1
|
Compton ZT, Mellon W, Harris VK, Rupp S, Mallo D, Kapsetaki SE, Wilmot M, Kennington R, Noble K, Baciu C, Ramirez LN, Peraza A, Martins B, Sudhakar S, Aksoy S, Furukawa G, Vincze O, Giraudeau M, Duke EG, Spiro S, Flach E, Davidson H, Li CI, Zehnder A, Graham TA, Troan BV, Harrison TM, Tollis M, Schiffman JD, Aktipis CA, Abegglen LM, Maley CC, Boddy AM. Cancer Prevalence across Vertebrates. Cancer Discov 2025; 15:227-244. [PMID: 39445720 PMCID: PMC11726020 DOI: 10.1158/2159-8290.cd-24-0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Cancer is pervasive across multicellular species, but what explains the differences in cancer prevalence across species? Using 16,049 necropsy records for 292 species spanning three clades of tetrapods (amphibians, sauropsids, and mammals), we found that neoplasia and malignancy prevalence increases with adult mass (contrary to Peto's paradox) and somatic mutation rate but decreases with gestation time. The relationship between adult mass and malignancy prevalence was only apparent when we controlled for gestation time. Evolution of cancer susceptibility appears to have undergone sudden shifts followed by stabilizing selection. Outliers for neoplasia prevalence include the common porpoise (<1.3%), the Rodrigues fruit bat (<1.6%), the black-footed penguin (<0.4%), ferrets (63%), and opossums (35%). Discovering why some species have particularly high or low levels of cancer may lead to a better understanding of cancer syndromes and novel strategies for the management and prevention of cancer. Significance: Evolution has discovered mechanisms for suppressing cancer in a wide variety of species. By analyzing veterinary necropsy records, we can identify species with exceptionally high or low cancer prevalence. Discovering the mechanisms of cancer susceptibility and resistance may help improve cancer prevention and explain cancer syndromes. See related commentary by Metzger, p. 14.
Collapse
Affiliation(s)
- Zachary T. Compton
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- University of Arizona Cancer Center, Tucson, Arizona
- University of Arizona College of Medicine, Tucson, Arizona
| | - Walker Mellon
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Valerie K. Harris
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Shawn Rupp
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Diego Mallo
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Stefania E. Kapsetaki
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Mallory Wilmot
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Ryan Kennington
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Kathleen Noble
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Cristina Baciu
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Psychology, Arizona State University, Tempe, Arizona
| | - Lucia N. Ramirez
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina
| | - Ashley Peraza
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Brian Martins
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Sushil Sudhakar
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Selin Aksoy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Gabriela Furukawa
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Orsolya Vincze
- Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | | | - Elizabeth G. Duke
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Simon Spiro
- Wildlife Health Services, Zoological Society of London, London, United Kingdom
| | - Edmund Flach
- Wildlife Health Services, Zoological Society of London, London, United Kingdom
| | - Hannah Davidson
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Christopher I. Li
- Translational Research Program and Epidemiology Program, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Ashley Zehnder
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Trevor A. Graham
- Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom
| | - Brigid V. Troan
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- The North Carolina Zoo, Asheboro, North Carolina
| | - Tara M. Harrison
- North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
- Exotic Species Cancer Research Alliance, North Carolina State College of Veterinary Medicine, Raleigh, North Carolina
| | - Marc Tollis
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, Arizona
| | - Joshua D. Schiffman
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Peel Therapeutics, Inc., Salt Lake City, Utah
| | - C. Athena Aktipis
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Lisa M. Abegglen
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
- Peel Therapeutics, Inc., Salt Lake City, Utah
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, Arizona
| | - Amy M. Boddy
- Arizona Cancer Evolution Center, The Biodesign Institute, Arizona State University, Tempe, Arizona
- University of California Santa Barbara, Santa Barbara, California
| |
Collapse
|
2
|
Brouwer AF, Meza R, Eisenberg MC. A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2017; 37:1375-1387. [PMID: 27612302 PMCID: PMC5472511 DOI: 10.1111/risa.12684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov process models often used to relate cancer incidence to biological mechanism. Identifiability analysis determines what model parameter combinations can, theoretically, be estimated from given data. We use a systematic approach, based on differential algebra methods traditionally used for deterministic ordinary differential equation (ODE) models, to determine identifiable combinations for a generalized subclass of MSCE models with any number of preinitation stages and one clonal expansion. Additionally, we determine the identifiable combinations of the generalized MSCE model with up to four clonal expansion stages, and conjecture the results for any number of clonal expansion stages. The results improve upon previous work in a number of ways and provide a framework to find the identifiable combinations for further variations on the MSCE models. Finally, our approach, which takes advantage of the Kolmogorov backward equations for the probability generating functions of the Markov process, demonstrates that identifiability methods used in engineering and mathematics for systems of ODEs can be applied to continuous-time Markov processes.
Collapse
Affiliation(s)
- Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
- corresponding authors (, )
| | - Rafael Meza
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Marisa C. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
- corresponding authors (, )
| |
Collapse
|
3
|
Rosa I, Fidalgo P, Filipe B, Albuquerque C, Fonseca R, Chaves P, Pereira AD. Sporadic colorectal cancer: Studying ways to an end. United European Gastroenterol J 2016; 4:288-96. [PMID: 27087959 DOI: 10.1177/2050640615599329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/14/2015] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Although colorectal cancer (CRC) has often been regarded as a single entity, different pathways may lead to macroscopically similar cancers. These pathways may evolve into a patchy colonic field defect that we aimed to study in consecutive CRC patients. METHODS In a single-center, observational, prospective study, consecutive CRC patients were included if surgery and a perioperative colonoscopy were planned. Personal and familial history data were collected. Tumors were studied for microsatellite instability (MSI) status, DNA repair protein expression (DRPE) and presence of BRAF and/or APC mutations. Macroscopically normal mucosa samples were tested for APC mutations. Presence and location of synchronous and metachronous adenomas and patient follow-up were analyzed. The association of two categorical variables was tested through the Fisher's exact test (SPSS 19). RESULTS Twenty-four patients (12 male, mean age 69 years) were studied. High-grade MSI (MSI-H) was found in eight tumors-these were significantly more common in the right colon (p = 0.047) and more likely to have an altered DRPE (p = 0.007). BRAF mutation was found in two of six tested MSI-H tumors. APC gene mutations were found in nine of 16 non-MSI-H tumors and absent in normal mucosa samples. There was a nonsignificant co-localization of CRC and synchronous adenomas and a significant co-localization (p = 0.05) of synchronous and metachronous adenomas. DISCUSSION Sporadic CRCs evolve through distinct pathways, evidenced only by pathological and molecular analysis, but clinically relevant both for patients and their families. In non-MSI-H tumors, the expected APC gene mutations were not detected by the most commonly used techniques in a high number of cases. More studies are needed to fully characterize these tumors and to search for common early events in normal mucosa patches, which might explain the indirect evidence found here for a field defect in the colon.
Collapse
Affiliation(s)
- Isadora Rosa
- Serviço de Gastrenterologia do Instituto Português de Oncologia de Lisboa, Francisco Gentil (IPOLFG), EPE, Lisboa, Portugal; Faculdade de Ciências da Saúde da Universidade da Beira Interior, Covilhã, Portugal
| | - Paulo Fidalgo
- Serviço de Gastrenterologia, Fundação Champalimaud, Lisboa, Portugal
| | - Bruno Filipe
- Unidade de Investigação em Patobiologia Molecular, IPOLFG, EPE, Lisboa, Portugal
| | - Cristina Albuquerque
- Unidade de Investigação em Patobiologia Molecular, IPOLFG, EPE, Lisboa, Portugal
| | - Ricardo Fonseca
- Serviço de Anatomia Patológica do IPOLFG, EPE, Lisboa, Portugal
| | - Paula Chaves
- Serviço de Anatomia Patológica do IPOLFG, EPE, Lisboa, Portugal; Faculdade de Ciências da Saúde da Universidade da Beira Interior, Covilhã, Portugal
| | - António D Pereira
- Serviço de Gastrenterologia do Instituto Português de Oncologia de Lisboa, Francisco Gentil (IPOLFG), EPE, Lisboa, Portugal; Faculdade de Ciências da Saúde da Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
4
|
Brouwer AF, Eisenberg MC, Meza R. Age Effects and Temporal Trends in HPV-Related and HPV-Unrelated Oral Cancer in the United States: A Multistage Carcinogenesis Modeling Analysis. PLoS One 2016; 11:e0151098. [PMID: 26963717 PMCID: PMC4786132 DOI: 10.1371/journal.pone.0151098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/22/2016] [Indexed: 11/18/2022] Open
Abstract
Differences in prognosis in HPV-positive and HPV-negative oral (oropharyngeal and oral cavity) squamous cell carcinomas (OSCCs) and increasing incidence of HPV-related cancers have spurred interest in demographic and temporal trends in OSCC incidence. We leverage multistage clonal expansion (MSCE) models coupled with age-period-cohort (APC) epidemiological models to analyze OSCC data in the SEER cancer registry (1973-2012). MSCE models are based on the initiation-promotion-malignant conversion paradigm in carcinogenesis and allow for interpretation of trends in terms of biological mechanisms. APC models seek to differentiate between the temporal effects of age, period, and birth cohort on cancer risk. Previous studies have looked at the effect of period and cohort on tumor initiation, and we extend this to compare model fits of period and cohort effects on each of tumor initiation, promotion, and malignant conversion rates. HPV-related, HPV-unrelated except oral tongue, and HPV-unrelated oral tongue sites are best described by placing period and cohort effects on the initiation rate. HPV-related and non-oral-tongue HPV-unrelated cancers have similar promotion rates, suggesting similar tumorigenesis dynamics once initiated. Estimates of promotion rates at oral tongue sites are lower, corresponding to a longer sojourn time; this finding is consistent with the hypothesis of an etiology distinct from HPV or alcohol and tobacco use. Finally, for the three subsite groups, men have higher initiation rates than women of the same race, and black people have higher promotion than white people of the same sex. These differences explain part of the racial and sex differences in OSCC incidence.
Collapse
Affiliation(s)
- Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Marisa C. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Rafael Meza
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
The large number of cell divisions required to make a human body inevitably leads to the accumulation of somatic mutations. Such mutations cause individuals to be somatic mosaics. Recent advances in genomic technology now allow measurement of somatic diversity. Initial studies confirmed the expected high levels of somatic mutations within individuals. Going forward, the big questions concern the degree to which those somatic mutations influence disease. Theory predicts that the frequency of mutant cells should vary greatly between individuals. Such somatic mutational variability between individuals could explain much of the diversity in the risk of disease. But how variable is mosaicism between individuals in reality? What is the relation between the fraction of cells carrying a predisposing mutation and the risk of disease? What kinds of heritable somatic change lead to disease besides classical DNA mutations? What molecular processes connect a predisposing somatic change to disease? We know that predisposing somatic mutations strongly influence the onset of cancer. Likewise, neurodegenerative diseases may often begin from somatically mutated cells. If so, both neurodegeneration and cancer may be diseases of later life for which much of the risk may be set by early life somatic mutations.
Collapse
|
6
|
Incremental benefits of screening colonoscopy over sigmoidoscopy in average-risk populations: a model-driven analysis. Cancer Causes Control 2015; 26:859-70. [PMID: 25783458 DOI: 10.1007/s10552-015-0559-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/11/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Screening colonoscopy and flexible sigmoidoscopy (FSG) reduce the risk of colorectal cancer (CRC), but the magnitude and duration of protection, particularly against right-sided cancer, remain uncertain. We computed the incremental benefit of colonoscopy over FSG using a validated mathematical model, which reflects colorectal neoplasia growth characteristics while allowing uncertainty in endoscopic detection and removal of adenomas. METHODS We calibrated models of CRC incidence within a multistage clonal expansion framework to data from: (1) San Francisco-Oakland SEER registry (reference population) and (2) FSG long-term follow-up data from 50,757 individuals after a negative FSG in the Kaiser Permanente system. We compared the residual CRC risks after FSG with full-length colonoscopy. RESULTS Our model mirrors trial data with 10-year CRC risk reductions after FSG screening at age 50 years of approximately one-third; the optimal age for a 'once-only' FSG exam was between ages 50 and 60 years; and the greater benefit was for men compared with women. There were considerable incremental gains in reduction in CRC risk by colonoscopy compared with FSG with the greatest benefit for screening colonoscopy at age 50 years. These results held up against lowering the right-sided adenoma detection sensitivity by 30%, as well as reducing the curative efficacy of polypectomy throughout the colon. CONCLUSIONS Mathematical modeling of CRC screening, which takes account of important aspects of tumor biology, demonstrates superior risk reductions by colonoscopy over FSG. Our predictions provide further rationale for recommending screening colonoscopy in average-risk populations before the age of 60.
Collapse
|
7
|
Aalen OO, Valberg M, Grotmol T, Tretli S. Understanding variation in disease risk: the elusive concept of frailty. Int J Epidemiol 2014; 44:1408-21. [PMID: 25501685 PMCID: PMC4588855 DOI: 10.1093/ije/dyu192] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2014] [Indexed: 01/10/2023] Open
Abstract
The concept of frailty plays a major role in the statistical field of survival analysis. Frailty variation refers to differences in risk between individuals which go beyond known or measured risk factors. In other words, frailty variation is unobserved heterogeneity. Although understanding frailty is of interest in its own right, the literature on survival analysis has demonstrated that existence of frailty variation can lead to surprising artefacts in statistical estimation that are important to examine. We present literature that demonstrates the presence and significance of frailty variation between individuals. We discuss the practical content of frailty variation, and show the link between frailty and biological concepts like (epi)genetics and heterogeneity in disease risk. There are numerous suggestions in the literature that a good deal of this variation may be due to randomness, in addition to genetic and/or environmental factors. Heterogeneity often manifests itself as clustering of cases in families more than would be expected by chance. We emphasize that apparently moderate familial relative risks can only be explained by strong underlying variation in disease risk between families and individuals. Finally, we highlight the potential impact of frailty variation in the interpretation of standard epidemiological measures such as hazard and incidence rates.
Collapse
Affiliation(s)
- Odd O Aalen
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway and Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
| | - Morten Valberg
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway and
| | - Tom Grotmol
- Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
| | - Steinar Tretli
- Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
| |
Collapse
|
8
|
Kini LG, Herrero-Jimenez P, Kamath T, Sanghvi J, Gutierrez E, Hensle D, Kogel J, Kusko R, Rexer K, Kurzweil R, Refinetti P, Morgenthaler S, Koledova VV, Gostjeva EV, Thilly WG. Mutator/Hypermutable fetal/juvenile metakaryotic stem cells and human colorectal carcinogenesis. Front Oncol 2013; 3:267. [PMID: 24195059 PMCID: PMC3811064 DOI: 10.3389/fonc.2013.00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022] Open
Abstract
Adult age-specific colorectal cancer incidence rates increase exponentially from maturity, reach a maximum, then decline in extreme old age. Armitage and Doll (1) postulated that the exponential increase resulted from "n" mutations occurring throughout adult life in normal "cells at risk" that initiated the growth of a preneoplastic colony in which subsequent "m" mutations promoted one of the preneoplastic "cells at risk" to form a lethal neoplasia. We have reported cytologic evidence that these "cells at risk" are fetal/juvenile organogenic, then preneoplastic metakaryotic stem cells. Metakaryotic cells display stem-like behaviors of both symmetric and asymmetric nuclear divisions and peculiarities such as bell shaped nuclei and amitotic nuclear fission that distinguish them from embryonic, eukaryotic stem cells. Analyses of mutant colony sizes and numbers in adult lung epithelia supported the inferences that the metakaryotic organogenic stem cells are constitutively mutator/hypermutable and that their contributions to cancer initiation are limited to the fetal/juvenile period. We have amended the two-stage model of Armitage and Doll and incorporated these several inferences in a computer program CancerFit v.5.0. We compared the expectations of the amended model to adult (15-104 years) age-specific colon cancer rates for European-American males born 1890-99 and observed remarkable concordance. When estimates of normal colonic fetal/juvenile APC and OAT gene mutation rates (∼2-5 × 10(-5) per stem cell doubling) and preneoplastic colonic gene loss rates (∼8 × 10(-3)) were applied, the model was in accordance only for the values of n = 2 and m = 4 or 5.
Collapse
Affiliation(s)
- Lohith G Kini
- Laboratory for Metakaryotic Biology, Department of Biological Engineering, Massachusetts Institute of Technology , Cambridge, MA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Aktipis CA, Nesse RM. Evolutionary foundations for cancer biology. Evol Appl 2013; 6:144-59. [PMID: 23396885 PMCID: PMC3567479 DOI: 10.1111/eva.12034] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/12/2012] [Indexed: 12/16/2022] Open
Abstract
New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles-cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations-provide a foundation for understanding, preventing, and treating cancer.
Collapse
Affiliation(s)
- C Athena Aktipis
- Center for Evolution and Cancer, University of California San Francisco, CA, USA ; Department of Psychology, Arizona State University Tempe, AZ, USA
| | | |
Collapse
|
10
|
Hazelton WD, Goodman G, Rom WN, Tockman M, Thornquist M, Moolgavkar S, Weissfeld JL, Feng Z. Longitudinal multistage model for lung cancer incidence, mortality, and CT detected indolent and aggressive cancers. Math Biosci 2012; 240:20-34. [PMID: 22705252 DOI: 10.1016/j.mbs.2012.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/19/2012] [Accepted: 05/22/2012] [Indexed: 12/26/2022]
Abstract
It is currently not known whether most lung cancers detected by computerized tomography (CT) screening are aggressive and likely to be fatal if left untreated, or if a sizable fraction are indolent and unlikely to cause death during the natural lifetime of the individual. We developed a longitudinal biologically-based model of the relationship between individual smoking histories and the probability for lung cancer incidence, CT screen detection, lung cancer mortality, and other-cause mortality. The longitudinal model relates these different outcomes to an underlying lung cancer disease pathway and an effective other-cause mortality pathway, which are both influenced by the individual smoking history. The longitudinal analysis provides additional information over that available if these outcomes were analyzed separately, including testing if the number of CT detected and histologically-confirmed lung cancers is consistent with the expected number of lung cancers "in the pipeline". We assume indolent nodules undergo Gompertz growth and are detectable by CT, but do not grow large enough to contribute significantly to symptom-based lung cancer incidence or mortality. Likelihood-based model calibration was done jointly to data from 6878 heavy smokers without asbestos exposure in the control (placebo) arm of the Carotene and Retinol Efficacy Trial (CARET); and to 3,642 heavy smokers with comparable smoking histories in the Pittsburgh Lung Screening Study (PLuSS), a single-arm prospective trial of low-dose spiral CT screening for diagnosis of lung cancer. Model calibration was checked using data from two other single-arm prospective CT screening trials, the New York University Lung Cancer Biomarker Center (NYU) (n=1,021), and Moffitt Cancer Center (Moffitt) cohorts (n=677). In the PLuSS cohort, we estimate that at the end of year 2, after the baseline and first annual CT exam, that 33.0 (26.9, 36.9)% of diagnosed lung cancers among females and 7.0 (4.9,11.7)% among males were overdiagnosed due to being indolent cancers. At the end of the PLuSS study, with maximum follow-up of 5.8 years, we estimate that due to early detection by CT and limited follow-up, an additional 2.2 (2.0,2.4)% of all diagnosed cancers among females and 7.1 (6.7,8.0)% among males would not have been diagnosed in the absence of CT screening. We also find a higher apparent cure rate for lung cancer among CARET females than males, consistent with the larger indolent fraction of CT detected and histologically confirmed lung cancers among PLuSS females. This suggests that there are significant gender differences in the aggressiveness of lung cancer. Females may have an inherently higher proportion of indolent lung cancers than males, or aggressive lung cancers may be brought into check by the immune system more frequently among females than males.
Collapse
Affiliation(s)
- William D Hazelton
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, 1100 Fairview Avenue North, Box 19024, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Rosa I, Fidalgo P, Soares J, Vinga S, Oliveira C, Silva JP, Ferro SM, Chaves P, Oliveira AG, Leitão CN. Adenoma incidence decreases under the effect of polypectomy. World J Gastroenterol 2012; 18:1243-8. [PMID: 22468088 PMCID: PMC3309914 DOI: 10.3748/wjg.v18.i11.1243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/01/2011] [Accepted: 05/08/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether, under the influence of polypectomy, the incidence of adenoma decreases with age.
METHODS: Consecutive patients with colonic adenomas identified at index colonoscopy were retrospectively selected if they had undergone three or more complete colonoscopies, at least 24 mo apart. Patients who had any first-degree relative with colorectal cancer were excluded. Data regarding number of adenomas at each colonoscopy, their location, size and histological classification were recorded. The monthly incidence density of adenomas after the index examination was estimated for the study population, by using the person-years method. Baseline adenomas were excluded from incidence calculations but their characteristics were correlated with recurrence at follow-up, using the χ2 test.
RESULTS: One hundred and fifty-six patients were included (109 male, mean age at index colonoscopy 56.8 ± 10.3 years), with follow-up that ranged from 48 to 232 mo. No significant correlations were observed between the number, the presence of villous component, or the size of adenomas at index colonoscopy and the presence of adenomas at subsequent colonoscopies (P = 0.49, 0.12 and 0.78, respectively). The incidence of colonic adenomas was observed to decay from 1.4% person-months at the beginning of the study to values close to 0%, at 12 years after index colonoscopy.
CONCLUSION: Our results suggest the sporadic formation of adenomas occurs within a discrete period and that, when these adenomas are removed, all neoplasia-prone clones may be extinguished.
Collapse
|
12
|
Dewanji A, Jeon J, Meza R, Luebeck EG. Number and size distribution of colorectal adenomas under the multistage clonal expansion model of cancer. PLoS Comput Biol 2011; 7:e1002213. [PMID: 22022253 PMCID: PMC3192823 DOI: 10.1371/journal.pcbi.1002213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/14/2011] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is believed to arise from mutant stem cells in colonic crypts that undergo a well-characterized progression involving benign adenoma, the precursor to invasive carcinoma. Although a number of (epi)genetic events have been identified as drivers of this process, little is known about the dynamics involved in the stage-wise progression from the first appearance of an adenoma to its ultimate conversion to malignant cancer. By the time adenomas become endoscopically detectable (i.e., are in the range of 1–2 mm in diameter), adenomas are already comprised of hundreds of thousands of cells and may have been in existence for several years if not decades. Thus, a large fraction of adenomas may actually remain undetected during endoscopic screening and, at least in principle, could give rise to cancer before they are detected. It is therefore of importance to establish what fraction of adenomas is detectable, both as a function of when the colon is screened for neoplasia and as a function of the achievable detection limit. To this end, we have derived mathematical expressions for the detectable adenoma number and size distributions based on a recently developed stochastic model of CRC. Our results and illustrations using these expressions suggest (1) that screening efficacy is critically dependent on the detection threshold and implicit knowledge of the relevant stem cell fraction in adenomas, (2) that a large fraction of non-extinct adenomas remains likely undetected assuming plausible detection thresholds and cell division rates, and (3), under a realistic description of adenoma initiation, growth and progression to CRC, the empirical prevalence of adenomas is likely inflated with lesions that are not on the pathway to cancer. The adenomatous polyp (or adenoma) is considered the common precursor lesion for colorectal cancer (CRC). Although the natural history of adenomas is well-characterized in terms of their histopathology and (epi)genomic changes, little is known about their dynamics in the stage-wise progression from the first appearance of an adenoma to its conversion to malignant cancer. By the time adenomas become endoscopically detectable (i.e., are in the range of 1–2 mm in diameter), adenomas are already comprised of hundreds of thousands of cells. A large fraction of adenomas may therefore remain undetected during screening and, in spite of their small (subthreshold) size, could give rise to cancer prior to being detected. It is therefore of importance to establish what fraction of adenomas is detectable, both as a function of the age at screening for colorectal neoplasia and the size (threshold) above which adenomas can be detected reliably. Here we derive mathematical expressions for the distribution of adenoma number and sizes based on a recently developed stochastic model for CRC, which has previously been calibrated and validated against age-specific CRC incidence data.
Collapse
Affiliation(s)
- Anup Dewanji
- Applied Statistics Division, Indian Statistical Institute, Kolkata, India
| | - Jihyoun Jeon
- Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Rafael Meza
- Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - E. Georg Luebeck
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
13
|
Effects of Surgery and Chemotherapy on Metastatic Progression of Prostate Cancer: Evidence from the Natural History of the Disease Reconstructed through Mathematical Modeling. Cancers (Basel) 2011; 3:3632-60. [PMID: 24212971 PMCID: PMC3759214 DOI: 10.3390/cancers3033632] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 09/09/2011] [Accepted: 09/15/2011] [Indexed: 12/17/2022] Open
Abstract
This article brings mathematical modeling to bear on the reconstruction of the natural history of prostate cancer and assessment of the effects of treatment on metastatic progression. We present a comprehensive, entirely mechanistic mathematical model of cancer progression accounting for primary tumor latency, shedding of metastases, their dormancy and growth at secondary sites. Parameters of the model were estimated from the following data collected from 12 prostate cancer patients: (1) age and volume of the primary tumor at presentation; and (2) volumes of detectable bone metastases surveyed at a later time. This allowed us to estimate, for each patient, the age at cancer onset and inception of the first metastasis, the expected metastasis latency time and the rates of growth of the primary tumor and metastases before and after the start of treatment. We found that for all patients: (1) inception of the first metastasis occurred when the primary tumor was undetectable; (2) inception of all or most of the surveyed metastases occurred before the start of treatment; (3) the rate of metastasis shedding is essentially constant in time regardless of the size of the primary tumor and so it is only marginally affected by treatment; and most importantly, (4) surgery, chemotherapy and possibly radiation bring about a dramatic increase (by dozens or hundred times for most patients) in the average rate of growth of metastases. Our analysis supports the notion of metastasis dormancy and the existence of prostate cancer stem cells. The model is applicable to all metastatic solid cancers, and our conclusions agree well with the results of a similar analysis based on a simpler model applied to a case of metastatic breast cancer.
Collapse
|
14
|
Gruhl AN, Gostjeva EV, Thilly WG, Fomina JN, Darroudi F. Human fetal/tumor metakaryotic stem cells: pangenomic homologous pairing and telomeric end-joining of chromatids. ACTA ACUST UNITED AC 2011; 203:203-8. [PMID: 21156234 DOI: 10.1016/j.cancergencyto.2010.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/02/2010] [Accepted: 08/08/2010] [Indexed: 11/18/2022]
Abstract
Metakaryotic cells and syncytia with large, hollow, bell-shaped nuclei demonstrate symmetrical and asymmetrical amitotic nuclear fissions in microanatomical positions and numbers expected of stem cell lineages in tissues of all three primordial germ layers and their derived tumors. Using fluorescence in situ hybridization, mononuclear metakaryotic interphase cells have been found with only 23 centromeric and 23 telomeric staining regions. Syncytial bell-shaped nuclei found approximately during weeks 5-12 of human gestation display 23 centromeric and either 23 or 46 telomeric staining regions. These images suggest that (1) homologous chromatids pair at centromeres and telomeres, (2) all paired telomeres join end-to-end with other paired telomeres in all mononuclear and some syncytial metakaryotic cells, and (3) telomere junctions may open and close during the syncytial phase of development. Twenty-three telomeric joining figures could be accounted by 23 rings of one chromatid pair each, a single pangenomic ring of 23 joined chromatid pairs, or any of many possible sets of oligo-chromatid pair rings. As telomeric end-joining may affect peri-telomeric gene expression, a programmed sequence of telomeric end-joining associations in metakaryotic stem cells could guide developmental arboration and errors in, or interruptions of, this program could contribute to carcinogenesis.
Collapse
Affiliation(s)
- Amanda N Gruhl
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
15
|
Jean LW, Suchorolski MT, Jeon J, Luebeck EG. Multiscale estimation of cell kinetics. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2010; 11:239-54. [PMID: 20582763 DOI: 10.1080/17486700903535922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We introduce a methodology based on the Luria-Delbruck fluctuation model for estimating the cell kinetics of clonally expanding populations. In particular, this approach allows estimation of the net cell proliferation rate, the extinction coefficient and the initial (viable) population size. We present a systematic approach based on spatial partitioning, which captures the local fluctuations of the number and sizes of individual clones. However, partitioning introduces measurement error by inflating the number of clones, which is dependent on time and the degree of cell migration. We perform various in silico experiments to explore the properties of the estimators and we show that there exists a direct relationship between precision and observation time. We also explore the trade-off between the measurement error and the estimation accuracy. By exploring different scales of cellular fluctuations, from the entire population down to those of individual clones, we show that this methodology is useful for inferring important parameters in neoplastic progression.
Collapse
Affiliation(s)
- Larry W Jean
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
16
|
Meza R, Jeon J, Renehan AG, Luebeck EG. Colorectal cancer incidence trends in the United States and United kingdom: evidence of right- to left-sided biological gradients with implications for screening. Cancer Res 2010; 70:5419-29. [PMID: 20530677 PMCID: PMC2914859 DOI: 10.1158/0008-5472.can-09-4417] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Several lines of evidence support the premise that screening colonoscopy reduces colorectal cancer (CRC) incidence, but there may be differential benefits for right- and left-sided tumors. To better understand the biological basis of this differential effect, we derived biomathematical models of CRC incidence trends in U.S. and U.K. populations, representing relatively high- and low-prevalence screening, respectively. Using the Surveillance Epidemiology and End Results (SEER) and the Office for National Statistics (ONS) registries (both 1973-2006), we derived stochastic multistage clonal expansion (MSCE) models for right-sided (proximal colon) and left-sided (distal colon and rectal) tumors. The MSCE concept is based on the initiation-promotion-progression paradigm of carcinogenesis and provides a quantitative description of natural tumor development from the initiation of an adenoma (via biallelic tumor suppressor gene inactivation) to the clinical detection of CRC. From 1,228,036 (SEER: 340,582; ONS: 887,454) cases, parameter estimates for models adjusted for calendar-year and birth-cohort effects showed that adenoma initiation rates were higher for right-sided tumors, whereas, paradoxically, adenoma growth rates were higher for left-sided tumors. The net effect was a higher cancer risk in the right colon only after age 70 years. Consistent with this finding, simulations of adenoma development predicted that the relative prevalence for right- versus left-sided tumors increases with increasing age, a differential effect most striking in women. Using a realistic biomathematical description of CRC development for two nationally representative registries, we show age- and sex-dependent biological gradients for right- and left-sided colorectal tumors. These findings argue for an age-, sex-, and site-directed approach to CRC screening.
Collapse
Affiliation(s)
- Rafael Meza
- Centre for Disease Control, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
17
|
Evolution in health and medicine Sackler colloquium: Somatic evolutionary genomics: mutations during development cause highly variable genetic mosaicism with risk of cancer and neurodegeneration. Proc Natl Acad Sci U S A 2009; 107 Suppl 1:1725-30. [PMID: 19805033 DOI: 10.1073/pnas.0909343106] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Somatic mutations must happen often during development because of the large number of cell divisions to expand from a single-cell zygote to a full organism. A mutation in development carries forward to all descendant cells, causing genetic mosaicism. Widespread genetic mosaicism may influence diseases that derive from a few genetically altered cells, such as cancer. I show how to predict the expected amount of mosaicism and the variation in mosaicism between individuals. I then calculate the predicted risk of cancer derived from developmental mutations. The calculations show that a significant fraction of cancer in later life likely arises from developmental mutations in early life. In addition, much of the variation in the risk of cancer between individuals may arise from variation in the degree of genetic mosaicism set in early life. I also suggest that certain types of neurodegeneration, such as amyotrophic lateral sclerosis (ALS), may derive from a small focus of genetically altered cells. If so, then the risk of ALS would be influenced by developmental mutations and the consequent variation in genetic mosaicism. New technologies promise the ability to measure genetic mosaicism by sampling a large number of cellular genomes within an individual. The sampling of many genomes within an individual will eventually allow one to reconstruct the cell lineage history of genetic change in a single body. Somatic evolutionary genomics will follow from this technology, providing new insight into the origin and progression of disease with increasing age.
Collapse
|
18
|
Meza R, Jeon J, Moolgavkar SH, Luebeck EG. Age-specific incidence of cancer: Phases, transitions, and biological implications. Proc Natl Acad Sci U S A 2008; 105:16284-9. [PMID: 18936480 PMCID: PMC2570975 DOI: 10.1073/pnas.0801151105] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Indexed: 01/19/2023] Open
Abstract
The observation that the age-specific incidence curve of many carcinomas is approximately linear on a double logarithmic plot has led to much speculation regarding the number and nature of the critical events involved in carcinogenesis. By a consideration of colorectal and pancreatic cancers in the Surveillance Epidemiology and End Results (SEER) registry we show that the log-log model provides a poor description of the data, and that a much better description is provided by a multistage model that predicts two basic phases in the age-specific incidence curves, a first exponential phase until the age of approximately 60 followed by a linear phase after that age. These two phases in the incidence curve reflect two phases in the process of carcinogenesis. Paradoxically, the early-exponential phase reflects events between the formation (initiation) of premalignant clones in a tissue and the clinical detection of a malignant tumor, whereas the linear phase reflects events leading to initiated cells that give rise to premalignant lesions because of abrogated growth/differentiation control. This model is consistent with Knudson's idea that renewal tissue, such as the colon, is converted into growing tissue before malignant transformation. The linear phase of the age-specific incidence curve represents this conversion, which is the result of recessive inactivation of a gatekeeper gene, such as the APC gene in the colon and the CDKN2A gene in the pancreas.
Collapse
Affiliation(s)
- Rafael Meza
- *Program in Biostatistics and Biomathematics and
| | - Jihyoun Jeon
- *Program in Biostatistics and Biomathematics and
| | - Suresh H. Moolgavkar
- *Program in Biostatistics and Biomathematics and
- Exponent, Inc., 15375 SE 30th Place, Bellevue, WA 98007
| | | |
Collapse
|
19
|
Luebeck EG, Moolgavkar SH, Liu AY, Boynton A, Ulrich CM. Does folic acid supplementation prevent or promote colorectal cancer? Results from model-based predictions. Cancer Epidemiol Biomarkers Prev 2008; 17:1360-7. [PMID: 18539928 PMCID: PMC2834311 DOI: 10.1158/1055-9965.epi-07-2878] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Folate is essential for nucleotide synthesis, DNA replication, and methyl group supply. Low-folate status has been associated with increased risks of several cancer types, suggesting a chemopreventive role of folate. However, recent findings on giving folic acid to patients with a history of colorectal polyps raise concerns about the efficacy and safety of folate supplementation and the long-term health effects of folate fortification. Results suggest that undetected precursor lesions may progress under folic acid supplementation, consistent with the role of folate role in nucleotide synthesis and cell proliferation. To better understand the possible trade-offs between the protective effects due to decreased mutation rates and possibly concomitant detrimental effects due to increased cell proliferation of folic acid, we used a biologically based mathematical model of colorectal carcinogenesis. We predict changes in cancer risk based on timing of treatment start and the potential effect of folic acid on cell proliferation and mutation rates. Changes in colorectal cancer risk in response to folic acid supplementation are likely a complex function of treatment start, duration, and effect on cell proliferation and mutations rates. Predicted colorectal cancer incidence rates under supplementation are mostly higher than rates without folic acid supplementation unless supplementation is initiated early in life (before age 20 years). To the extent to which this model predicts reality, it indicates that the effect on cancer risk when starting folic acid supplementation late in life is small, yet mostly detrimental. Experimental studies are needed to provide direct evidence for this dual role of folate in colorectal cancer and to validate and improve the model predictions.
Collapse
Affiliation(s)
- E Georg Luebeck
- Fred Hutchinson Cancer Research Center, Biostatistics and Biomathematics, 1100 Fairview Avenue North, M2-B500, Seattle, WA 98109-1024, USA.
| | | | | | | | | |
Collapse
|
20
|
Spector LG, Hooten AJ, Ross JA. Ontogeny of Gene Expression: A Changing Environment for Malignancy: Figure 1. Cancer Epidemiol Biomarkers Prev 2008; 17:1021-3. [PMID: 18483321 DOI: 10.1158/1055-9965.epi-08-0275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Jeon J, Meza R, Moolgavkar SH, Georg Luebeck E. Evaluation of screening strategies for pre-malignant lesions using a biomathematical approach. Math Biosci 2008; 213:56-70. [PMID: 18374369 PMCID: PMC2442130 DOI: 10.1016/j.mbs.2008.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 02/07/2008] [Accepted: 02/08/2008] [Indexed: 11/21/2022]
Abstract
We derive mathematical expressions for the size distribution of screen-detectable pre-malignant lesions, both conditional and unconditional on no prior detection of cancer in the tissue of interest, based on a general multistage clonal expansion model of carcinogenesis. We apply these expressions to simulate the natural history of colorectal cancer and to evaluate the effect of a screen for adenomatous polyps and concomitant intervention on cancer risk. Our approach allows the efficient simulation of multiple screens and interventions and determination of the optimal timing of the screens. We further demonstrate the utility of our approach by computing the benefits of up to two colonoscopies on the lifetime risk of colorectal cancer.
Collapse
Affiliation(s)
- Jihyoun Jeon
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195,USA
- Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rafael Meza
- Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Suresh H. Moolgavkar
- Program in Biostatistics and Biomathematics, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - E. Georg Luebeck
- Program in Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
22
|
Zhang WK, Zhang C, Zhang JJ, Liu SV. Occurrence of cancer at multiple sites: towards distinguishing multigenesis from metastasis. Biol Direct 2008; 3:14. [PMID: 18405362 PMCID: PMC2373780 DOI: 10.1186/1745-6150-3-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 04/11/2008] [Indexed: 12/11/2022] Open
Abstract
Background Occurrence of tumors at multiple sites is a hallmark of malignant cancers and contributes to the high mortality of cancers. The formation of multi-site cancers (MSCs) has conventionally been regarded as a result of hematogenous metastasis. However, some MSCs may appear as unusual in the sense of vascular dissemination pattern and therefore be explained by alternative metastasis models or even by non-metastatic independent formation mechanisms. Results Through literature review and incorporation of recent advance in understanding aging and development, we identified two alternative mechanisms for the independent formation of MSCs: 1) formation of separate tumors from cancer-initiating cells (CICs) mutated at an early stage of development and then diverging as to their physical locations upon further development, 2) formation of separate tumors from different CICs that contain mutations in some convergent ways. Either of these processes does not require long-distance migration and/or vascular dissemination of cancer cells from a primary site to a secondary site. Thus, we classify the formation of these MSCs from indigenous CICs (iCICs) into a new mechanistic category of tumor formation – multigenesis. Conclusion A multigenesis view on multi-site cancer (MSCs) may offer explanations for some "unusual metastasis" and has important implications for designing expanded strategies for the diagnosis and treatment of cancers. Reviewers This article was reviewed by Carlo C. Maley nominated by Laura F. Landweber and Razvan T. Radulescu nominated by David R. Kaplan. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Wei-Kang Zhang
- Department of General Surgery, Union Hospital, Huazhong Science and Technology University, Wuhan, China.
| | | | | | | |
Collapse
|
23
|
Little MP, Heidenreich WF, Moolgavkar SH, Schöllnberger H, Thomas DC. Systems biological and mechanistic modelling of radiation-induced cancer. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:39-47. [PMID: 18097677 PMCID: PMC2226195 DOI: 10.1007/s00411-007-0150-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 12/03/2007] [Indexed: 05/07/2023]
Abstract
This paper summarises the five presentations at the First International Workshop on Systems Radiation Biology that were concerned with mechanistic models for carcinogenesis. The mathematical description of various hypotheses about the carcinogenic process, and its comparison with available data is an example of systems biology. It promises better understanding of effects at the whole body level based on properties of cells and signalling mechanisms between them. Of these five presentations, three dealt with multistage carcinogenesis within the framework of stochastic multistage clonal expansion models, another presented a deterministic multistage model incorporating chromosomal aberrations and neoplastic transformation, and the last presented a model of DNA double-strand break repair pathways for second breast cancers following radiation therapy.
Collapse
Affiliation(s)
- M P Little
- Department of Epidemiology and Public Health, Imperial College Faculty of Medicine, London W2 1PG, UK.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Neoplasms are microcosms of evolution. Within a neoplasm, a mosaic of mutant cells compete for space and resources, evade predation by the immune system and can even cooperate to disperse and colonize new organs. The evolution of neoplastic cells explains both why we get cancer and why it has been so difficult to cure. The tools of evolutionary biology and ecology are providing new insights into neoplastic progression and the clinical control of cancer.
Collapse
Affiliation(s)
- Lauren M F Merlo
- Cellular and Molecular Oncology Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|