1
|
Hilzenrat G, Gill ET, McArthur SL. Imaging approaches for monitoring three-dimensional cell and tissue culture systems. JOURNAL OF BIOPHOTONICS 2022; 15:e202100380. [PMID: 35357086 DOI: 10.1002/jbio.202100380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The past decade has seen an increasing demand for more complex, reproducible and physiologically relevant tissue cultures that can mimic the structural and biological features of living tissues. Monitoring the viability, development and responses of such tissues in real-time are challenging due to the complexities of cell culture physical characteristics and the environments in which these cultures need to be maintained in. Significant developments in optics, such as optical manipulation, improved detection and data analysis, have made optical imaging a preferred choice for many three-dimensional (3D) cell culture monitoring applications. The aim of this review is to discuss the challenges associated with imaging and monitoring 3D tissues and cell culture, and highlight topical label-free imaging tools that enable bioengineers and biophysicists to non-invasively characterise engineered living tissues.
Collapse
Affiliation(s)
- Geva Hilzenrat
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Emma T Gill
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| | - Sally L McArthur
- Bioengineering Engineering Group, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
2
|
Cortesi M, Samoré A, Lovecchio J, Ramilli R, Tartagni M, Giordano E, Crescentini M. Development of an electrical impedance tomography set-up for the quantification of mineralization in biopolymer scaffolds. Physiol Meas 2021; 42. [PMID: 34190050 DOI: 10.1088/1361-6579/ac023b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/17/2021] [Indexed: 11/11/2022]
Abstract
Objective. 3D cell cultures are becoming a fundamental resource forin-vitrostudies, as they mimic more closelyin-vivobehavior. The analysis of these constructs, however, generally rely on destructive techniques, that prevent the monitoring over time of the same construct, thus increasing the results variability and the resources needed for each experiment.Approach. In this work, we focus on mineralization, a crucial process during maturation of artificial bone models, and propose electrical impedance tomography (EIT) as an alternative non-destructive approach. In particular, we discuss the development of an integrated hardware/software system capable of acquiring experimental data from 3D scaffolds and reconstructing the corresponding conductivity maps. We also show how the same software can test how the measurement is affected by biological features such as scaffold shrinking during the culture.Main results. An initial validation, comprising the acquisition of both a non-conductive phantom and alginate/gelatin scaffolds with known calcium content will be presented, together with thein-silicostudy of a cell-induced mineralization process. This analysis will allow for an initial verification of the systems functionality while limiting the effects of biological variability due to cell number and activity.Significance. Our results show the potential of EIT for the non-destructive quantification of matrix mineralization in 3D scaffolds, and open to the possible long term monitoring of this fundamental hallmark of osteogenic differentiation in hybrid tissue engineered constructs.
Collapse
Affiliation(s)
- Marilisa Cortesi
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum-University of Bologna, Ozzano Emilia, Italy
| | - Andrea Samoré
- Department of Mathematics Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Joseph Lovecchio
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Roberta Ramilli
- Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy
| | - Marco Tartagni
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy
| | - Emanuele Giordano
- BioEngLab, Health Science and Technology, Interdepartmental Center for Industrial Research (HST-CIRI), Alma Mater Studiorum-University of Bologna, Ozzano Emilia, Italy.,Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy.,Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy
| | - Marco Crescentini
- Laboratory of Cellular and Molecular Engineering 'S. Cavalcanti', Department of Electrical, Electronic and Information Engineering 'G. Marconi' (DEI), Alma Mater Studiorum-University of Bologna, Cesena, Italy.,Advanced Research Center on Electronic Systems (ARCES), Alma Mater Studiorum, University of Bologna, Italy
| |
Collapse
|
3
|
Photoacoustic Molecular Imaging: Principles and Practice. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Li T, Hu X, Fan Q, Chen Z, Zheng Z, Zhang R. The Novel DPP-BDT Nanoparticles as Efficient Photoacoustic Imaging and Positron Emission Tomography Agents in Living Mice. Int J Nanomedicine 2020; 15:5017-5026. [PMID: 32764933 PMCID: PMC7369373 DOI: 10.2147/ijn.s238679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/25/2020] [Indexed: 11/23/2022] Open
Abstract
Background Molecular imaging is of great benefit to early disease diagnosis and timely treatment. One of the most striking innovations is the development of multimodal molecular imaging technology, which integrates two or more imaging modalities, largely in view of making the best of the advantages of each modality while overcoming their respective shortcomings. Hence, engineering a versatile and easily prepared nanomaterial with integrating multimodal molecular imaging function holds great promise, but is still a great challenge. Materials and Methods We firstly designed and synthesized a BDT-DPP conjugated polymer and then noncovalent self-assembly with phospholipid-polyethylene glycol endowed BDT-DPP with water solubility and biocompatibility. Followed by [Cu] labeling, the acquired multifunctional nanoparticles (NPs) were studied in detail for the photophysical property. The cytotoxicity and biocompatibility of DPP-BDT NPs were examined through MTT assay and H&E stained analysis. In addition, we investigated the accumulation of the NPs in HepG2 tumor models by positron emission tomography (PET) and photoacoustic (PA) dual-mode imaging. Results and Discussion The DPP-BDT NPs exhibited excellent optical stability, strong near-infrared (NIR) light absorption as well as fine biocompatibility. After tail vein injection into the living mice, the PA signals in the neoplastic tissues were gradually increased and reached to the maximum at the 4-h post-injection, which was consistent with the PET analysis. Such strong PA and PET signals were attributed to the efficient NPs accumulation resulting from the enhanced permeability and retention (EPR) effect. Conclusion The biocompatible DPP-BDT NPs demonstrated to be strong NIR absorption property and PAI sensitivity. Besides, these novel DPP-BDT NPs can act not only as a PA imaging contrast agent but also as an imaging agent for PET.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacy, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.,Radiology Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaoming Hu
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, Jiangxi, People's Republic of China
| | - Quli Fan
- Key Laboratory for Organic Electronics & Information Displays and Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, People's Republic of China
| | - Zejing Chen
- Institute of Advanced Materials, East China Jiaotong University, Nanchang, Jiangxi, People's Republic of China
| | - Ziliang Zheng
- Department of Pharmacy, School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Ruiping Zhang
- Radiology Department, The Affiliated Bethune Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
5
|
Torke PR, Nuster R, Paltauf G. Conical ring array detector for large depth of field photoacoustic macroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2461-2475. [PMID: 32499937 PMCID: PMC7249821 DOI: 10.1364/boe.386585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 05/07/2023]
Abstract
Photoacoustic microscopy and macroscopy (PAM) using focused detector scanning are emerging imaging methods for biological tissue, providing high resolution and high sensitivity for structures with optical absorption contrast. However, achieving a constant lateral resolution over a large depth of field for deeply penetrating photoacoustic macroscopy is still a challenge. In this work, a detector design for scanning photoacoustic macroscopy is presented. Based on simulation results, a sensor array geometry is developed and fabricated that consists of concentric ring elements made of polyvinylidene fluoride (PVDF) film in a geometry that combines a centered planar ring with several inclined outer ring elements. The reconstruction algorithm, which uses dynamic focusing and coherence weighting, is explained and its capability to reduce artefacts occurring for single element conical sensors is demonstrated. Several phantoms are manufactured to evaluate the performance of the array in experimental measurements. The sensor array provides a constant axial and lateral resolution of 95 µm and 285 µm, respectively, over a depth of field of 20 mm. The depth of field corresponds approximately to the maximum imaging depth in biological tissue, estimated from the sensitivity of the array. With its ability to achieve the maximum resolution even with a very small scanning range, the array is believed to have applications in the imaging of limited regions of interest buried in biological tissue.
Collapse
|
6
|
Wang L, Zhou Y, Wang X, Feng L, Liu X. Preparation of Inverse Opal Hydroxyapatite and Drug Delivery Properties. ChemistrySelect 2020. [DOI: 10.1002/slct.201904766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li‐li Wang
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Ye‐min Zhou
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Xiu‐feng Wang
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Li‐na Feng
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| | - Xin‐xin Liu
- School of Materials Science and EngineeringShaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
7
|
Dadkhah A, Jiao S. Integrating photoacoustic microscopy, optical coherence tomography, OCT angiography, and fluorescence microscopy for multimodal imaging. Exp Biol Med (Maywood) 2020; 245:342-347. [PMID: 31914810 DOI: 10.1177/1535370219897584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have developed a multimodal imaging system, which integrated optical resolution photoacoustic microscopy, optical coherence tomography, optical coherence tomography angiography, and confocal fluorescence microscopy in one platform. The system is able to image complementary features of a biological sample by combining different contrast mechanisms. We achieved fast imaging and large field of view by combining optical scanning with mechanical scanning, similar to our previous publication. We have demonstrated the capability of the multimodal imaging system by imaging a mouse ear in vivo. Impact statement Photoacoustic microscopy-based multimodal imaging technology can provide high-resolution complementary information for biological tissues in vivo. It will potentially bring significant impact on the research and diagnosis of diseases by providing combined structural and functional information.
Collapse
Affiliation(s)
- Arash Dadkhah
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
8
|
Zhu Y, Lu X, Dong X, Yuan J, Fabiilli ML, Wang X. LED-Based Photoacoustic Imaging for Monitoring Angiogenesis in Fibrin Scaffolds. Tissue Eng Part C Methods 2019; 25:523-531. [PMID: 31418322 DOI: 10.1089/ten.tec.2019.0151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
IMPACT STATEMENT Noninvasive imaging techniques provide insight into physiology that is complementary to tissue morphology obtained by invasive histology. Optical imaging techniques, such as laser speckle contrast analysis, are used in vivo to longitudinally evaluate vascularization. Despite their high spatial resolution, these techniques have a limited imaging depth. In this study, we demonstrate how a dual LED-based photoacoustic (PA) and ultrasound system can delineate changes in perfusion at depth within scaffolds containing basic fibroblast growth factor. Perfusion changes detected by PA corroborated with vessel density. PA imaging could be a noninvasive and sensitive method for evaluating vascularization at depth in larger constructs.
Collapse
Affiliation(s)
- Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Xiaofang Lu
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Xiaoxiao Dong
- Department of Radiology, University of Michigan, Ann Arbor, Michigan.,Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jie Yuan
- Department of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Mario L Fabiilli
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan.,Department of Applied Physics Program, University of Michigan, Ann Arbor, Michigan
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.,Department of Radiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
9
|
Ruland A, Gilmore KJ, Daikuara LY, Fay CD, Yue Z, Wallace GG. Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs. Acta Biomater 2019; 91:173-185. [PMID: 31055120 DOI: 10.1016/j.actbio.2019.04.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
In the present work we have revisited the application of quantitative ultrasound imaging (QUI) to cellular hydrogels, by using the reference phantom method (RPM) in combination with a local attenuation compensation algorithm. The investigated biological samples consisted of cell-laden collagen hydrogels with PC12 neural cells. These cell-laden hydrogels were used to calibrate the integrated backscattering coefficient (IBC) as a function of cell density, which was then used to generate parametric images of local cell density. The image resolution used for QUI and its impact on the relative IBC error was also investigated. Another important contribution of our work was the monitoring of PC12 cell proliferation. The cell number estimates obtained via the calibrated IBC compared well with data obtained using a conventional quantitative method, the MTS assay. Evaluation of spectral changes as a function of culture time also provided additional information on the cell cluster size, which was found to be in close agreement with that observed by microscopy. Last but not least, we also applied QUI on a 3D printed cellular construct in order to illustrate its capabilities for the evaluation of bioprinted structures. STATEMENT OF SIGNIFICANCE: While there is intensive research in the areas of polymer science, biology, and 3D bio-printing, there exists a gap in available characterisation tools for the non-destructive inspection of biological constructs in the three-dimensional domain, on the macroscopic scale, and with fast data acquisition times. Quantitative ultrasound imaging is a suitable characterization technique for providing essential information on the development of tissue engineered constructs. These results provide a detailed and comprehensive guide on the capabilities and limitations of the technique.
Collapse
|
10
|
Singh MS, Thomas A. Photoacoustic elastography imaging: a review. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-15. [PMID: 31041859 PMCID: PMC6990059 DOI: 10.1117/1.jbo.24.4.040902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/05/2019] [Indexed: 05/12/2023]
Abstract
Elastography imaging is a promising tool-in both research and clinical settings-for diagnosis, staging, and therapeutic treatments of various life-threatening diseases (including brain tumors, breast cancers, prostate cancers, and Alzheimer's disease). Large variation in the physical (elastic) properties of tissue, from normal to diseased stages, enables highly sensitive characterization of pathophysiological states of the diseases. On the other hand, over the last decade or so, photoacoustic (PA) imaging-an imaging modality that combines the advantageous features of two separate imaging modalities, i.e., high spatial resolution and high contrast obtainable, respectively, from ultrasound- and optical-based modalities-has been emerging and widely studied. Recently, recovery of elastic properties of soft biological tissues-in addition to prior reported recovery of vital tissue physiological information (Hb, HbO2, SO, and total Hb), noninvasively and nondestructively, with unprecedented spatial resolution (μm) at penetration depth (cm)-has been reported. Studies demonstrating that combined recovery of mechanical tissue properties and physiological information-by a single (PA) imaging unit-pave a promising platform in clinical diagnosis and therapeutic treatments. We offer a comprehensive review of PA imaging technology, focusing on recent advances in relation to elastography. Our review draws out technological challenges pertaining to PA elastography (PAE) imaging, and viable approaches. Currently, PAE imaging is in the nurture stage of its development, where the technology is limited to qualitative study. The prevailing challenges (specifically, quantitative measurements) may be addressed in a similar way by which ultrasound elastography and optical coherence elastography were accredited for quantitative measurements.
Collapse
Affiliation(s)
- Mayanglambam Suheshkumar Singh
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), School of Physics (SoP), Biomedical Instrumentation and Imaging Laboratory (BIIL), Thiruvananthapuram, Kerala, India
| | - Anjali Thomas
- Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), School of Physics (SoP), Biomedical Instrumentation and Imaging Laboratory (BIIL), Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Ogunlade O, Ho JO, Kalber TL, Hynds RE, Zhang E, Janes SM, Birchall MA, Butler CR, Beard P. Monitoring neovascularization and integration of decellularized human scaffolds using photoacoustic imaging. PHOTOACOUSTICS 2019; 13:76-84. [PMID: 30805295 PMCID: PMC6374504 DOI: 10.1016/j.pacs.2019.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 05/22/2023]
Abstract
Tissue engineering is a branch of regenerative medicine that aims to manipulate cells and scaffolds to create bioartificial tissues and organs for patients. A major challenge lies in monitoring the blood supply to the new tissue following transplantation: the integration and neovascularization of scaffolds in vivo is critical to their functionality. Photoacoustic imaging (PAI) is a laser-generated ultrasound-based technique that is particularly well suited to visualising microvasculature due to the high optical absorption of haemoglobin. Here, we describe an early proof-of-concept study in which PAI in widefield tomography mode is used to image biological, decellularized human tracheal scaffolds. We found that PAI allowed the longitudinal tracking of scaffold integration into subcutaneous murine tissue with high spatial resolution at depth over an extended period of time. The results of the study were consistent with post-imaging histological analyses, demonstrating that PAI can be used to non-invasively monitor the extent of vascularization in biological tissue-engineered scaffolds. We propose that this technique may be a valuable tool for studies designed to test interventions aimed at improving the speed and extent of scaffold neovascularization in tissue engineering. With technological refinement, it could also permit in vivo monitoring of revascularization in patients, for example to determine timing of heterotopic graft transfer.
Collapse
Affiliation(s)
- Olumide Ogunlade
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | | | - Tammy L. Kalber
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, UK
| | - Robert E. Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Edward Zhang
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Colin R. Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Paul Beard
- Department of Medical Physics & Biomedical Engineering, University College London, London, UK
| |
Collapse
|
12
|
Dadkhah A, Zhou J, Yeasmin N, Jiao S. Integrated multimodal photoacoustic microscopy with OCT- guided dynamic focusing. BIOMEDICAL OPTICS EXPRESS 2019; 10:137-150. [PMID: 30775089 PMCID: PMC6363202 DOI: 10.1364/boe.10.000137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 05/10/2023]
Abstract
Combining different contrast mechanisms to achieve simultaneous multimodal imaging is always desirable but is challenging due to the various optical and hardware requirements for different imaging systems. We developed a multimodal microscopic optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissues. This imaging system integrated photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and confocal fluorescence microscopy in one platform. By taking advantage of the depth resolving capability of OCT, we developed a novel OCT-guided surface contour scanning methodology for dynamic focusing adjustment. We have conducted phantom, in vivo, and ex vivo tests to demonstrate the capability of the multimodal imaging system for providing comprehensive microscopic information of biological tissues. Integrating all the aforementioned imaging modalities with OCT-guided dynamic focusing for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the future.
Collapse
Affiliation(s)
- Arash Dadkhah
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Jun Zhou
- School of Physics and Information Engineering, Jianghan University, Wuhan, Hubei 430056, China
| | - Nusrat Yeasmin
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
13
|
Chen C, Liu Y, Wang H, Chen G, Wu X, Ren J, Zhang H, Zhao Y. Multifunctional Chitosan Inverse Opal Particles for Wound Healing. ACS NANO 2018; 12:10493-10500. [PMID: 30256608 DOI: 10.1021/acsnano.8b06237] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wound healing is one of the most important and basic issues faced by the medical community. In this paper, we present biomass-composited inverse opal particles with a series of advanced features for drug delivery and wound healing. The particles were derived by using chitosan biomass to negatively replicate spherical colloid crystal templates. Because of the interconnected porous structures, various forms of active drugs, including fibroblast growth factor could be loaded into the void spaces of the inverse opal particles and encapsulated by temperature-responsive hydrogel. This endowed the composited particles with the capability of intelligent drug release through the relatively high temperature caused by the inflammation reaction at wound sites. Because the structural colors and characteristic reflection peaks of the composited inverse opal particles are blue-shifted during the release process, the drug delivery can be monitored in real time. It was demonstrated that the biomass-composited microcarriers were able to promote angiogenesis, collagen deposition, and granulation-tissue formation as well as reduce inflammation and thus significantly contributed to wound healing. These features point to the potential value of multifunctional biomass inverse opal particles in biomedicine.
Collapse
Affiliation(s)
- Canwen Chen
- Department of General Surgery, Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Guopu Chen
- Department of General Surgery, Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China
| | - Xiuwen Wu
- Department of General Surgery, Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China
| | - Jianan Ren
- Department of General Surgery, Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China
| | - Huidan Zhang
- School of Engineering and Applied Sciences and Department of Physics , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Yuanjin Zhao
- Department of General Surgery, Jinling Hospital , Medical School of Nanjing University , Nanjing 210002 , China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
14
|
Sontyana AG, Mathew AP, Cho KH, Uthaman S, Park IK. Biopolymeric In Situ Hydrogels for Tissue Engineering and Bioimaging Applications. Tissue Eng Regen Med 2018; 15:575-590. [PMID: 30603580 PMCID: PMC6171699 DOI: 10.1007/s13770-018-0159-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Biopolymeric in situ hydrogels play a crucial role in the regenerative repair and replacement of infected or injured tissue. They possess excellent biodegradability and biocompatibility in the biological system, however only a few biopolymeric in situ hydrogels have been approved clinically. Researchers have been investigating new advancements and designs to restore tissue functions and structure, and these studies involve a composite of biometrics, cells and a combination of factors that can repair or regenerate damaged tissue. METHODS Injectable hydrogels, cross-linking mechanisms, bioactive materials for injectable hydrogels, clinically applied injectable biopolymeric hydrogels and the bioimaging applications of hydrogels were reviewed. RESULTS This article reviews the different types of biopolymeric injectable hydrogels, their gelation mechanisms, tissue engineering, clinical applications and their various in situ imaging techniques. CONCLUSION The applications of bioactive injectable hydrogels and their bioimaging are a promising area in tissue engineering and regenerative medicine. There is a high demand for injectable hydrogels for in situ imaging.
Collapse
Affiliation(s)
- Adonijah Graham Sontyana
- Department of Biomedical Sciences, Chonnam National University, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, Chonnam National University, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 Republic of Korea
| | - Ki-Hyun Cho
- Department of Plastic Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195 USA
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134 Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 Republic of Korea
| |
Collapse
|
15
|
Yao J, Wang LV. Recent progress in photoacoustic molecular imaging. Curr Opin Chem Biol 2018; 45:104-112. [PMID: 29631120 PMCID: PMC6076847 DOI: 10.1016/j.cbpa.2018.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/24/2018] [Accepted: 03/27/2018] [Indexed: 01/08/2023]
Abstract
By acoustically detecting the optical absorption contrast, photoacoustic (PA) tomography (PAT) has broken the penetration limits of traditional high-resolution optical imaging. Through spectroscopic analysis of the target's optical absorption, PAT can identify a wealth of endogenous and exogenous molecules and thus is inherently capable of molecular imaging with high sensitivity. PAT's molecular sensitivity is uniquely accompanied by non-ionizing radiation, high spatial resolution, and deep penetration in biological tissues, which other optical imaging modalities cannot achieve yet. In this concise review, we summarize the most recent technological advancements in PA molecular imaging and highlight the novel molecular probes specifically made for PAT in deep tissues. We conclude with a brief discussion of the opportunities for future advancements.
Collapse
Affiliation(s)
- Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
16
|
Zhang YS, Yao J. Imaging Biomaterial-Tissue Interactions. Trends Biotechnol 2018; 36:403-414. [PMID: 29054313 PMCID: PMC5837919 DOI: 10.1016/j.tibtech.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 01/27/2023]
Abstract
Modern biomedical imaging has revolutionized life science by providing anatomical, functional, and molecular information of biological species with high spatial resolution, deep penetration, enhanced temporal responsiveness, and improved chemical specificity. In recent years, these imaging techniques have been increasingly tailored for characterizing biomaterials and probing their interactions with biological tissues. This in turn has spurred substantial advances in engineering material properties to accommodate different imaging modalities that was previously unattainable. Here, we review advances in engineering both imaging modalities and material properties with improved contrast, providing a timely practical guide to better assess biomaterial-tissue interactions both in vitro and in vivo.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
17
|
Shekhawat GS, Dudek SM, Dravid VP. Development of ultrasound bioprobe for biological imaging. SCIENCE ADVANCES 2017; 3:e1701176. [PMID: 29075667 PMCID: PMC5656426 DOI: 10.1126/sciadv.1701176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/22/2017] [Indexed: 05/05/2023]
Abstract
We report the development of an ultrasound bioprobe for in vitro molecular imaging. In this method, the phase of the scattered ultrasound wave is mapped to provide in vitro and intracellular imaging with nanometer-scale resolution under physiological conditions. We demonstrated the technique by successfully imaging a magnetic core in silica core shells and the stiffness image of intracellular fibers in endothelial cells that were stimulated with thrombin. The findings demonstrate a significant advancement in high-resolution ultrasound imaging of biological systems with acoustics under physiological conditions. These will open up various applications in biomedical and molecular imaging with subsurface resolution down to the nanometer scale.
Collapse
Affiliation(s)
- Gajendra S. Shekhawat
- Department of Materials Science and Engineering and NUANCE Center, Northwestern University, Evanston, IL 60208, USA
- Corresponding author.
| | - Steven M. Dudek
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Vinayak P. Dravid
- Department of Materials Science and Engineering and NUANCE Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
18
|
Qajar J, Arns CH. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 204:11-27. [PMID: 28822588 DOI: 10.1016/j.jconhyd.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/29/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Percolation of reactive fluids in carbonate rocks affects the rock microstructure and hence changes the rock macroscopic properties. In Part 1 paper, we examined the voxel-wise evolution of microstructure of the rock in terms of mineral dissolution/detachment, mineral deposition, and unchanged regions. In the present work, we investigate the relationships between changes in two characteristic transport properties, i.e. permeability and electrical conductivity and two critical parameters of the pore phase, i.e. the fraction of the pore space connecting the inlet and outlet faces of the core sample and the critical pore-throat diameter. We calculate the aforementioned properties on the images of the sample, wherein a homogeneous modification of pore structure occurred in order to ensure the representativeness of the calculated transport properties at the core scale. From images, the evolution of pore connectivity and the potential role of micropores on the connectivity are quantified. It is found that the changing permeability and electrical conductivity distributions along the core length are generally in good agreement with the longitudinal evolution of macro-connected macroporosity and the critical pore-throat diameter. We incorporate microporosity into critical length and permeability calculations and show how microporosity locally plays a role in permeability. It is shown that the Katz-Thompson model reasonably predicts the post-alteration permeability in terms of pre-alteration simulated parameters. This suggests that the evolution of permeability and electrical conductivity of the studied complex carbonate core are controlled by the changes in the macro-connected macroporosity as well as the smallest pore-throats between the connected macropores.
Collapse
Affiliation(s)
- Jafar Qajar
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran; School of Petroleum Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Christoph H Arns
- School of Petroleum Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
19
|
Zhang YS, Zhu C, Xia Y. Inverse Opal Scaffolds and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201701115. [PMID: 28649794 PMCID: PMC5581229 DOI: 10.1002/adma.201701115] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/23/2017] [Indexed: 05/04/2023]
Abstract
Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Chunlei Zhu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
20
|
Upputuri PK, Pramanik M. Recent advances toward preclinical and clinical translation of photoacoustic tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:41006. [PMID: 27893078 DOI: 10.1117/1.jbo.22.4.041006] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/31/2016] [Indexed: 05/18/2023]
Affiliation(s)
- Paul Kumar Upputuri
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
21
|
Teodori L, Crupi A, Costa A, Diaspro A, Melzer S, Tarnok A. Three-dimensional imaging technologies: a priority for the advancement of tissue engineering and a challenge for the imaging community. JOURNAL OF BIOPHOTONICS 2017; 10:24-45. [PMID: 27110674 DOI: 10.1002/jbio.201600049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Tissue engineering/regenerative medicine (TERM) is an interdisciplinary field that applies the principle of engineering and life sciences to restore/replace damaged tissues/organs with in vitro artificially-created ones. Research on TERM quickly moves forward. Today newest technologies and discoveries, such as 3D-/bio-printing, allow in vitro fabrication of ex-novo made tissues/organs, opening the door to wide and probably never-ending application possibilities, from organ transplant to drug discovery, high content screening and replacement of laboratory animals. Imaging techniques are fundamental tools for the characterization of tissue engineering (TE) products at any stage, from biomaterial/scaffold to construct/organ analysis. Indeed, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular features, allowing three-dimensional (3D) and time-lapse in vivo analysis, in a non-destructive, quantitative, multidimensional analysis of TE constructs, to analyze their pre-implantation quality assessment and their fate after implantation. This review focuses on the newest developments in imaging technologies and applications in the context of requirements of the different steps of the TERM field, describing strengths and weaknesses of the current imaging approaches.
Collapse
Affiliation(s)
- Laura Teodori
- Diagnostics and Metrology Laboratory FSN-TECFIS-DIM ENEA CR Frascati, Via Enrico Fermi 44, 00044, Rome, Italy
| | - Annunziata Crupi
- Diagnostics and Metrology Laboratory FSN-TECFIS-DIM ENEA CR Frascati, Via Enrico Fermi 44, 00044, Rome, Italy
- Fondazione San Raffaele, S.S. Ceglie San Michele km 1200, 72013, Ceglie Messapica, Italy
| | - Alessandra Costa
- University of Pittsburgh McGowan Institute, 3550 Terrace St 5606, Pittsburgh, PA 15261, USA
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy
- Dipartimento di Fisica, Università degli Studi di Genova, Genova, Italy
- Nikon Imaging Center, Genova, Italy, www.nic.iit.it
| | - Susanne Melzer
- Sächsische Inkubator für klinische Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
- Department of Pediatric Cardiology, HELIOS Heart Center Leipzig, University of Leipzig, Strümpellstraße 39, 04289, Leipzig, Germany
| | - Attila Tarnok
- Sächsische Inkubator für klinische Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103, Leipzig, Germany
- Department of Pediatric Cardiology, HELIOS Heart Center Leipzig, University of Leipzig, Strümpellstraße 39, 04289, Leipzig, Germany
| |
Collapse
|
22
|
Zhou Y, Yao J, Wang LV. Tutorial on photoacoustic tomography. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:61007. [PMID: 27086868 PMCID: PMC4834026 DOI: 10.1117/1.jbo.21.6.061007] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT’s basic principles, major implementations, imaging contrasts, and recent applications.
Collapse
Affiliation(s)
- Yong Zhou
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Junjie Yao
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
| |
Collapse
|
23
|
Avigo C, Flori A, Armanetti P, Di Lascio N, Kusmic C, Jose J, Losi P, Soldani G, Faita F, Menichetti L. Strategies for non-invasive imaging of polymeric biomaterial in vascular tissue engineering and regenerative medicine using ultrasound and photoacoustic techniques. POLYM INT 2016. [DOI: 10.1002/pi.5113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Cinzia Avigo
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Alessandra Flori
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Paolo Armanetti
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Nicole Di Lascio
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Jithin Jose
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Paola Losi
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Francesco Faita
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Luca Menichetti
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
24
|
Leferink AM, van Blitterswijk CA, Moroni L. Methods of Monitoring Cell Fate and Tissue Growth in Three-Dimensional Scaffold-Based Strategies for In Vitro Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:265-83. [PMID: 26825610 DOI: 10.1089/ten.teb.2015.0340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the field of tissue engineering, there is a need for methods that allow assessing the performance of tissue-engineered constructs noninvasively in vitro and in vivo. To date, histological analysis is the golden standard to retrieve information on tissue growth, cellular distribution, and cell fate on tissue-engineered constructs after in vitro cell culture or on explanted specimens after in vivo applications. Yet, many advances have been made to optimize imaging techniques for monitoring tissue-engineered constructs with a sub-mm or μm resolution. Many imaging modalities have first been developed for clinical applications, in which a high penetration depth has been often more important than lateral resolution. In this study, we have reviewed the current state of the art in several imaging approaches that have shown to be promising in monitoring cell fate and tissue growth upon in vitro culture. Depending on the aimed tissue type and scaffold properties, some imaging methods are more applicable than others. Optical methods are mostly suited for transparent materials such as hydrogels, whereas magnetic resonance-based methods are mostly applied to obtain contrast between hard and soft tissues regardless of their transparency. Overall, this review shows that the field of imaging in scaffold-based tissue engineering is developing at a fast pace and has the potential to overcome the limitations of destructive endpoint analysis.
Collapse
Affiliation(s)
- Anne M Leferink
- 1 Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede, The Netherlands .,2 Department of Complex Tissue Regeneration, Maastricht University , Maastricht, The Netherlands .,3 BIOS/Lab-on-a-chip Group, MIRA Institute, University of Twente , Enschede, The Netherlands
| | - Clemens A van Blitterswijk
- 1 Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede, The Netherlands .,2 Department of Complex Tissue Regeneration, Maastricht University , Maastricht, The Netherlands
| | - Lorenzo Moroni
- 1 Department of Tissue Regeneration, MIRA Institute, University of Twente , Enschede, The Netherlands .,2 Department of Complex Tissue Regeneration, Maastricht University , Maastricht, The Netherlands
| |
Collapse
|
25
|
Zhang YS, Wang LV, Xia Y. Seeing Through the Surface: Non-invasive Characterization of Biomaterial-Tissue Interactions Using Photoacoustic Microscopy. Ann Biomed Eng 2016; 44:649-66. [PMID: 26471785 PMCID: PMC4792739 DOI: 10.1007/s10439-015-1485-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/08/2015] [Indexed: 01/31/2023]
Abstract
At the intersection of life sciences, materials science, engineering, and medicine, regenerative medicine stands out as a rapidly progressing field that aims at retaining, restoring, or augmenting tissue/organ functions to promote the human welfare. While the field has witnessed tremendous advancements over the past few decades, it still faces many challenges. For example, it has been difficult to visualize, monitor, and assess the functions of the engineered tissue/organ constructs, particularly when three-dimensional scaffolds are involved. Conventional approaches based on histology are invasive and therefore only convey end-point assays. The development of volumetric imaging techniques such as confocal and ultrasonic imaging has enabled direct observation of intact constructs without the need of sectioning. However, the capability of these techniques is often limited in terms of penetration depth and contrast. In comparison, the recently developed photoacoustic microscopy (PAM) has allowed us to address these issues by integrating optical and ultrasonic imaging to greatly reduce the effect of tissue scattering of photons with one-way ultrasound detection while retaining the high optical absorption contrast. PAM has been successfully applied to a number of studies, such as observation of cell distribution, monitoring of vascularization, and interrogation of biomaterial degradation. In this review article, we highlight recent progress in non-invasive and volumetric characterization of biomaterial-tissue interactions using PAM. We also discuss challenges ahead and envision future directions.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Department of Medicine, Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Lihong V Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
26
|
Chang L, Hu J, Chen F, Chen Z, Shi J, Yang Z, Li Y, Lee LJ. Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. NANOSCALE 2016; 8:3181-3206. [PMID: 26745513 DOI: 10.1039/c5nr06694h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The living cell is a complex entity that dynamically responds to both intracellular and extracellular environments. Extensive efforts have been devoted to the understanding intracellular functions orchestrated with mRNAs and proteins in investigation of the fate of a single-cell, including proliferation, apoptosis, motility, differentiation and mutations. The rapid development of modern cellular analysis techniques (e.g. PCR, western blotting, immunochemistry, etc.) offers new opportunities in quantitative analysis of RNA/protein expression up to a single cell level. The recent entries of nanoscale platforms that include kinds of methodologies with high spatial and temporal resolution have been widely employed to probe the living cells. In this tutorial review paper, we give insight into background introduction and technical innovation of currently reported nanoscale platforms for living cell interrogation. These highlighted technologies are documented in details within four categories, including nano-biosensors for label-free detection of living cells, nanodevices for living cell probing by intracellular marker delivery, high-throughput platforms towards clinical current, and the progress of microscopic imaging platforms for cell/tissue tracking in vitro and in vivo. Perspectives for system improvement were also discussed to solve the limitations remains in current techniques, for the purpose of clinical use in future.
Collapse
Affiliation(s)
- Lingqian Chang
- NSF Nanoscale Science and Engineering Center (NSEC), The Ohio State University, Columbus, OH 43212, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Upputuri PK, Pramanik M. Pulsed laser diode based optoacoustic imaging of biological tissues. Biomed Phys Eng Express 2015. [DOI: 10.1088/2057-1976/1/4/045010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Kim K, Wagner WR. Non-invasive and Non-destructive Characterization of Tissue Engineered Constructs Using Ultrasound Imaging Technologies: A Review. Ann Biomed Eng 2015; 44:621-35. [PMID: 26518412 DOI: 10.1007/s10439-015-1495-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022]
Abstract
With the rapid expansion of biomaterial development and coupled efforts to translate such advances toward the clinic, non-invasive and non-destructive imaging tools to evaluate implants in situ in a timely manner are critically needed. The required multi-level information is comprehensive, including structural, mechanical, and biological changes such as scaffold degradation, mechanical strength, cell infiltration, extracellular matrix formation and vascularization to name a few. With its inherent advantages of non-invasiveness and non-destructiveness, ultrasound imaging can be an ideal tool for both preclinical and clinical uses. In this review, currently available ultrasound imaging technologies that have been applied in vitro and in vivo for tissue engineering and regenerative medicine are discussed and some new emerging ultrasound technologies and multi-modality approaches utilizing ultrasound are introduced.
Collapse
Affiliation(s)
- Kang Kim
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Heart and Vascular Institute, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, 15213, USA. .,Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, 15213, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, 15219, USA.
| | - William R Wagner
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, PA, 15213, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh and UPMC, Pittsburgh, PA, 15219, USA
| |
Collapse
|
29
|
Liu Z, Liu X, Du Y, Ren J, Qu X. Using Plasmonic Copper Sulfide Nanocrystals as Smart Light-Driven Sterilants. ACS NANO 2015; 9:10335-10346. [PMID: 26331394 DOI: 10.1021/acsnano.5b04380] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As an efficient route to control pet overpopulation and develop neutered experimental animals, male sterilization via surgical techniques, chemical injections, and antifertility vaccines has brought particular attention recently. However, these traditional ways usually induce long-term adverse reactions, immune suppression, and serious infection and pain. To overcome the above limitations, we developed a platform in the present study by using plasmonic copper sulfide nanocrystals (Cu2-xS NCs) as intelligent light-driven sterilants with ideal outcomes. Upon NIR laser irradiation, these well-prepared Cu2-xS NCs can possess NIR-induced hyperthermia and generate high levels of reactive oxygen species (ROS). Due to the cooperation of photothermal and photodynamic effects, these nanocrystals exhibited NIR-mediated toxicity toward Sertoli cells both in vitro and in vivo in a mild manner. We attribute the potential mechanism of cellular injury to the apoptosis-related death and denaturation of protein in the testicles. Furthermore, the possible metabolism route and long-term toxicity of these nanocrystals after testicular injection indicate their high biocompatibility. Taking together, our study on the NIR-induced toxicity of Cu2-xS NCs provides keen insights for the usage of plasmonic nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Changchun 130022, China
| | - Xianjun Liu
- Bethune Institute of Epigenetic Medicine, First Hospital of Jilin University , Changchun 130021, China
| | - Yingda Du
- College of Life Science, Jilin University , Changchun, Jilin 130012, China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Changchun 130022, China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Changchun 130022, China
| |
Collapse
|
30
|
An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract. Biomaterials 2015; 56:206-18. [PMID: 25934293 DOI: 10.1016/j.biomaterials.2015.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/23/2022]
Abstract
Since understanding the healthy status of gastrointestinal tract (GI tract) is of vital importance, clinical implementation for GI tract-related disease have attracted much more attention along with the rapid development of modern medicine. Here, a multifunctional theranostic system combining X-rays/CT/photothermal/photoacoustic mapping of GI tract and imaging-guided photothermal anti-bacterial treatment is designed and constructed. PEGylated W18O49 nanosheets (PEG-W18O49) are created via a facile solvothermal method and an in situ probe-sonication approach. In terms of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of PEG-W18O49, we demonstrate the first example of high-performance four-modal imaging of GI tract by using these nanosheets as contrast agents. More importantly, due to their intrinsic absorption of NIR light, glutaraldehyde-modified PEG-W18O49 are successfully applied as fault-free targeted photothermal agents for imaging-guided killing of bacteria on a mouse infection model. Critical to pre-clinical and clinical prospects, long-term toxicity is further investigated after oral administration of these theranostic agents. These kinds of tungsten-based nanomaterials exhibit great potential as multi-modal contrast agents for directed visualization of GI tract and anti-bacterial agents for phothothermal sterilization.
Collapse
|
31
|
Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. BIOMED RESEARCH INTERNATIONAL 2015; 2015:783983. [PMID: 25821821 PMCID: PMC4363824 DOI: 10.1155/2015/783983] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/30/2015] [Indexed: 01/25/2023]
Abstract
Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications.
Collapse
|
32
|
Nam SY, Ricles LM, Suggs LJ, Emelianov SY. Imaging strategies for tissue engineering applications. TISSUE ENGINEERING. PART B, REVIEWS 2015; 21:88-102. [PMID: 25012069 PMCID: PMC4322020 DOI: 10.1089/ten.teb.2014.0180] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/08/2014] [Indexed: 12/18/2022]
Abstract
Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies.
Collapse
Affiliation(s)
- Seung Yun Nam
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura M. Ricles
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura J. Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Stanislav Y. Emelianov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
33
|
Nam SY, Chung E, Suggs LJ, Emelianov SY. Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct. Tissue Eng Part C Methods 2015; 21:557-66. [PMID: 25384558 DOI: 10.1089/ten.tec.2014.0306] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Current biomedical imaging tools have limitations in accurate assessment of the severity of open and deep burn wounds involving excess bleeding and severe tissue damage. Furthermore, sophisticated imaging techniques are needed for advanced therapeutic approaches such as noninvasive monitoring of stem cells seeded and applied in a biomedical 3D scaffold to enhance wound repair. This work introduces a novel application of combined ultrasound (US) and photoacoustic (PA) imaging to assess both burn injury and skin tissue regeneration. Tissue structural damage and bleeding throughout the epidermis and dermis till the subcutaneous skin layer were imaged noninvasively by US/PA imaging. Gold nanoparticle-labeled adipose-derived stem cells (ASCs) within a PEGylated fibrin 3D gel were implanted in a rat model of cutaneous burn injury. ASCs were successfully tracked till 2 weeks and were distinguished from host tissue components (e.g., epidermis, fat, and blood vessels) through spectroscopic PA imaging. The structure and function of blood vessels (vessel density and perfusion) in the wound bed undergoing skin tissue regeneration were monitored both qualitatively and semi-quantitatively by the developed imaging approach. Imaging-based analysis demonstrated ASC localization in the top layer of skin and a higher density of regenerating blood vessels in the treated groups. This was corroborated with histological analysis showing localization of fluorescently labeled ASCs and smooth muscle alpha actin-positive blood vessels. Overall, the US/PA imaging-based strategy coupled with gold nanoparticles has a great potential for stem cell therapies and tissue engineering due to its noninvasiveness, safety, selectivity, and ability to provide long-term monitoring.
Collapse
Affiliation(s)
- Seung Yun Nam
- 1Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas
| | - Eunna Chung
- 2Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Laura J Suggs
- 2Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Stanislav Y Emelianov
- 1Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas.,2Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
34
|
3D Bioprinting and 3D Imaging for Stem Cell Engineering. BIOPRINTING IN REGENERATIVE MEDICINE 2015. [DOI: 10.1007/978-3-319-21386-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
35
|
Zhang YS, Yao J, Zhang C, Li L, Wang LV, Xia Y. Optical-Resolution Photoacoustic Microscopy for Volumetric and Spectral Analysis of Histological and Immunochemical Samples. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Zhang YS, Yao J, Zhang C, Li L, Wang LV, Xia Y. Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples. Angew Chem Int Ed Engl 2014; 53:8099-103. [PMID: 24961608 DOI: 10.1002/anie.201403812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 01/29/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) is an imaging modality with superb penetration depth and excellent absorption contrast. Here we demonstrate, for the first time, that this technique can advance quantitative analysis of conventional chromogenic histochemistry. Because OR-PAM can quantify the absorption contrast at different wavelengths, it is feasible to spectrally resolve the specific biomolecules involved in a staining color. Furthermore, the tomographic capability of OR-PAM allows for noninvasive volumetric imaging of a thick sample without microtoming it. By immunostaining the sample with different chromogenic agents, we further demonstrated the ability of OR-PAM to resolve different types of cells in a coculture sample with imaging depths up to 1 mm. Taken together, the integration of OR-PAM with (immuno)histochemistry offers a simple and versatile technique with broad applications in cell biology, pathology, tissue engineering, and related biomedical studies.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | | | | | | | | | | |
Collapse
|
37
|
Cong W, Liu F, Wang C, Wang G. X-ray micro-modulated luminescence tomography (XMLT). OPTICS EXPRESS 2014; 22:5572-5580. [PMID: 24663898 PMCID: PMC4086334 DOI: 10.1364/oe.22.005572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/26/2013] [Accepted: 01/13/2014] [Indexed: 05/29/2023]
Abstract
Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa(5)O(8):Cr(3+) nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach.
Collapse
Affiliation(s)
- Wenxiang Cong
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fenglin Liu
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Engineering Research Center of Industrial Computed Tomography Nondestructive Testing, Chongqing University, Chongqing 400044, China
| | - Chao Wang
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ge Wang
- Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
38
|
Zhang YS, Cai X, Yao J, Xing W, Wang LV, Xia Y. Non-invasive and in situ characterization of the degradation of biomaterial scaffolds by volumetric photoacoustic microscopy. Angew Chem Int Ed Engl 2014; 53:184-8. [PMID: 24130155 PMCID: PMC3894115 DOI: 10.1002/anie.201306282] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/12/2013] [Indexed: 11/11/2022]
Abstract
Degradation is among the most important properties of biomaterial scaffolds, which are indispensable for regenerative medicine. The currently used method relies on the measurement of mass loss across different samples and cannot track the degradation of an individual scaffold in situ. Here we report, for the first time, the use of multiscale photoacoustic microscopy to non-invasively monitor the degradation of an individual scaffold. We could observe alterations to the morphology and structure of a scaffold at high spatial resolution and deep penetration, and more significantly, quantify the degradation of an individual scaffold as a function of time, both in vitro and in vivo. In addition, the remodeling of vasculature inside a scaffold can be visualized simultaneously using a dual-wavelength scanning mode in a label-free manner. This optoacoustic method can be used to monitor the degradation of individual scaffolds, offering a new approach to non-invasively analyze and quantify biomaterial-tissue interactions in conjunction with the assessment of in vivo vascular parameters.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | - Xin Cai
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 (USA)
| | - Junjie Yao
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 (USA)
| | - Wenxin Xing
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 (USA)
| | - Lihong V. Wang
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 (USA)
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| |
Collapse
|
39
|
Zhang YS, Cai X, Yao J, Xing W, Wang LV, Xia Y. Non-Invasive and In Situ Characterization of the Degradation of Biomaterial Scaffolds by Volumetric Photoacoustic Microscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|