogel, antioxidant hydrogel, sustained-release hydrogel, etc. The composition, preparation, and therapeutic effect of these hydrogels are briefly discussed and comprehensively evaluated. In the end, the future development of hydrogels in SCI repair is prospected to inspire more researchers to invest in this promising field.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
4
|
Gu J, Cai X, Raza F, Zafar H, Chu B, Yuan H, Wang T, Wang J, Feng X. Preparation of a minocycline polymer micelle thermosensitive gel and its application in spinal cord injury. NANOSCALE ADVANCES 2024:d4na00625a. [PMID: 39355839 PMCID: PMC11440374 DOI: 10.1039/d4na00625a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
Neuroprotection is an important approach for the treatment of spinal cord injury (SCI). Minocycline (MC), a known neuroprotective agent, has been utilized for SCI treatment, but its therapeutic effect is limited by instability and low bioavailability. Herein, we developed an innovative micellar thermosensitive hydrogel (MCPP-M-gel) that encapsulates MC in polyethylene glycol (PEG)-poly(lactide-co-glycolic acid) (PLGA) micelles to enhance its therapeutic efficacy in a rat model of SCI. The micelles were synthesized via the thin-film hydration method and characterized for encapsulation efficiency, particle size, zeta potential, and polydispersity index (PDI). MCPP-M-gel demonstrated favorable physico-mechanical properties and extended MC release over 72 hours in vitro without cytotoxic effects on neural crest-derived ectoderm mesenchymal stem cells (EMSCs). Thereafter, MC, MCPP-M, MCPP-M-gel and a blank micellar thermosensitive gel were injected into the injured site of SCI rats. Histopathological evaluation demonstrated that MCPP-M-gel could promote neuronal regeneration at the injured site of the SC after 28 days. Immunofluorescence techniques revealed that MCPP-M-gel increased the expression of neuronal class III β-tubulin (Tuj1), myelin basic protein (MBP), growth-associated protein 43 (GAP43), neurofilament protein-200 (NF-200) and nestin as well as reduced glial-fibrillary acidic protein (GFAP) expression in damaged areas of the SC. In conclusion, this study innovatively developed MCPP-M-gel based on a PEG-PLGA copolymer as a biomaterial, laying a solid foundation for further research and application of MCPP-M-gel in SCI models or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun Gu
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Xiaohu Cai
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Rehabilitation, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Bo Chu
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Haitao Yuan
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Tianqi Wang
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| | - Jiapeng Wang
- School of Pharmacy, Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Xiaojun Feng
- School of Medicine, Yangzhou University Yangzhou Jiangsu 225009 China
- Department of Orthopedics, Xishan People's Hospital Wuxi Jiangsu 204105 China
| |
Collapse
|
5
|
Zhang Y, Wu Z, Wu J, Li T, Jiang F, Yang B. Current multi-scale biomaterials for tissue regeneration following spinal cord injury. Neurochem Int 2024; 178:105801. [PMID: 38971503 DOI: 10.1016/j.neuint.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Spinal cord injury (SCI) may cause loss of motor and sensory function, autonomic dysfunction, and thus disrupt the quality of life of patients, leading to severe disability and significant psychological, social, and economic burden. At present, existing therapy for SCI have limited ability to promote neural function recovery, and there is an urgent need to develop innovative regenerative approaches to repair SCI. Biomaterials have become a promising strategy to promote the regeneration and repair of damaged nerve tissue after SCI. Biomaterials can provide support for nerve tissue by filling cavities, and improve local inflammatory responses and reshape extracellular matrix structures through unique biochemical properties to create the optimal microenvironment at the SCI site, thereby promoting neurogenesis and reconnecting damaged spinal cord tissue. Considering the importance of biomaterials in repairing SCI, this article reviews the latest progress of multi-scale biomaterials in SCI treatment and tissue regeneration, and evaluates the relevant technologies for manufacturing biomaterials.
Collapse
Affiliation(s)
- Yuang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Zhonghuan Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Junfeng Wu
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Tingdong Li
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Fugui Jiang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China
| | - Biao Yang
- Department of Orthopedics, People's Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556000, PR China; Department of Orthopedics, Qiandongnan Hospital of Guizhou Medical University Affiliated Hospital, Kaili, 556000, PR China.
| |
Collapse
|
6
|
Zhang F, Gao H, Jiang X, Yang F, Zhang J, Song S, Shen J. Biomedical Application of Decellularized Scaffolds. ACS APPLIED BIO MATERIALS 2023; 6:5145-5168. [PMID: 38032114 DOI: 10.1021/acsabm.3c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Tissue loss and end-stage organ failure are serious health problems across the world. Natural and synthetic polymer scaffold material based artificial organs play an important role in the field of tissue engineering and organ regeneration, but they are not from the body and may cause side effects such as rejection. In recent years, the biomimetic decellularized scaffold based materials have drawn great attention in the tissue engineering field for their good biocompatibility, easy modification, and excellent organism adaptability. Therefore, in this review, we comprehensively summarize the application of decellularized scaffolds in tissue engineering and biomedicine in recent years. The preparation methods, modification strategies, construction of artificial tissues, and application in biomedical applications are discussed. We hope that this review will provide a useful reference for research on decellularized scaffolds and promote their application tissue engineering.
Collapse
Affiliation(s)
- Fang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huimin Gao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuefeng Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Saijie Song
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Shahemi NH, Mahat MM, Asri NAN, Amir MA, Ab Rahim S, Kasri MA. Application of Conductive Hydrogels on Spinal Cord Injury Repair: A Review. ACS Biomater Sci Eng 2023. [PMID: 37364251 DOI: 10.1021/acsbiomaterials.3c00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Spinal cord injury (SCI) causes severe motor or sensory damage that leads to long-term disabilities due to disruption of electrical conduction in neuronal pathways. Despite current clinical therapies being used to limit the propagation of cell or tissue damage, the need for neuroregenerative therapies remains. Conductive hydrogels have been considered a promising neuroregenerative therapy due to their ability to provide a pro-regenerative microenvironment and flexible structure, which conforms to a complex SCI lesion. Furthermore, their conductivity can be utilized for noninvasive electrical signaling in dictating neuronal cell behavior. However, the ability of hydrogels to guide directional axon growth to reach the distal end for complete nerve reconnection remains a critical challenge. In this Review, we highlight recent advances in conductive hydrogels, including the incorporation of conductive materials, fabrication techniques, and cross-linking interactions. We also discuss important characteristics for designing conductive hydrogels for directional growth and regenerative therapy. We propose insights into electrical conductivity properties in a hydrogel that could be implemented as guidance for directional cell growth for SCI applications. Specifically, we highlight the practical implications of recent findings in the field, including the potential for conductive hydrogels to be used in clinical applications. We conclude that conductive hydrogels are a promising neuroregenerative therapy for SCI and that further research is needed to optimize their design and application.
Collapse
Affiliation(s)
- Nur Hidayah Shahemi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Mohd Muzamir Mahat
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Nurul Ain Najihah Asri
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Muhammad Abid Amir
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Mohamad Arif Kasri
- Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
8
|
Liu C, Liu D, Zhang X, Hui L, Zhao L. Nanofibrous polycaprolactone/amniotic membrane facilitates peripheral nerve regeneration by promoting macrophage polarization and regulating inflammatory microenvironment. Int Immunopharmacol 2023; 121:110507. [PMID: 37356125 DOI: 10.1016/j.intimp.2023.110507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Appropriate levels of inflammation are an important part of functional repair of nerve damage. However, excessive inflammation can cause the continuous activation of immune inflammatory cells and degeneration of nerve cells. Regulating the temporal and spatial changes in M1/M2 macrophages can regulate the local inflammatory immune environment of the tissue to promote its transformation to a direction conducive to tissue repair.In the present study, a multi-layer multifunctional nanofiber composite membrane of polycaprolactone(PCL) and amniotic membrane (AM) was constructed using electrospinning. In vitro studies have shown that the PCL/AM composite promoted the axon growth of SH-SY5Y cells and induced their differentiation into neurons. The PCL/AM composite wrapped the nerve stump to form a microenvironment that was conducive to nerve regeneration, blocked the invasion of scar tissue, promoted the recruitment of macrophages and moderate polarization to M2, enhanced the expression of anti-inflammatory factors IL-10 and IL-13, inhibited the expression of pro-inflammatory factors IL-6 and TNF-α, and induced myelin sheath and axon regeneration. By releasing various bioactive substances to regulate the polarization of M2 macrophages and formation of anti-inflammatory factors, the PCL/AM composite can enhance axonal regeneration and improve nerve repair.
Collapse
Affiliation(s)
- Chunjie Liu
- Xingtai People's Hospital Postdoctoral Workstation, Xingtai People's Hospital, Xingtai 054031, China; Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang 050017, China; Department of Orthopedics, Tangshan Workers Hospital, Tangshan 063000, China
| | - Dengxiang Liu
- Institute of Cancer Control, Xingtai People's Hospital, Xingtai 054001, China; Xingtai Key Laboratory of Precision Medicine for Liver Cirrhosis and Portal Hypertension, Xingtai People's Hospital, Xingtai 054001, China
| | - Xiaochong Zhang
- Department of Research and Education, Xingtai People's Hospital, Xingtai 054031, China
| | - Limin Hui
- Department of Gynecology, Xingtai People's Hospital, Xingtai 054001, China
| | - Lili Zhao
- Xingtai People's Hospital Postdoctoral Workstation, Xingtai People's Hospital, Xingtai 054031, China; Department of Orthopedics, Xingtai People's Hospital, Xingtai 054031, China.
| |
Collapse
|
9
|
Long L, Ji D, Hu C, Yang L, Tang S, Wang Y. Microneedles for in situ tissue regeneration. Mater Today Bio 2023; 19:100579. [PMID: 36880084 PMCID: PMC9984687 DOI: 10.1016/j.mtbio.2023.100579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Tissue injury is a common clinical problem, which may cause great burden on patients' life. It is important to develop functional scaffolds to promote tissue repair and regeneration. Due to their unique composition and structure, microneedles have attracted extensive attention in various tissues regeneration, including skin wound, corneal injury, myocardial infarction, endometrial injury, and spinal cord injury et al. Microneedles with micro-needle structure can effectively penetrate the barriers of necrotic tissue or biofilm, therefore improving the bioavailability of drugs. The use of microneedles to deliver bioactive molecules, mesenchymal stem cells, and growth factors in situ allows for targeted tissue and better spatial distribution. At the same time, microneedles can also provide mechanical support or directional traction for tissue, thus accelerating tissue repair. This review summarized the research progress of microneedles for in situ tissue regeneration over the past decade. At the same time, the shortcomings of existing researches, future research direction and clinical application prospect were also discussed.
Collapse
Affiliation(s)
- Linyu Long
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dan Ji
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Shibo Tang
- Aier Eye Institute, Changsha, Hunan Province, 410035, China
- Aier School of Ophthalmology, Central South University, Changsha, Hunan, 410009, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
10
|
Karimi-Soflou R, Shabani I, Karkhaneh A. Enhanced neural differentiation by applying electrical stimulation utilizing conductive and antioxidant alginate-polypyrrole/poly-l-lysine hydrogels. Int J Biol Macromol 2023; 237:124063. [PMID: 36933596 DOI: 10.1016/j.ijbiomac.2023.124063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
The challenge of restoration from neurodegenerative disorder requires effective solutions. To enhance the healing efficiencies, scaffolds with antioxidant activities, electroconductivity, and versatile features to encourage neuronal differentiation are potentially useful. Herein, polypyrrole-alginate (Alg-PPy) copolymer was used to design antioxidant and electroconductive hydrogels through the chemical oxidation radical polymerization method. The hydrogels have antioxidant effects to combat oxidative stress in nerve damage thanks to the introduction of PPy. Additionally, poly-l-lysine (PLL) provided these hydrogels with a great differentiation ability of stem cells. The morphology, porosity, swelling ratio, antioxidant activity, rheological behavior, and conductive characteristics of these hydrogels were precisely adjusted by altering the amount of PPy. Characterization of hydrogels showed appropriate electrical conductivity and antioxidant activity for neural tissue applications. Cytocompatibility, live/dead assays, and Annexin V/PI staining by flow cytometry using P19 cells confirmed the excellent cytocompatibility and cell protective effect under ROS microenvironment of these hydrogels in both normal and oxidative conditions. The neural marker investigation in the induction of electrical impulses was assessed through RT-PCR and immunofluorescence assay, demonstrating the differentiation of P19 cells to neurons cultured in these scaffolds. In summary, the antioxidant and electroconductive Alg-PPy/PLL hydrogels demonstrated excellent potential as promising scaffolds for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Iman Shabani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| |
Collapse
|
11
|
Chernozem RV, Pariy I, Surmeneva MA, Shvartsman VV, Planckaert G, Verduijn J, Ghysels S, Abalymov A, Parakhonskiy BV, Gracey E, Gonçalves A, Mathur S, Ronsse F, Depla D, Lupascu DC, Elewaut D, Surmenev RA, Skirtach AG. Cell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide. Adv Healthc Mater 2023; 12:e2201726. [PMID: 36468909 DOI: 10.1002/adhm.202201726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/29/2022] [Indexed: 12/12/2022]
Abstract
This is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V-1 ) and lateral (1.06 ± 0.02 pm V-1 ) piezoresponse owing to a greater presence of electroactive β-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| | - Igor Pariy
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Vladimir V Shvartsman
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Guillaume Planckaert
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Joost Verduijn
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| | - Stef Ghysels
- Department of Green Chemistry and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anatolii Abalymov
- Department of Environmental Sciences, Jozef Stefan Institute, Jamova cesta 39, Ljubljana, 1000, Slovenia
| | | | - Eric Gracey
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Amanda Gonçalves
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Frederik Ronsse
- Department of Green Chemistry and Technology, Ghent University, Ghent, 9000, Belgium
| | - Diederik Depla
- Department of Solid State Sciences, Ghent University, 9000, Ghent, Belgium
| | - Doru C Lupascu
- Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45141, Essen, Germany
| | - Dirk Elewaut
- VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, B-9052, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russia
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
12
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
13
|
Gong W, Zhang T, Che M, Wang Y, He C, Liu L, Lv Z, Xiao C, Wang H, Zhang S. Recent advances in nanomaterials for the treatment of spinal cord injury. Mater Today Bio 2022; 18:100524. [PMID: 36619202 PMCID: PMC9813796 DOI: 10.1016/j.mtbio.2022.100524] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injuries (SCIs) are devastating. In SCIs, a powerful traumatic force impacting the spinal cord results in the permanent loss of nerve function below the injury level, leaving the patient paralyzed and wheelchair-bound for the remainder of his/her life. Unfortunately, clinical treatment that depends on surgical decompression appears to be unable to handle damaged nerves, and high-dose methylprednisolone-based therapy is also associated with problems, such as infection, gastrointestinal bleeding, femoral head necrosis, obesity, and hyperglycemia. Nanomaterials have opened new avenues for SCI treatment. Among them, performance-based nanomaterials derived from a variety of materials facilitate improvements in the microenvironment of traumatic injury and, in some cases, promote neuron regeneration. Nanoparticulate drug delivery systems enable the optimization of drug effects and drug bioavailability, thus contributing to the development of novel treatments. The improved efficiency and accuracy of gene delivery will also benefit the exploration of SCI mechanisms and the understanding of key genes and signaling pathways. Herein, we reviewed different types of nanomaterials applied to the treatment of SCI and summarized their functions and advantages to provide new perspectives for future clinical therapies.
Collapse
Affiliation(s)
- Weiquan Gong
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Tianhui Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Mingxue Che
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Yongjie Wang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chuanyu He
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Lidi Liu
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Zhenshan Lv
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China,Corresponding author.
| | - Shaokun Zhang
- Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China,Jilin Engineering Research Center for Spine and Spinal Cord Injury, China,Corresponding author. Department of Spine Surgery, Orthopedics Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
14
|
Jain C, Surabhi P, Marathe K. Critical Review on the Developments in Polymer Composite Materials for Biomedical Implants. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022; 34:893-917. [PMID: 36369719 DOI: 10.1080/09205063.2022.2145870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There has been a lack of research for developing functional polymer composites for biomedical implants. Even though metals are widely used as implant materials, there is a need for developing polymer composites as implant materials because of the stress shielding effect that causes a lack of compatibility of metals with the human body. This review aims to bring out the latest developments in polymer composite materials for body implants and to emphasize the significance of polymer composites as a viable alternative to conventional materials used in the biomedical industry for ease of life. This review article explores the developments in functional polymer composites for biomedical applications and provides distinct divisions for their applications based on the part of the body where they are implanted. Each application has been covered in some detail. The various applications covered are bone transplants and bone regeneration, cardiovascular implants (stents), dental implants and restorative materials, neurological and spinal implants, and tendon and ligament replacement.
Collapse
Affiliation(s)
| | | | - Kumudinee Marathe
- Department of Chemical Engg, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India 400019
| |
Collapse
|
15
|
Chen C, Ji H, Jiang N, Wang Y, Zhou Y, Zhu Z, Hu Y, Wang Y, Li A, Guo A. Thrombin increases the expression of cholesterol 25-hydroxylase in rat astrocytes after spinal cord injury. Neural Regen Res 2022; 18:1339-1346. [PMID: 36453421 PMCID: PMC9838143 DOI: 10.4103/1673-5374.357905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Astrocytes are important cellular centers of cholesterol synthesis and metabolism that help maintain normal physiological function at the organism level. Spinal cord injury results in aberrant cholesterol metabolism by astrocytes and excessive production of oxysterols, which have profound effects on neuropathology. 25-Hydroxycholesterol (25-HC), the main product of the membrane-associated enzyme cholesterol-25-hydroxylase (CH25H), plays important roles in mediating neuroinflammation. However, whether the abnormal astrocyte cholesterol metabolism induced by spinal cord injury contributes to the production of 25-HC, as well as the resulting pathological effects, remain unclear. In the present study, spinal cord injury-induced activation of thrombin was found to increase astrocyte CH25H expression. A protease-activated receptor 1 inhibitor was able to attenuate this effect in vitro and in vivo. In cultured primary astrocytes, thrombin interacted with protease-activated receptor 1, mainly through activation of the mitogen-activated protein kinase/nuclear factor-kappa B signaling pathway. Conditioned culture medium from astrocytes in which ch25h expression had been knocked down by siRNA reduced macrophage migration. Finally, injection of the protease activated receptor 1 inhibitor SCH79797 into rat neural sheaths following spinal cord injury reduced migration of microglia/macrophages to the injured site and largely restored motor function. Our results demonstrate a novel regulatory mechanism for thrombin-regulated cholesterol metabolism in astrocytes that could be used to develop anti-inflammatory drugs to treat patients with spinal cord injury.
Collapse
Affiliation(s)
- Chen Chen
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Huiyuan Ji
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Nan Jiang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yue Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhenjie Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yuming Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Aisong Guo, ; Aihong Li, .
| | - Aisong Guo
- Department of Traditional Chinese Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China,Correspondence to: Aisong Guo, ; Aihong Li, .
| |
Collapse
|
16
|
Girão AF, Serrano MC, Completo A, Marques PAAP. Is Graphene Shortening the Path toward Spinal Cord Regeneration? ACS NANO 2022; 16:13430-13467. [PMID: 36000717 PMCID: PMC9776589 DOI: 10.1021/acsnano.2c04756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Along with the development of the next generation of biomedical platforms, the inclusion of graphene-based materials (GBMs) into therapeutics for spinal cord injury (SCI) has potential to nourish topmost neuroprotective and neuroregenerative strategies for enhancing neural structural and physiological recovery. In the context of SCI, contemplated as one of the most convoluted challenges of modern medicine, this review first provides an overview of its characteristics and pathophysiological features. Then, the most relevant ongoing clinical trials targeting SCI, including pharmaceutical, robotics/neuromodulation, and scaffolding approaches, are introduced and discussed in sequence with the most important insights brought by GBMs into each particular topic. The current role of these nanomaterials on restoring the spinal cord microenvironment after injury is critically contextualized, while proposing future concepts and desirable outputs for graphene-based technologies aiming to reach clinical significance for SCI.
Collapse
Affiliation(s)
- André F. Girão
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (A.F.G.)
| | - María Concepcion Serrano
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (M.C.S.)
| | - António Completo
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
| | - Paula A. A. P. Marques
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- (P.A.A.P.M.)
| |
Collapse
|
17
|
Bu K, Huang D, Li D, Zhu C. Encapsulation and sustained release of curcumin by hawthorn pectin and Tenebrio Molitor protein composite hydrogel. Int J Biol Macromol 2022; 222:251-261. [PMID: 36152699 DOI: 10.1016/j.ijbiomac.2022.09.145] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
Abstract
In this study, the effects of pH value, mixing ratio and the Ca2+ concentration on the complex gelation of hawthorn pectin (HP) and Tenebrio Molitor protein (TMP) were investigated. The turbidity results showed that the composite gel had the maximum polymer concentration when the mixing ratio was 2:1 and the pH value was 3.35. The rheological measurement results showed that TMP/HP (15 mmol/L) hydrogel (THIH) had the highest storage modulus and loss modulus, indicating that the properties of the hydrogel at this Ca2+ concentration had been significantly improved. The results of scanning electron microscope and pore size also proved that the network structure prepared under this condition was compact and uniform, the pore size was small, which was beneficial to the entrapment of active components. Subsequently, in order to explore the storage stability and antioxidant activity of THIH-loaded curcumin in simulated gastrointestinal environment, in vitro simulated digestion experiment was carried out and satisfactory results were obtained. To sum up, THIH was a promising delivery system with broad application prospects, which was expected to provide a novel idea for the entrapment and delivery of active components.
Collapse
Affiliation(s)
- Kaixuan Bu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Shandong Agricultural University, Taian 271018, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Shandong Agricultural University, Taian 271018, PR China
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Shandong Agricultural University, Taian 271018, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Shandong Agricultural University, Taian 271018, PR China.
| |
Collapse
|
18
|
Liu K, Dong X, Wang Y, Wu X, Dai H. Dopamine-modified chitosan hydrogel for spinal cord injury. Carbohydr Polym 2022; 298:120047. [DOI: 10.1016/j.carbpol.2022.120047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
|
19
|
Agarwal G, Roy A, Kumar H, Srivastava A. Graphene-collagen cryogel controls neuroinflammation and fosters accelerated axonal regeneration in spinal cord injury. BIOMATERIALS ADVANCES 2022; 139:212971. [PMID: 35882128 DOI: 10.1016/j.bioadv.2022.212971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition resulting in loss of motor function. The pathology of SCI is multifaceted and involves a cascade of events, including neuroinflammation and neuronal degeneration at the epicenter, limiting repair process. We developed a supermacroporous, mechanically elastic, electro-conductive, graphene crosslinked collagen (Gr-Col) cryogels for the regeneration of the spinal cord post-injury. The effects of graphene in controlling astrocytes reactivity and microglia polarization are evaluated in spinal cord slice organotypic culture and rat spinal cord lateral hemisection model of SCI. In our work, the application of external electric stimulus results in the enhanced expression of neuronal markers in an organotypic culture. The implantation of Gr-Col cryogels in rat thoracic T9-T11 hemisection model demonstrates an improved functional recovery within 14 days post-injury (DPI), promoted myelination, and decreases the lesion volume at the injury site. Decrease in the expression of STAT3 in the implanted Gr-Col cryogels may be responsible for the decrease in astrocytes reactivity. Microglia cells within the implanted cryogels shows higher anti-inflammatory phenotype (M2) than inflammatory (M1) phenotype. The higher expression of mature axonal markers like β-tubulin III, GAP43, doublecortin, and neurofilament 200 in the implanted Gr-Col cryogel confirms the axonal regeneration after 28 DPI. Gr-Col cryogels also modulate the production of ECM matrix, favouring the axonal regeneration. This study shows that Gr-Col cryogels decreases neuroinflammation and accelerate axonal regeneration.
Collapse
Affiliation(s)
- Gopal Agarwal
- Department of Biotechnology, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India.
| | - Akshay Srivastava
- Department of Medical Device, National Institute of Pharmaceutical Educational and Research, Ahmedabad, Gandhinagar, India.
| |
Collapse
|
20
|
Wang M, Wang C, Chen M, Luo M, Chen Q, Lei B. Mechanics-electro-adaptive multifunctional bioactive nanocomposites hydrogel for inducing spinal cord regeneration. CHEMICAL ENGINEERING JOURNAL 2022; 439:135629. [DOI: 10.1016/j.cej.2022.135629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
21
|
Novel Strategies for Spinal Cord Regeneration. Int J Mol Sci 2022; 23:ijms23094552. [PMID: 35562941 PMCID: PMC9102050 DOI: 10.3390/ijms23094552] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
A spinal cord injury (SCI) is one of the most devastating lesions, as it can damage the continuity and conductivity of the central nervous system, resulting in complex pathophysiology. Encouraged by the advances in nanotechnology, stem cell biology, and materials science, researchers have proposed various interdisciplinary approaches for spinal cord regeneration. In this respect, the present review aims to explore the most recent developments in SCI treatment and spinal cord repair. Specifically, it briefly describes the characteristics of SCIs, followed by an extensive discussion on newly developed nanocarriers (e.g., metal-based, polymer-based, liposomes) for spinal cord delivery, relevant biomolecules (e.g., growth factors, exosomes) for SCI treatment, innovative cell therapies, and novel natural and synthetic biomaterial scaffolds for spinal cord regeneration.
Collapse
|
22
|
The Role of Tissue Geometry in Spinal Cord Regeneration. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040542. [PMID: 35454380 PMCID: PMC9028021 DOI: 10.3390/medicina58040542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Unlike peripheral nerves, axonal regeneration is limited following injury to the spinal cord. While there may be reduced regenerative potential of injured neurons, the central nervous system (CNS) white matter environment appears to be more significant in limiting regrowth. Several factors may inhibit regeneration, and their neutralization can modestly enhance regrowth. However, most investigations have not considered the cytoarchitecture of spinal cord white matter. Several lines of investigation demonstrate that axonal regeneration is enhanced by maintaining, repairing, or reconstituting the parallel geometry of the spinal cord white matter. In this review, we focus on environmental factors that have been implicated as putative inhibitors of axonal regeneration and the evidence that their organization may be an important determinant in whether they inhibit or promote regeneration. Consideration of tissue geometry may be important for developing successful strategies to promote spinal cord regeneration.
Collapse
|
23
|
Electroconductive and porous graphene-xanthan gum gel scaffold for spinal cord regeneration. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Luo J, Shi X, Li L, Tan Z, Feng F, Li J, Pang M, Wang X, He L. An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury. Bioact Mater 2021; 6:4816-4829. [PMID: 34136725 PMCID: PMC8175285 DOI: 10.1016/j.bioactmat.2021.05.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 12/16/2022] Open
Abstract
The harsh local micro-environment following spinal cord injury (SCI) remains a great challenge for neural regeneration. Local reconstitution of a favorable micro-environment by biocompatible scaffolds with desirable functions has thus been an area of concern. Herein, a hybrid hydrogel was developed using Fmoc-grafted chitosan (FC) and Fmoc peptide (FI). Dynamic reversible π-π stacking interactions of the fluorenyl rings enabled the FC/FI hybrid hydrogel to exhibit excellent injectable and self-healing properties, as characterized by visual appearances and rheological tests. Furthermore, the FC/FI hybrid hydrogel showed a slow and persistent release of curcumin (Cur), which was named as FC/FI-Cur hydrogel. In vitro studies confirmed that with the support of FC/FI-Cur hydrogel, neurite outgrowth was promoted, and Schwann cell (SC) migration away from dorsal root ganglia (DRG) spheres with enhanced myelination was substantiated. The FC/FI-Cur hydrogel well reassembled extracellular matrix at the lesion site of rat spinal cord and exerted outstanding effects in modulating local inflammatory reaction by regulating the phenotypes of infiltrated inflammatory cells. In addition, endogenous SCs were recruited in the FC/FI-Cur graft and participated in the remyelination process of the regenerated nerves. These outcomes favored functional recovery, as evidenced by improved hind limbs movement and enhanced electrophysiological properties. Thus, our study not only advanced the development of multifunctional hydrogels but also provided insights into comprehensive approaches for SCI repair.
Collapse
Affiliation(s)
- Jinghua Luo
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Xueshuang Shi
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Liming Li
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zan Tan
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Feng Feng
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jun Li
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Mao Pang
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaoying Wang
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| | - Liumin He
- MOE Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
- College of Life Science and Technology, Jinan University, Guangzhou, 510630, China
| |
Collapse
|
25
|
Liu Z, Wang J, Chen H, Zhang G, Lv Z, Li Y, Zhao S, Li W. Coaxial Electrospun PLLA Fibers Modified with Water-Soluble Materials for Oligodendrocyte Myelination. Polymers (Basel) 2021; 13:polym13203595. [PMID: 34685353 PMCID: PMC8537353 DOI: 10.3390/polym13203595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Myelin sheaths are essential in maintaining the integrity of axons. Development of the platform for in vitro myelination would be especially useful for demyelinating disease modeling and drug screening. In this study, a fiber scaffold with a core-shell structure was prepared in one step by the coaxial electrospinning method. A high-molecular-weight polymer poly-L-lactic acid (PLLA) was used as the core, while the shell was a natural polymer material such as hyaluronic acid (HA), sodium alginate (SA), or chitosan (CS). The morphology, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), contact angle, viability assay, and in vitro myelination by oligodendrocytes were characterized. The results showed that such fibers are bead-free and continuous, with an average size from 294 ± 53 to 390 ± 54 nm. The DSC and FTIR curves indicated no changes in the phase state of coaxial brackets. Hyaluronic acid/PLLA coaxial fibers had the minimum contact angle (53.1° ± 0.24°). Myelin sheaths were wrapped around a coaxial electrospun scaffold modified with water-soluble materials after a 14-day incubation. All results suggest that such a scaffold prepared by coaxial electrospinning potentially provides a novel platform for oligodendrocyte myelination.
Collapse
Affiliation(s)
- Zhepeng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
- Correspondence: (Z.L.); (W.L.)
| | - Jing Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Haini Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Guanyu Zhang
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
| | - Zhuman Lv
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
| | - Yijun Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Shoujin Zhao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.W.); (H.C.); (Y.L.); (S.Z.)
| | - Wenlin Li
- Department of Cell Biology, Second Military Medical University, Shanghai 200433, China; (G.Z.); (Z.L.)
- Correspondence: (Z.L.); (W.L.)
| |
Collapse
|
26
|
Zhang Y, Wang S, Lu F, Zhang M, Kong H, Cheng J, Luo J, Zhao Y, Qu H. The neuroprotective effect of pretreatment with carbon dots from Crinis Carbonisatus (carbonized human hair) against cerebral ischemia reperfusion injury. J Nanobiotechnology 2021; 19:257. [PMID: 34454522 PMCID: PMC8399708 DOI: 10.1186/s12951-021-00908-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/22/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cerebral infarction and cerebral hemorrhage, also known as "stroke", is one of the leading cause of death. At present, there is no real specific medicine for stroke. Crinis Carbonisatus (named Xue-yu-tan in Chinese), produced from carbonized hair of healthy human, and has been widely applied to relieve pain and treat epilepsy, stroke and other diseases in China for thousands of years. RESULTS In this work, a new species of carbon dots derived from Crinis Carbonisatus (CrCi-CDs) were separated and identified. And the neuroprotective effect of carbon dots from CrCi were evaluated using the middle cerebral artery occlusion (MCAO) model. Neurological deficit score and infarction volume was assessed, evans blue content of ischemic hemispheres was measured, the concentrations of inflammatory factors, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) in the cortex were measured, and the levels of neurotransmitters in the brain were determined. Preconditioning of CrCi-CDs significantly reduced ischemic lesion volume and blood-brain-barrier (BBB) permeability, improved neurologic deficits, decreased the level of TNF-α and IL-6 in MCAO rats, inhibited excitatory neurotransmitters aspartate (Asp) and glutamate (Glu), and increased the level of 5-hydroxytryptamine (5-HT). The RNA-Sequencing results reveal that further potential mechanisms behind the activities may be related to the anti-inflammation effects and inhibition of neuroexcitatory toxicity. CONCLUSION CrCi-CDs performs neuroprotective effect on cerebral ischemia and reperfusion injury, and the mechanisms may correlate with its anti-inflammatory action, which suggested that CrCi-CDs have potential value in clinical therapy on the acute apoplexy cases in combination with thrombolytic drugs.
Collapse
Affiliation(s)
- Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Suna Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.,School of Basic Medical Sciences, Guizhou University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China
| | - Juan Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
27
|
Hao Y, Zheng W, Sun Z, Zhang D, Sui K, Shen P, Li P, Zhou Q. Marine polysaccharide-based composite hydrogels containing fucoidan: Preparation, physicochemical characterization, and biocompatible evaluation. Int J Biol Macromol 2021; 183:1978-1986. [PMID: 34087304 DOI: 10.1016/j.ijbiomac.2021.05.190] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Marine polysaccharide-based hydrogels have drawn much attention for diversified biomedical applications owing to their excellent (bio)physicochemical properties. In the present work, a series of marine polysaccharide-based hydrogels composed of chitosan, alginate, or fucoidan are prepared via a facile chemical cross-linking approach in an alkali/urea aqueous system. The prepared hydrogels possess tunable microporous architecture, swelling, and biodegradable properties by changing the components and proportions of marine polysaccharides. Importantly, the developed hydrogels are mechanically robust and the maximum compressive stress is up to 28.37 ± 4.63 kPa. Furthermore, the composite hydrogels exhibit excellent cytocompatibility, blood compatibility, and histocompatibility. When implanted subcutaneously in rats, the hydrogels containing fucoidan inhibit the inflammatory response of surrounding tissue. Thus, the designed composite hydrogels are promising bio-scaffolds in biomedical applications.
Collapse
Affiliation(s)
- Yuanping Hao
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Weiping Zheng
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Demeng Zhang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center for Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China
| | - Peili Shen
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Peifeng Li
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
28
|
Evaluation of 3D-Printing Scaffold Fabrication on Biosynthetic Medium-Chain-Length Polyhydroxyalkanoate Terpolyester as Biomaterial-Ink. Polymers (Basel) 2021; 13:polym13142222. [PMID: 34300981 PMCID: PMC8309464 DOI: 10.3390/polym13142222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, the selection of materials for tissue engineering scaffolds is still limited because some tissues require flexible and compatible materials with human cells. Medium-chain-length polyhydroxyalkanoate (MCL-PHA) synthesized in microorganisms is an interesting polymer for use in this area and has elastomeric properties compatible with the human body. MCL-PHAs are elastomers with biodegradability and cellular compatibility, making them an attractive material for fabricating soft tissue that requires high elasticity. In this research, MCL-PHA was produced by fed-batch fermentation that Pseudomonas Putida ATCC 47054 was cultured to accumulate MCL-PHA by using glycerol and sodium octanoate as carbon sources. The amounts of dry cell density, MCL-PHA product per dry cells, and MCL-PHA productivity were at 15 g/L, 27%, and 0.067 g/L/h, respectively, and the components of MCL-PHA consisting of 3-hydroxydecanoate (3HD) 64.5%, 3-hydroxyoctanoate (3HO) 32.2%, and 3-hydroxyhexanoate (3HHx) 3.3%. The biosynthesized MCL-PHA terpolyester has a relatively low melting temperature, low crystallinity, and high ductility at 52 °C, 15.7%, and 218%, respectively, and considering as elastomeric polyester. The high-resolution scaffold of MCL-PHA terpolyester biomaterial-ink (approximately 0.36 mm porous size) could be printed in a selected condition with a 3D printer, similar to the optimum pore size for cell attachment and proliferation. The rheological characteristic of this MCL-PHA biomaterial-ink exhibits shear-thinning behavior, leading to good shape fidelity. The study results yielded a condition capable of fabricating an elastomer scaffold of the MCL-PHA terpolyester, giving rise to the ideal soft tissue engineering application.
Collapse
|