1
|
Knöbl V, Maier L, Grasl S, Kratzer C, Winkler F, Eder V, Hayden H, Sahagun Cortez MA, Sachet M, Oehler R, Frantal S, Fesl C, Zehetner K, Pfeiler G, Bartsch R, Fitzal F, Singer CF, Filipits M, Gnant M, Brostjan C. Monocyte subsets in breast cancer patients under treatment with aromatase inhibitor and mucin-1 cancer vaccine. J Transl Med 2024; 22:913. [PMID: 39380101 PMCID: PMC11460172 DOI: 10.1186/s12967-024-05659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Monocytes comprise subsets of classical, intermediate and non-classical monocytes with distinct anti- or pro-tumor effects in breast cancer (BC). They are modulated by estrogen, and can contribute to BC control by endocrine therapy in preclinical models. METHODS To elucidate whether changes in monocyte subsets are associated with treatment and response, we investigated peripheral blood samples of 73 postmenopausal women with estrogen receptor (ER) positive BC, who received aromatase inhibitor therapy with or without the mucin-1 vaccine tecemotide in the ABCSG34 trial. Blood was retrieved at baseline, midterm and end of therapy, and was analyzed for the distribution and ER expression of monocyte subsets by flow cytometry. RESULTS When 40 healthy, age-matched women were compared with BC patients before treatment start, ER levels of monocytes did not differ, yet patients presented with a higher frequency of classical and fewer non-classical monocytes. Endocrine therapy triggered a significant increase in ER levels in all monocyte subsets, without affecting subset distribution. Vaccination had no overall impact on subset frequency and ER expression. Yet, a shift from intermediate to classical monocytes during therapy correlated with changes in plasma cytokines and chemokines and was significantly associated with low residual cancer burden in vaccinated patients. Without tecemotide, baseline ER levels in classical monocytes were significantly higher in women with good response to endocrine therapy. CONCLUSIONS This study identified classical monocytes to be associated with ER positive BC and with patient response to neoadjuvant endocrine treatment and cancer vaccination.
Collapse
Affiliation(s)
- Viktoria Knöbl
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Lukas Maier
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Stefan Grasl
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Carmen Kratzer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Felix Winkler
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Vanessa Eder
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Hubert Hayden
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Maria Amparo Sahagun Cortez
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Monika Sachet
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Rudolf Oehler
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sophie Frantal
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Christian Fesl
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Karin Zehetner
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Georg Pfeiler
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of Obstetrics and Gynecology, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Rupert Bartsch
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Florian Fitzal
- Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of General Surgery, Hanusch Hospital, Vienna, Austria
| | - Christian F Singer
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Department of Obstetrics and Gynecology, Medical University of Vienna, University Hospital Vienna, Vienna, Austria
| | - Martin Filipits
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Gnant
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Austrian Breast & Colorectal Cancer Study Group (ABCSG), Vienna, Austria
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Ackermann P, Marin-Cuartas M, Weber C, De La Cuesta M, Lichtenberg A, Petrov A, Hagl C, Aubin H, Matschke K, Diab M, Luehr M, Akhyari P, Tugtekin SM, Saha S, Doenst T, Wahlers T, Borger MA, Misfeld M. Sex-related differences in patients with infective endocarditis requiring cardiac surgery: insights from the CAMPAIGN Study Group. Eur J Cardiothorac Surg 2024; 66:ezae292. [PMID: 39073913 DOI: 10.1093/ejcts/ezae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/22/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVES Sex-related differences play a role in cardiovascular disease-related outcomes. There is, however, a knowledge gap regarding sex-specific differences in patients with infective endocarditis (IE)-requiring surgical treatment. This study aims to analyse sex-related differences in the clinical presentation, treatment and clinical outcomes of patients with IE-requiring surgical treatment from the multicentric Germany-wide CAMPAIGN registry. METHODS Patients with IE who underwent cardiac surgery between 1994 and 2018 at six German centres were retrospectively analysed. Outcomes were compared based on patients' sex. Primary outcomes were 30-day mortality and mid-term survival. RESULTS A total of 4917 patients were included in the analysis (1364 female [27.7%] and 3553 male [72.3%]). Female patients presented with more comorbidities and higher surgical risk (EuroScore II 12.0% vs 10.0%, P < 0.001). The early postoperative course of female patients was characterized by longer ventilation times (20.0 h vs 16.0 h; P = 0.004), longer intensive care unit stay (4.0 days vs 3.0 days; P < 0.001), and more frequent new-onset dialysis (265 [20.3%] vs 549 [16.3%]; P = 0.001). The 30-day mortality was 13.8% and 15.5% in female and male patients, respectively (P = 0.06). The estimated mid-term survival was significantly higher amongst male patients (56.1% vs 45.4%; Log-rank P < 0.001). Female sex was an independent predictor of mid-term mortality (HR 1.2 [95% CI 1.0-1.4], P = 0.01). CONCLUSIONS Male patients more frequently undergo cardiac surgery for IE. However, female patients have a higher surgical risk profile and subsequently an increased early postoperative morbidity, but with similar 30-day mortality compared with male patients. The estimated mid-term survival is lower amongst female patients.
Collapse
Affiliation(s)
- Paula Ackermann
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Mateo Marin-Cuartas
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Carolyn Weber
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Manuela De La Cuesta
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Asen Petrov
- Department of Cardiac Surgery, University Hospital, University of Dresden, Dresden, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital LMU Munich, Munich, Germany
| | - Hug Aubin
- Department of Cardiac Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, University Hospital, University of Dresden, Dresden, Germany
| | - Mahmoud Diab
- Herz-Kreislauf-Zentrum, Klinikum Hersfeld-Rotenburg, Rontenburg an der Fulda, Germany
| | - Maximilian Luehr
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Payam Akhyari
- Department of Cardiothoracic Surgery, RWTH Aachen, Aachen, Germany
| | - Sems-Malte Tugtekin
- Department of Cardiac Surgery, University Hospital, University of Dresden, Dresden, Germany
| | - Shekhar Saha
- Department of Cardiac Surgery, University Hospital LMU Munich, Munich, Germany
| | - Torsten Doenst
- Department of Cardiac Surgery, University Hospital of Jena, Jena, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of the University of Cologne, Cologne, Germany
| | - Michael A Borger
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Martin Misfeld
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
- Department of Cardiothoracic Surgery, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Institute of Academic Surgery, RPAH, Sydney, Australia
- The Baird Institute of Applied Heart and Lung Surgical Research, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Suvandjieva V, Tsacheva I, Santos M, Kararigas G, Rashkov P. Modelling the Impact of NETosis During the Initial Stage of Systemic Lupus Erythematosus. Bull Math Biol 2024; 86:66. [PMID: 38678489 PMCID: PMC11056343 DOI: 10.1007/s11538-024-01291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
The development of autoimmune diseases often takes years before clinical symptoms become detectable. We propose a mathematical model for the immune response during the initial stage of Systemic Lupus Erythematosus which models the process of aberrant apoptosis and activation of macrophages and neutrophils. NETosis is a type of cell death characterised by the release of neutrophil extracellular traps, or NETs, containing material from the neutrophil's nucleus, in response to a pathogenic stimulus. This process is hypothesised to contribute to the development of autoimmunogenicity in SLE. The aim of this work is to study how NETosis contributes to the establishment of persistent autoantigen production by analysing the steady states and the asymptotic dynamics of the model by numerical experiment.
Collapse
Affiliation(s)
- Vladimira Suvandjieva
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, ul. Akad. Georgi Bonchev, blok 8, 1113, Sofia, Bulgaria
| | - Ivanka Tsacheva
- Faculty of Biology, Sofia University "Sveti Kliment Ohridski", bul. Dragan Tsankov 8, 1164, Sofia, Bulgaria
| | - Marlene Santos
- LAQV/REQUIMTE, Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072, Porto, Portugal
| | - Georgios Kararigas
- Department of Physiology, Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101, Reykjavik, Iceland
| | - Peter Rashkov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, ul. Akad. Georgi Bonchev, blok 8, 1113, Sofia, Bulgaria.
| |
Collapse
|
4
|
Flora A, Kozera EK, Jepsen R, Gill K, Xu J, Frew JW. Baseline clinical, hormonal and molecular markers associated with clinical response to IL-23 antagonism in hidradenitis suppurativa: A prospective cohort study. Exp Dermatol 2023. [PMID: 36933897 DOI: 10.1111/exd.14789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/20/2023]
Abstract
Hidradenitis suppurativa is a complex inflammatory disease in which predicting therapeutic response remains challenging. IL-23 interacts with sex hormones but the relationships between the two in HS remains uninvestigated. To assess whether baseline clinical, hormonal or molecular markers are associated with clinical response to IL-23 antagonism with risankizumab in hidradenitis suppurativa. Twenty six individuals with Hurley stage 2/3 disease were administered risankizumab 150 mg Week 0, 4, 12. Baseline sex hormones and skin biopsies were taken. Clinical response at Week 16 assessed by the HiSCR, and differences between responders and non-responders assessed. Eighteen of 26 participants achieved HiSCR50 at week 16 (69.2%). Clinical response to IL-23 antagonism was associated with male gender, elevated total serum testosterone and decreased levels of FSH. Stratification by clinical responders/nonresponders identified differentially expressed genes including PLPP4 and MAPK10. Immunohistochemistry identified elevated numbers of CD11c, IL-17A and IL-17F positive cells compared to nonresponders. CD11c + cells significantly correlated with serum levels of total testosterone and inversely correlated with serum FSH. Clinical response to IL-23 antagonism in HS is associated with serum sex hormones, Th17 polarized inflammation in lesional tissue and CD11c + cells. These potential therapeutic biomarkers require further validation in larger cohorts but may suggest potential targeted HS therapy.
Collapse
Affiliation(s)
- A Flora
- Department of Dermatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Laboratory of Translational Cutaneous Medicine, Ingham Institute, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - E K Kozera
- Department of Dermatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Laboratory of Translational Cutaneous Medicine, Ingham Institute, Sydney, New South Wales, Australia
| | - R Jepsen
- Holdsworth House Medical Practice, Sydney, New South Wales, Australia
| | - K Gill
- University of New South Wales, Sydney, New South Wales, Australia
| | - J Xu
- University of New South Wales, Sydney, New South Wales, Australia
| | - J W Frew
- Department of Dermatology, Liverpool Hospital, Sydney, New South Wales, Australia.,Laboratory of Translational Cutaneous Medicine, Ingham Institute, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia.,Holdsworth House Medical Practice, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Steinberger KJ, Eubank TD. The Underexplored Landscape of Hypoxia-Inducible Factor 2 Alpha and Potential Roles in Tumor Macrophages: A Review. OXYGEN (BASEL, SWITZERLAND) 2023; 3:45-76. [PMID: 37124241 PMCID: PMC10137047 DOI: 10.3390/oxygen3010005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Low tissue oxygenation, termed hypoxia, is a characteristic of solid tumors with negative consequences. Tumor-associated macrophages (TAMs) accumulate in hypoxic tumor regions and correlate with worse outcomes in cancer patients across several tumor types. Thus, the molecular mechanism in which macrophages respond to low oxygen tension has been increasingly investigated in the last decade. Hypoxia stabilizes a group of hypoxia-inducible transcription factors (HIFs) reported to drive transcriptional programs involved in cell survival, metabolism, and angiogenesis. Though both tumor macrophage HIF-1α and HIF-2α correlate with unfavorable tumor microenvironments, most research focuses on HIF-1α as the master regulator of hypoxia signaling, because HIF-1α expression was originally identified in several cancer types and correlates with worse outcome in cancer patients. The relative contribution of each HIFα subunit to cell phenotypes is poorly understood especially in TAMs. Once thought to have overlapping roles, recent investigation of macrophage HIF-2α has demonstrated a diverse function from HIF-1α. Little work has been published on the differential role of hypoxia-dependent macrophage HIF-2α when compared to HIF-1α in the context of tumor biology. This review highlights cellular HIF-2α functions and emphasizes the gap in research investigating oxygen-dependent functions of tumor macrophage HIF-2α.
Collapse
Affiliation(s)
- Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26505, USA
- In Vivo Multifunctional Magnetic Resonance Center, West Virginia University, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26505, USA
| |
Collapse
|
6
|
Poley M, Chen G, Sharf-Pauker N, Avital A, Kaduri M, Sela M, Raimundo PM, Koren L, Arber S, Egorov E, Shainsky J, Shklover J, Schroeder A. Sex‐Based Differences in the Biodistribution of Nanoparticles and Their Effect on Hormonal, Immune, and Metabolic Function. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Gal Chen
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Noga Sharf-Pauker
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Aviram Avital
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Mor Sela
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Patricia Mora Raimundo
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Sivan Arber
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Egor Egorov
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Janna Shainsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
7
|
Ramírez-de-Arellano A, Gutiérrez-Franco J, Sierra-Diaz E, Pereira-Suárez AL. The role of estradiol in the immune response against COVID-19. Hormones (Athens) 2021; 20:657-667. [PMID: 34142358 PMCID: PMC8210971 DOI: 10.1007/s42000-021-00300-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the pathogen agent causing coronavirus disease (COVID)-19, which was declared a global pandemic in 2020. The spike protein of this virus and the angiotensin-converter enzyme (ACE)-2 in host cells in humans play a vital role in infection and in COVID-19 pathogenesis. Estradiol is known to modulate the actions of immune cells, and, therefore, the antiviral mechanisms of these cells could also be modified by this hormone stimulus. Even though estradiol is not considered a protective factor, evidence shows that women with high levels of this hormone have a lower risk of developing severe symptoms and an even a lower incidence of death. Understanding the mechanism of action of estradiol with regard to viral infections and COVID-19 is essential for the improvement of therapeutic strategies. This review aims to describe the effects that estradiol exerts on immune cells during viral infections and COVID-19.
Collapse
Affiliation(s)
- Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México
| | - Jorge Gutiérrez-Franco
- Unidad Académica de Ciencias Químico Biológicas Y Farmacéuticas, Universidad Autónoma de Nayarit, Tepic, Nayarit, 63 000, México
| | - Erick Sierra-Diaz
- Departamento de Salud Pública, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, División de Epidemiología, Unidad Medica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Guadalajara, Jalisco, 44340, México
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Guadalajara, Jalisco, 44 340, México.
- Departamento de Microbiología Y Patología, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP, 44340, Guadalajara, Jalisco, México.
| |
Collapse
|
8
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
9
|
Dama A, Baggio C, Boscaro C, Albiero M, Cignarella A. Estrogen Receptor Functions and Pathways at the Vascular Immune Interface. Int J Mol Sci 2021; 22:4254. [PMID: 33923905 PMCID: PMC8073008 DOI: 10.3390/ijms22084254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
Estrogen receptor (ER) activity mediates multiple physiological processes in the cardiovascular system. ERα and ERβ are ligand-activated transcription factors of the nuclear hormone receptor superfamily, while the G protein-coupled estrogen receptor (GPER) mediates estrogenic signals by modulating non-nuclear second messengers, including activation of the MAP kinase signaling cascade. Membrane localizations of ERs are generally associated with rapid, non-genomic effects while nuclear localizations are associated with nuclear activities/transcriptional modulation of target genes. Gender dependence of endothelial biology, either through the action of sex hormones or sex chromosome-related factors, is becoming increasingly evident. Accordingly, cardiometabolic risk increases as women transition to menopause. Estrogen pathways control angiogenesis progression through complex mechanisms. The classic ERs have been acknowledged to function in mediating estrogen effects on glucose metabolism, but 17β-estradiol also rapidly promotes endothelial glycolysis by increasing glucose transporter 1 (GLUT1) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) levels through GPER-dependent mechanisms. Estrogens alter monocyte and macrophage phenotype(s), and induce effects on other estrogen-responsive cell lineages (e.g., secretion of cytokines/chemokines/growth factors) that impact macrophage function. The pharmacological modulation of ERs for therapeutic purposes, however, is particularly challenging due to the lack of ER subtype selectivity of currently used agents. Identifying the determinants of biological responses to estrogenic agents at the vascular immune interface and developing targeted pharmacological interventions may result in novel improved therapeutic solutions.
Collapse
Affiliation(s)
- Aida Dama
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35128 Padova, Italy; (C.B.); (C.B.)
| | - Mattia Albiero
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
- Venetian Institute of Molecular Medicine, 35129 Padova, Italy
| | - Andrea Cignarella
- Department of Medicine, University of Padova, 35128 Padova, Italy; (A.D.); (M.A.)
| |
Collapse
|
10
|
Tenti S, Correale P, Cheleschi S, Fioravanti A, Pirtoli L. Aromatase Inhibitors-Induced Musculoskeletal Disorders: Current Knowledge on Clinical and Molecular Aspects. Int J Mol Sci 2020; 21:E5625. [PMID: 32781535 PMCID: PMC7460580 DOI: 10.3390/ijms21165625] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Aromatase inhibitors (AIs) have radically changed the prognosis of hormone receptor positive breast cancer (BC) in post-menopausal women, and are a mainstay of the adjuvant therapy for BC after surgery in place of, or following, Tamoxifen. However, AIs aren't side effect-free; frequent adverse events involve the musculoskeletal system, in the form of bone loss, AI-associated arthralgia (AIA) syndrome and autoimmune rheumatic diseases. In this narrative review, we reported the main clinical features of these three detrimental conditions, their influence on therapy adherence, the possible underlying molecular mechanisms and the available pharmacological and non-pharmacological treatments. The best-known form is the AIs-induced osteoporosis, whose molecular pathway and therapeutic possibilities were extensively investigated in the last decade. AIA syndrome is a high prevalent joint pain disorder which often determines a premature discontinuation of the therapy. Several points still need to be clarified, as a universally accepted diagnostic definition, the pathogenetic mechanisms and satisfactory management strategies. The association of AIs therapy with autoimmune diseases is of the utmost interest. The related literature has been recently expanded, but many issues remain to be explored, the first being the molecular mechanisms.
Collapse
Affiliation(s)
- Sara Tenti
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Viale Bracci 1, 53100 Siena, Italy; (S.T.); (A.F.)
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89121 Reggio Calabria, Italy;
| | - Sara Cheleschi
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Viale Bracci 1, 53100 Siena, Italy; (S.T.); (A.F.)
| | - Antonella Fioravanti
- Rheumatology Unit, Department of Medicine, Surgery and Neuroscience, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Viale Bracci 1, 53100 Siena, Italy; (S.T.); (A.F.)
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine-Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
11
|
Kopel J, Perisetti A, Roghani A, Aziz M, Gajendran M, Goyal H. Racial and Gender-Based Differences in COVID-19. Front Public Health 2020; 8:418. [PMID: 32850607 PMCID: PMC7399042 DOI: 10.3389/fpubh.2020.00418] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
The novel coronavirus disease (COVID-19) has become a global health crisis since its first appearance in Wuhan, China. Current epidemiological studies suggest that COVID-19 affects older patients with multiple comorbidities, such as hypertension, obesity, and chronic lung diseases. The differences in the incidence and severity of COVID-19 are likely to be multifaceted, depending on various biological, social, and economical factors. Specifically, the socioeconomic differences and psychological impact of COVID-19 affecting males and females are essential in pandemic mitigation and preparedness. Previous clinical studies have shown that females are less susceptible to acquire viral infections and reduced cytokine production. Female patients have a higher macrophage and neutrophil activity as well as antibody production and response. Furthermore, in-vivo studies of the angiotensin-converting enzyme 2 (ACE2) showed higher expression in the kidneys of male than female patients, which may explain the differences in susceptibility and progression of COVID-19 between male and female patients. However, it remains unknown whether the expression of ACE2 differs in the lungs of male or female patients. Disparities in healthcare access and socioeconomic status between ethnic groups may influence COVID-19 rates. Ethnic groups often have higher levels of medical comorbidities and lower socioeconomic status, which may increase their risk of contracting COVID-19 through weak cell-mediated immunity. In this article, we examine the current literature on the gender and racial differences among COVID-19 patients and further examine the possible biological mechanisms underlying these differences.
Collapse
Affiliation(s)
- Jonathan Kopel
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Abhilash Perisetti
- Department of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ali Roghani
- Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Muhammad Aziz
- Department of Internal Medicine, The University of Toledo, Toledo, OH, United States
| | - Mahesh Gajendran
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Hemant Goyal
- The Wright Center for Graduate Medical Education, Scranton, PA, United States
| |
Collapse
|
12
|
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and the predominant cause of heart attack and ischemic stroke. Despite the well-known sexual dimorphism in the incidence and complications of atherosclerosis, there are relatively limited data in the clinical and preclinical literature to rigorously address mechanisms underlying sex as a biological variable in atherosclerosis. In multiple histological and imaging studies, overall plaque burden and markers of inflammation appear to be greater in men than women and are predictive of cardiovascular events. However, while younger women are relatively protected from cardiovascular disease, by the seventh decade, the incidence of myocardial infarction in women ultimately surpasses that of men, suggesting an interaction between sex and age. Most preclinical studies in animal atherosclerosis models do not examine both sexes, and even in those that do, well-powered direct statistical comparisons for sex as an independent variable remain rare. This article reviews the available data. Overall, male animals appear to have more inflamed yet smaller plaques compared to female animals. Plaque inflammation is often used as a surrogate end point for plaque vulnerability in animals. The available data support the notion that rather than plaque size, plaque inflammation may be more relevant in assessing sex-specific mechanisms since the findings correlate with the sex difference in ischemic events and mortality and thus may be more reflective of the human condition. Overall, the number of preclinical studies directly comparing plaque inflammation between the sexes is extremely limited relative to the vast literature exploring atherosclerosis mechanisms. Failure to include both sexes and to address age in mechanistic atherosclerosis studies are missed opportunities to uncover underlying sex-specific mechanisms. Understanding the mechanisms driving sex as a biological variable in atherosclerotic disease is critical to future precision medicine strategies to mitigate what is still the leading cause of death of men and women worldwide.
Collapse
Affiliation(s)
- Joshua J. Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Joshua A. Beckman
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
13
|
Sánchez-Maldonado JM, Cáliz R, Canet L, Horst RT, Bakker O, den Broeder AA, Martínez-Bueno M, Canhão H, Rodríguez-Ramos A, Lupiañez CB, Soto-Pino MJ, García A, Pérez-Pampin E, González-Utrilla A, Escudero A, Segura-Catena J, Netea-Maier RT, Ferrer MÁ, Collantes-Estevez E, López Nevot MÁ, Li Y, Jurado M, Fonseca JE, Netea MG, Coenen MJH, Sainz J. Steroid hormone-related polymorphisms associate with the development of bone erosions in rheumatoid arthritis and help to predict disease progression: Results from the REPAIR consortium. Sci Rep 2019; 9:14812. [PMID: 31616008 PMCID: PMC6794376 DOI: 10.1038/s41598-019-51255-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/28/2019] [Indexed: 12/11/2022] Open
Abstract
Here, we assessed whether 41 SNPs within steroid hormone genes associated with erosive disease. The most relevant finding was the rheumatoid factor (RF)-specific effect of the CYP1B1, CYP2C9, ESR2, FcγR3A, and SHBG SNPs to modulate the risk of bone erosions (P = 0.004, 0.0007, 0.0002, 0.013 and 0.015) that was confirmed through meta-analysis of our data with those from the DREAM registry (P = 0.000081, 0.0022, 0.00074, 0.0067 and 0.0087, respectively). Mechanistically, we also found a gender-specific correlation of the CYP2C9rs1799853T/T genotype with serum vitamin D3 levels (P = 0.00085) and a modest effect on IL1β levels after stimulation of PBMCs or blood with LPS and PHA (P = 0.0057 and P = 0.0058). An overall haplotype analysis also showed an association of 3 ESR1 haplotypes with a reduced risk of erosive arthritis (P = 0.009, P = 0.002, and P = 0.002). Furthermore, we observed that the ESR2, ESR1 and FcγR3A SNPs influenced the immune response after stimulation of PBMCs or macrophages with LPS or Pam3Cys (P = 0.002, 0.0008, 0.0011 and 1.97•10−7). Finally, we found that a model built with steroid hormone-related SNPs significantly improved the prediction of erosive disease in seropositive patients (PRF+ = 2.46•10−8) whereas no prediction was detected in seronegative patients (PRF− = 0.36). Although the predictive ability of the model was substantially lower in the replication population (PRF+ = 0.014), we could confirm that CYP1B1 and CYP2C9 SNPs help to predict erosive disease in seropositive patients. These results are the first to suggest a RF-specific association of steroid hormone-related polymorphisms with erosive disease.
Collapse
Affiliation(s)
- Jose M Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Instituto de Investigación Biosanataria IBs.Granada, Granada, Spain
| | - Rafael Cáliz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Instituto de Investigación Biosanataria IBs.Granada, Granada, Spain.,Rheumatology department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Luz Canet
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Olivier Bakker
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alfons A den Broeder
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Manuel Martínez-Bueno
- Area of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Helena Canhão
- CEDOC, EpiDoC Unit, NOVA Medical School and National School of Public Health, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana Rodríguez-Ramos
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Carmen B Lupiañez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - María José Soto-Pino
- Rheumatology department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Antonio García
- Rheumatology department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Eva Pérez-Pampin
- Rheumatology Unit, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Alejandro Escudero
- Rheumatology department, Reina Sofía Hospital/IMIBIC/University of Córdoba, Córdoba, Spain
| | - Juana Segura-Catena
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Romana T Netea-Maier
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Miguel Ángel Ferrer
- Rheumatology department, Virgen de las Nieves University Hospital, Granada, Spain
| | | | | | - Yang Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,Instituto de Investigación Biosanataria IBs.Granada, Granada, Spain
| | - João E Fonseca
- Rheumatology and Metabolic Bone Diseases Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon Academic Medical Center, Lisbon, Portugal
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.,Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| | - Marieke J H Coenen
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain. .,Instituto de Investigación Biosanataria IBs.Granada, Granada, Spain.
| |
Collapse
|
14
|
Henstridge DC, Abildgaard J, Lindegaard B, Febbraio MA. Metabolic control and sex: A focus on inflammatory-linked mediators. Br J Pharmacol 2019; 176:4193-4207. [PMID: 30820935 DOI: 10.1111/bph.14642] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Men and women have many differing biological and physiological characteristics. Thus, it is no surprise that the control of metabolic processes and the mechanisms underlying metabolic-related diseases have sex-specific components. There is a clear metabolic sexual dimorphism in that up until midlife, men have a far greater likelihood of acquiring cardio-metabolic disease than women. Following menopause, however, this difference is reduced, suggestive of a protective role of the female sex hormones. Inflammatory processes have been implicated in the pathogenesis of cardio-metabolic disease with human studies correlating metabolic disease acquisition or risk with levels of various inflammatory markers. Rodent studies employing genetic modifications or novel pharmacological approaches have provided mechanistic insight into the role of these inflammatory mediators. Sex differences impact inflammatory processes and the subsequent biological response. As a consequence, this may affect how inflammation alters metabolic processes between the sexes. Recently, some of our work in the field of inflammatory genes and metabolic control identified a sexual dimorphism in a preclinical model and caused us to question the frequency and scale of such findings in the literature. This review concentrates on inflammatory-related signalling in relation to obesity, insulin resistance, and type 2 diabetes and highlights the differences observed between males and females. Differences in the activation and signalling of various inflammatory genes and proteins present another reason why studying both male and female patients or animals is important in the context of understanding and finding therapeutics for metabolic-related disease. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Darren C Henstridge
- Molecular Metabolism & Aging Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Julie Abildgaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Lindegaard
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Pulmonary and Infectious Diseases, Nordsjaellands Hospital, Hillerød, Denmark
| | - Mark A Febbraio
- Division of Diabetes & Metabolism, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Drug Discover Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Marvin J, Rhoads JP, Major AS. FcγRIIb on CD11c + cells modulates serum cholesterol and triglyceride levels and differentially affects atherosclerosis in male and female Ldlr -/- mice. Atherosclerosis 2019; 285:108-119. [PMID: 31051414 DOI: 10.1016/j.atherosclerosis.2019.04.221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Circulating levels of oxidized lipoprotein (oxLDL) correlate with myocardial infarction risk and atherosclerosis severity. Our previous study demonstrates that oxLDL immune complexes (oxLDL-ICs) can signal through FcγRs on bone marrow-derived dendritic cells (BMDCs) and enhance their activation and inflammatory cytokine secretion. While global FcγR-/- studies have shown that activating FcγRs are proatherogenic, the role of the inhibitory FcγRIIb is unclear. We sought to determine the role of DC-specific FcγRIIb in atherosclerosis. METHODS Bone marrow chimeras were generated by rescuing lethally irradiated Ldlr-/- mice with hematopoietic cells from littermate CD11c-Cre+ or CD11c-Cre-Fcgr2bfl/fl donors. Four weeks following transplant, recipients were placed on a Western diet for eight weeks. Various tissues and organs were analyzed for differences in inflammation. RESULTS Quantitation of atherosclerosis in the proximal aorta demonstrated a 58% increase in female CD11c-Cre+Fcgr2bfl/fl recipients, but a surprising 44% decrease in male recipients. Hepatic cholesterol and triglycerides were increased in female CD11c-Cre+Fcgr2bfl/fl recipients. This was associated with an increase in CD36 and MHC Class II expression on hepatic CD11c+CD11b+ DCs in female livers. In contrast, male CD11c-Cre+Fcgr2bfl/fl recipients had decreased hepatic lipids with a corresponding decrease in CD36 and MHC Class II expression on CD11c+ cells. Interestingly, both sexes of CD11c-Cre+Fcgr2bfl/fl recipients had significant decreases in serum cholesterol and TGs with corresponding decreases in liver Fasn transcripts. CONCLUSIONS The absence of FcγRIIb expression on CD11c+ cells results in sex-dependent alteration in liver inflammation influencing atherogenesis and sex-independent modulation of serum cholesterol and TGs.
Collapse
Affiliation(s)
- Jennifer Marvin
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN, 37232, USA
| | - Jillian P Rhoads
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN, 37232, USA
| | - Amy S Major
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, 37212, USA; Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
16
|
Sachdeva G, Desouza J, Gadkar S, Jagtap D. Size, site, and signaling: Three attributes of estrogen receptors. BIOMEDICAL RESEARCH JOURNAL 2019. [DOI: 10.4103/bmrj.bmrj_24_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Pan F, Tang W, Zhou Z, Gilkeson G, Lang R, Jiang W. Intestinal macrophages in mucosal immunity and their role in systemic lupus erythematosus disease. Lupus 2018; 27:1898-1902. [PMID: 30223707 PMCID: PMC6398158 DOI: 10.1177/0961203318797417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monocytes play an important role in inducing host systemic immunity against invading pathogens and inflammatory responses. After activation, monocytes migrate to tissue sites, where they initiate both innate and adaptive immune responses, and become macrophages. Although mucosal macrophages produce inflammatory cytokines in response to pathogens, the perturbations in innate immune signaling pathway have been implicated in autoimmune diseases such as systemic lupus erythematosus (SLE). In this review, we focus on the role of human macrophages in intestinal innate immune responses, homeostasis, and SLE disease. We further discuss sex differences in the intestinal macrophages and their role in the physiology and pathogenesis of SLE.
Collapse
Affiliation(s)
- Fei Pan
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wei Tang
- The First Affiliated Hospital, Harbin Medical University, Nangang, Harbin, China
| | - Zejun Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Human Normal University, Changsha, China
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Divison of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
18
|
Polari L, Wiklund A, Sousa S, Kangas L, Linnanen T, Härkönen P, Määttä J. SERMs Promote Anti-Inflammatory Signaling and Phenotype of CD14+ Cells. Inflammation 2018; 41:1157-1171. [PMID: 29574654 PMCID: PMC6061028 DOI: 10.1007/s10753-018-0763-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Signaling via estrogen receptors (ER) is recognized as an essential part of the immune regulation, and ER-mediated signaling is involved in autoimmune reactions. Especially ERα activation in immune cells has been suggested to skew cytokine production toward Th2/M2-type mediators, which can have protective effect on inflammatory diseases and reduce Th1 and Th17 responses. These effects are caused by increased alternative activation of macrophages and changes in the activation of different T cell populations. In humans, hormonal status has been shown to have a major impact on several inflammatory diseases. Selective estrogen receptor modulators (SERMs) are ER ligands that regulate ER actions in a tissue-specific manner mostly lacking the adverse effects of steroid hormones. The impact of SERMs on the immune system is less studied, but it is suggested that certain SERMs may also produce immunoprotective effects. Here, we show that two novel SERMs and raloxifene affect immune cells by promoting M2 macrophage phenotype, alleviating NFκB activity, inhibiting T cell proliferation, and stimulating the production of anti-inflammatory compounds such as IL10 and IL1 receptor antagonist. Thus, these compounds have high potency as drug candidates against autoimmune diseases.
Collapse
Affiliation(s)
- Lauri Polari
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Anu Wiklund
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sofia Sousa
- Institute of Biomedicine, University of Turku, Turku, Finland
- Faculté de Médecine, Université Lyon-1, Lyon, France
| | | | | | - Pirkko Härkönen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Trenti A, Tedesco S, Boscaro C, Trevisi L, Bolego C, Cignarella A. Estrogen, Angiogenesis, Immunity and Cell Metabolism: Solving the Puzzle. Int J Mol Sci 2018; 19:ijms19030859. [PMID: 29543707 PMCID: PMC5877720 DOI: 10.3390/ijms19030859] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
Estrogen plays an important role in the regulation of cardiovascular physiology and the immune system by inducing direct effects on multiple cell types including immune and vascular cells. Sex steroid hormones are implicated in cardiovascular protection, including endothelial healing in case of arterial injury and collateral vessel formation in ischemic tissue. Estrogen can exert potent modulation effects at all levels of the innate and adaptive immune systems. Their action is mediated by interaction with classical estrogen receptors (ERs), ERα and ERβ, as well as the more recently identified G-protein coupled receptor 30/G-protein estrogen receptor 1 (GPER1), via both genomic and non-genomic mechanisms. Emerging data from the literature suggest that estrogen deficiency in menopause is associated with an increased potential for an unresolved inflammatory status. In this review, we provide an overview through the puzzle pieces of how 17β-estradiol can influence the cardiovascular and immune systems.
Collapse
Affiliation(s)
- Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Serena Tedesco
- Venetian Institute of Molecular Medicine, 35129 Padua, Italy.
| | - Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy.
| | | |
Collapse
|
20
|
Słomiński B, Myśliwska J, Ryba-Stanisławowska M, Skrzypkowska M, Myśliwiec M. Estrogen receptor α gene polymorphism and vascular complications in girls with type 1 diabetes mellitus. Mol Cell Biochem 2017. [PMID: 28634856 PMCID: PMC5752735 DOI: 10.1007/s11010-017-3103-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of estrogens is mediated by activation of estrogen receptors (ERs). Because ER-α gene polymorphisms may exert different effects in childhood, we analyzed the associations between the IVS1 −397T>C (PvuII) polymorphism and systemic inflammatory state, proangiogenic factors, frequency of monocyte subsets, lipid profile, blood pressure, and vascular complications in girls with type 1 diabetes mellitus (DM1). We examined 180 young girls with DM1 and 120 healthy age-matched controls. The analysis concerned PvuII polymorphism of the ER-α gene as well as the levels of serum inflammatory markers (CRP, IL-6, TNF-α), proangiogenic factors (VEGF, angiogenin), 17β-estradiol, values of monocyte subsets (CD14++CD16− and CD14+CD16+), lipid profile, and blood pressure. In our study, girls with CC genotype had lower level of inflammatory and angiogenic factors and lower frequencies of CD14+CD16+ monocytes in comparison to CT or TT carriers. Simultaneously, the CC carriers had a greater population of CD14++CD16− monocytes, increased blood pressure, and serum levels of: estrogen, total cholesterol, triglycerides, and low-density lipoprotein cholesterol than girls bearing CT or TT genotype. Our study suggests a pleiotropic effect of PvuII polymorphic CC variant on diabetic vasculopathies. Although the CC genotype carriers demonstrate less inflammatory and angiogenic activity, they seem to display less favorable cardiometabolic features. Based on our study, we cannot distinguish PvuII ER-α genotype that could be useful in identification of DM1 girls that are more prone to develop of late vascular complications, before the occurrence of first clinical symptoms.
Collapse
Affiliation(s)
- Bartosz Słomiński
- Department of Immunology, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland.
| | - Jolanta Myśliwska
- Department of Immunology, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland
| | | | - Maria Skrzypkowska
- Department of Immunology, Medical University of Gdańsk, ul. Dębinki 1, 80-211, Gdańsk, Poland
| | - Małgorzata Myśliwiec
- Chair & Clinics of Paediatrics, Diabetology and Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-211, Gdańsk, Poland
| |
Collapse
|
21
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 472] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
22
|
Currò M, Gangemi C, Giunta ML, Ferlazzo N, Navarra M, Ientile R, Caccamo D. Transglutaminase 2 is involved in amyloid-beta1–42-induced pro-inflammatory activation via AP1/JNK signalling pathways in THP-1 monocytes. Amino Acids 2016; 49:659-669. [DOI: 10.1007/s00726-016-2366-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/12/2016] [Indexed: 12/11/2022]
|
23
|
Franconi F, Rosano G, Basili S, Montella A, Campesi I. Human cells involved in atherosclerosis have a sex. Int J Cardiol 2016; 228:983-1001. [PMID: 27915217 DOI: 10.1016/j.ijcard.2016.11.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/06/2016] [Indexed: 12/30/2022]
Abstract
The influence of sex has been largely described in cardiovascular diseases. Atherosclerosis is a complex process that involves many cell types such as vessel cells, immune cells and endothelial progenitor cells; however, many, if not all, studies do not report the sex of the cells. This review focuses on sex differences in human cells involved in the atherosclerotic process, emphasizing the role of sex hormones. Furthermore, we report sex differences and issues related to the processes that determine the fate of the cells such as apoptotic and autophagic mechanisms. The analysis of the data reveals that there are still many gaps in our knowledge regarding sex influences in atherosclerosis, largely for the cell types that have not been well studied, stressing the urgent need for a clear definition of experimental conditions and the inclusion of both sexes in preclinical studies.
Collapse
Affiliation(s)
- Flavia Franconi
- Assessorato alle Politiche per la Persona of Basilicata Region, Potenza, Italy; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Rosano
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, United Kingdom
| | - Stefania Basili
- Department of Internal Medicine and Medical Specialties - Research Center on Gender and Evaluation and Promotion of Quality in Medicine (CEQUAM), Sapienza University of Rome, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy; Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Osilo, Italy.
| |
Collapse
|
24
|
Ahmed SB, Ramesh S. Sex hormones in women with kidney disease. Nephrol Dial Transplant 2016; 31:1787-1795. [DOI: 10.1093/ndt/gfw084] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/19/2016] [Indexed: 12/21/2022] Open
|
25
|
Barriers to a cure for HIV in women. J Int AIDS Soc 2016; 19:20706. [PMID: 26900031 PMCID: PMC4761692 DOI: 10.7448/ias.19.1.20706] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
Introduction Distinct biological factors exist that affect the natural history of HIV and the host immune response between women and men. These differences must be addressed to permit the optimal design of effective HIV eradication strategies for much of the HIV-positive population. Methods and results Here, we review the literature on sex-based differences in HIV pathogenesis and natural history in tissues and anatomic compartments, HIV latency and transcriptional activity, and host immunity including the role of sex hormones. We then outline the potential effects of these differences on HIV persistence, and on the safety and efficacy of HIV eradication and curative interventions. Finally, we discuss the next steps necessary to elucidate these factors to achieve a cure for HIV, taking in account the complex ethical issues and the regulatory landscape in the hopes of stimulating further research and awareness in these areas. Conclusions Targeted enrolment of women in clinical trials and careful sex-based analysis will be crucial to gain further insights into sex-based differences in HIV persistence and to design sex-specific approaches to HIV eradication, if required.
Collapse
|
26
|
Mirandola L, Wade R, Verma R, Pena C, Hosiriluck N, Figueroa JA, Cobos E, Jenkins MR, Chiriva-Internati M. Sex-driven differences in immunological responses: challenges and opportunities for the immunotherapies of the third millennium. Int Rev Immunol 2016; 34:134-42. [PMID: 25901858 DOI: 10.3109/08830185.2015.1018417] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF THE STUDY Male-based studies, both at the biochemical and at the pre-clinical/clinical trial levels, still predominate in the scientific community. Many studies are based on the wrong assumption that both sexes are fundamentally identical in their response to treatments. As a result, findings obtained mainly in males are applied to females, resulting in negative consequences female patients. In cancer immunotherapy, there is still a scarce focus on this topic. Here we review the main differences in immune modulation and immune system biology between males and females with a particular focus on how these differences affect cancer immunotherapy and cancer vaccines. METHODS We reviewed articles published on PubMed from 1999 to 2014, using the keywords: sex hormones, immune response, estrogen, immunotherapy, testosterone, cancer vaccines, sex-based medicine. We also present new data wherein the expression of the cancer testis antigen, Ropporin-1, was determined in patients with multiple myeloma, showing that the expression of Ropporin-1 was influenced by sex. RESULTS Male and female immune systems display radical differences mainly due to the immune regulatory effects of sex hormones. These differences might have a dramatic impact on the immunological treatment of cancer. Moreover, the expression of tumor antigens that can be targeted by anti-cancer vaccines is associated with sex. CONCLUSION Future clinical trials focusing on cancer immunotherapy will need to take into account the differences in the immune response and in the frequency of target antigen expression between male and females, in order to optimize these anti-cancer immunotherapies of the third millennium.
Collapse
Affiliation(s)
- Leonardo Mirandola
- Division of Hematology/Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center , Lubbock, TX , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jiang W, Zhang L, Lang R, Li Z, Gilkeson G. Sex differences in monocyte activation in systemic lupus erythematosus (SLE). PLoS One 2014; 9:e114589. [PMID: 25485543 PMCID: PMC4259347 DOI: 10.1371/journal.pone.0114589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION TLR7/8 and TLR9 signaling pathways have been extensively studied in systemic lupus erythematosus (SLE) as possible mediators of disease. Monocytes are a major source of pro-inflammatory cytokines and are understudied in SLE. In the current project, we investigated sex differences in monocyte activation and its implications in SLE disease pathogenesis. METHODS Human blood samples from 27 healthy male controls, 32 healthy female controls, and 25 female patients with SLE matched for age and race were studied. Monocyte activation was tested by flow cytometry and ELISA, including subset proportions, CD14, CD80 and CD86 expression, the percentage of IL-6-producing monocytes, plasma levels of sCD14 and IL-6, and urine levels of creatinine. RESULTS Monocytes were significantly more activated in women compared to men and in patients with SLE compared to controls in vivo. We observed increased proportions of non-classic monocytes, decreased proportions of classic monocytes, elevated levels of plasma sCD14 as well as reduced surface expression of CD14 on monocytes comparing women to men and lupus patients to controls. Plasma levels of IL-6 were positively related to sCD14 and serum creatinine. CONCLUSION Monocyte activation and TLR4 responsiveness are altered in women compared to men and in patients with SLE compared to controls. These sex differences may allow persistent systemic inflammation and resultant enhanced SLE susceptibility.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| | - Lumin Zhang
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zihai Li
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| |
Collapse
|
28
|
Burbano C, Vasquez G, Rojas M. Modulatory Effects of CD14+CD16++ Monocytes on CD14++CD16− Monocytes: A Possible Explanation of Monocyte Alterations in Systemic Lupus Erythematosus. Arthritis Rheumatol 2014; 66:3371-81. [DOI: 10.1002/art.38860] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 08/21/2014] [Indexed: 12/23/2022]
Affiliation(s)
- C. Burbano
- University of Antioquia, Medellín; Antioquia Colombia
| | - G. Vasquez
- University of Antioquia, Medellín; Antioquia Colombia
| | - M. Rojas
- University of Antioquia, Medellín; Antioquia Colombia
| |
Collapse
|
29
|
Cannon JG, Sharma G, Sloan G, Dimitropoulou C, Baker RR, Mazzoli A, Kraj B, Mulloy A, Cortez-Cooper M. Leptin regulates CD16 expression on human monocytes in a sex-specific manner. Physiol Rep 2014; 2:2/10/e12177. [PMID: 25303952 PMCID: PMC4254102 DOI: 10.14814/phy2.12177] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fat mass is linked mechanistically to the cardiovascular system through leptin, a 16 kDa protein produced primarily by adipocytes. In addition to increasing blood pressure via hypothalamic‐sympathetic pathways, leptin stimulates monocyte migration, cytokine secretion, and other functions that contribute to atherosclerotic plaque development. These functions are also characteristics of CD16‐positive monocytes that have been implicated in the clinical progression of atherosclerosis. This investigation sought to determine if leptin promoted the development of such CD16‐positive monocytes. Cells from 45 healthy men and women with age ranging from 20 to 59 years were analyzed. Circulating numbers of CD14++16++ monocytes, which are primary producers of TNFα, were positively related to plasma leptin concentrations (P < 0.0001), with a stronger correlation in men (P < 0.05 for leptin × sex interaction). In vitro, recombinant human leptin induced CD16 expression in a dose‐related manner (P = 0.02), with a stronger influence on monocytes from men (P = 0.03 for leptin × sex interaction). There were no sex‐related differences in total leptin receptor expression on any monocyte subtypes, relative expression of long versus short isoforms of the receptor, or soluble leptin receptor concentrations in the plasma. The number of circulating CD14+16++ monocytes, which preferentially migrate into nascent plaques, was positively related to systolic blood pressure (R = 0.56, P = 0.0008) and intima‐media thickness (R = 0.37, P = 0.03), and negatively related to carotid compliance (R = −0.39, P = 0.02). These observations indicate that leptin promotes the development of CD16‐positive monocyte populations in a sex‐specific manner and that these subpopulations are associated with diminished vascular function. e12177 Recombinant leptin induced CD16 expression on human monocytes in vitro in a dose‐ and sex‐specific manner. In vivo, CD16 expression on human monocytes correlated with plasma leptin concentrations in a sex‐specific manner. Blood pressure, carotid intima‐media thickness and carotid compliance were related to the number of circulating CD16‐positive monocytes.
Collapse
Affiliation(s)
- Joseph G Cannon
- College of Allied Health Sciences, Georgia Regents University, Augusta, Georgia
| | - Gyanendra Sharma
- Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Gloria Sloan
- College of Allied Health Sciences, Georgia Regents University, Augusta, Georgia
| | | | - R Randall Baker
- College of Allied Health Sciences, Georgia Regents University, Augusta, Georgia
| | - Andrew Mazzoli
- College of Allied Health Sciences, Georgia Regents University, Augusta, Georgia
| | - Barbara Kraj
- College of Allied Health Sciences, Georgia Regents University, Augusta, Georgia
| | - Anthony Mulloy
- Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | | |
Collapse
|
30
|
Bowling MR, Xing D, Kapadia A, Chen YF, Szalai AJ, Oparil S, Hage FG. Estrogen effects on vascular inflammation are age dependent: role of estrogen receptors. Arterioscler Thromb Vasc Biol 2014; 34:1477-1485. [PMID: 24876352 DOI: 10.1161/atvbaha.114.303629] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE 17β-Estradiol (E2) offers cardiovascular protection in young female animals and postmenopausal women. In contrast, randomized trials of menopausal hormones performed in older women have shown harm or no cardiovascular benefit. We hypothesize that E2 effects on vascular inflammation are age dependent. APPROACH AND RESULTS Young (10 weeks) and aged (52 weeks) female C57BL/6 mice were used as source for primary cultures of bone marrow-derived macrophages (BMMs) and vascular smooth muscle cells (VSMCs). E2 pretreatment of cells derived from young mice attenuated C-reactive protein (CRP)-induced expression of inflammatory mediators. In contrast, E2 pretreatment of cells from aged mice did not alter (BMMs) or paradoxically exaggerated (VSMCs) inflammatory mediator response to CRP. Using E2 receptor (ER) knockout mice, we demonstrated that E2 regulates inflammatory response to CRP in BMMs via ERα and in VSMCs via ERβ. BMMs derived from aged (versus young) mice expressed significantly less ERα mRNA and protein. A selective ligand of the novel ER GPR30 reproduced the E2 effects in BMMs and VSMCs. Unlike in young mice, E2 did not reduce neointima formation in ligated carotid arteries of aged CRP transgenic mice. CONCLUSIONS E2 attenuates inflammatory response to CRP in BMMs and VSMCs derived from young but not aged mice and reduces neointima formation in injured carotid arteries of young but not aged CRP transgenic mice. ERα expression in BMMs is greatly diminished with aging. These data suggest that vasoprotective effects of E2 are age dependent and may explain the vasotoxic effects of E2 seen in clinical trials of postmenopausal women.
Collapse
Affiliation(s)
- Meaghan R Bowling
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility (M.R.B.), Vascular Biology and Hypertension Program, Division of Cardiovascular Disease (D.X., Y-F.C., S.O., F.G.H.) and the Division of Clinical Immunology and Rheumatology (A.J.S.), Department of Medicine, and the School of Medicine (A.K.), The University of Alabama at Birmingham, Birmingham, AL 35294, USA, Section of Cardiology, Birmingham Veteran's Administration Medical Center, Birmingham, AL 35294, USA (F.G.H.)
| | - Dongqi Xing
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility (M.R.B.), Vascular Biology and Hypertension Program, Division of Cardiovascular Disease (D.X., Y-F.C., S.O., F.G.H.) and the Division of Clinical Immunology and Rheumatology (A.J.S.), Department of Medicine, and the School of Medicine (A.K.), The University of Alabama at Birmingham, Birmingham, AL 35294, USA, Section of Cardiology, Birmingham Veteran's Administration Medical Center, Birmingham, AL 35294, USA (F.G.H.)
| | - Akash Kapadia
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility (M.R.B.), Vascular Biology and Hypertension Program, Division of Cardiovascular Disease (D.X., Y-F.C., S.O., F.G.H.) and the Division of Clinical Immunology and Rheumatology (A.J.S.), Department of Medicine, and the School of Medicine (A.K.), The University of Alabama at Birmingham, Birmingham, AL 35294, USA, Section of Cardiology, Birmingham Veteran's Administration Medical Center, Birmingham, AL 35294, USA (F.G.H.)
| | - Yiu-Fai Chen
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility (M.R.B.), Vascular Biology and Hypertension Program, Division of Cardiovascular Disease (D.X., Y-F.C., S.O., F.G.H.) and the Division of Clinical Immunology and Rheumatology (A.J.S.), Department of Medicine, and the School of Medicine (A.K.), The University of Alabama at Birmingham, Birmingham, AL 35294, USA, Section of Cardiology, Birmingham Veteran's Administration Medical Center, Birmingham, AL 35294, USA (F.G.H.)
| | - Alexander J Szalai
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility (M.R.B.), Vascular Biology and Hypertension Program, Division of Cardiovascular Disease (D.X., Y-F.C., S.O., F.G.H.) and the Division of Clinical Immunology and Rheumatology (A.J.S.), Department of Medicine, and the School of Medicine (A.K.), The University of Alabama at Birmingham, Birmingham, AL 35294, USA, Section of Cardiology, Birmingham Veteran's Administration Medical Center, Birmingham, AL 35294, USA (F.G.H.)
| | - Suzanne Oparil
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility (M.R.B.), Vascular Biology and Hypertension Program, Division of Cardiovascular Disease (D.X., Y-F.C., S.O., F.G.H.) and the Division of Clinical Immunology and Rheumatology (A.J.S.), Department of Medicine, and the School of Medicine (A.K.), The University of Alabama at Birmingham, Birmingham, AL 35294, USA, Section of Cardiology, Birmingham Veteran's Administration Medical Center, Birmingham, AL 35294, USA (F.G.H.)
| | - Fadi G Hage
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility (M.R.B.), Vascular Biology and Hypertension Program, Division of Cardiovascular Disease (D.X., Y-F.C., S.O., F.G.H.) and the Division of Clinical Immunology and Rheumatology (A.J.S.), Department of Medicine, and the School of Medicine (A.K.), The University of Alabama at Birmingham, Birmingham, AL 35294, USA, Section of Cardiology, Birmingham Veteran's Administration Medical Center, Birmingham, AL 35294, USA (F.G.H.)
| |
Collapse
|
31
|
Jiang W, Gilkeson G. Sex Differences in monocytes and TLR4 associated immune responses; implications for systemic lupus erythematosus (SLE). ACTA ACUST UNITED AC 2014; 1:1. [PMID: 25309746 DOI: 10.7243/2055-2394-1-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been shown that TLR7 and TLR9 signaling play a role in SLE pathogenesis. Our recent study revealed that estrogen receptor α knockout mice have impaired inflammatory responses to TLR3, TLR4, TLR7 and TLR9 ligand stimulation in DCs, B cells and whole spleen cells. These findings indicate that estrogen receptor mediated signaling may impact universal TLR responsiveness. Whether estrogen has a direct or indirect effect on TLR responsiveness by immune cells is not clear. There is evidence of a role of TLR4 in SLE disease pathogenesis, such as the kidney damage, the induction of CD40 and autoantibodies, the suppression of regulatory T cells, and the role of pro-inflammatory cytokines (e.g., IL-6, IL-1β, TNF-α) in SLE pathogenesis that can be induced by TLR4-mediated monocyte activation, suggesting that TLR4 and TLR4 responsiveness are also important for SLE disease. This review will focus on TLR4 responses and monocytes, which are understudied in systemic autoimmune diseases such as SLE.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina
| |
Collapse
|
32
|
Hafner LM, Cunningham K, Beagley KW. Ovarian steroid hormones: effects on immune responses and Chlamydia trachomatis infections of the female genital tract. Mucosal Immunol 2013; 6:859-75. [PMID: 23860476 DOI: 10.1038/mi.2013.46] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 06/04/2013] [Indexed: 02/04/2023]
Abstract
Female sex hormones are known to regulate the adaptive and innate immune functions of the female reproductive tract. This review aims to update our current knowledge of the effects of the sex hormones estradiol and progesterone in the female reproductive tract on innate immunity, antigen presentation, specific immune responses, antibody secretion, genital tract infections caused by Chlamydia trachomatis, and vaccine-induced immunity.
Collapse
Affiliation(s)
- L M Hafner
- Infectious Diseases Program, Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, Queensland, Australia.
| | | | | |
Collapse
|
33
|
Bolego C, Cignarella A, Staels B, Chinetti-Gbaguidi G. Macrophage function and polarization in cardiovascular disease: a role of estrogen signaling? Arterioscler Thromb Vasc Biol 2013; 33:1127-34. [PMID: 23640494 DOI: 10.1161/atvbaha.113.301328] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are plastic and versatile cells adapting their function/phenotype to the microenvironment. Distinct macrophage subpopulations with different functions, including classically (M1) and (M2) activated macrophages, have been described. Reciprocal skewing of macrophage polarization between the M1 and M2 state is a process modulated by transcription factors, such as the nuclear peroxisome proliferator-activated receptors. However, whether the estrogen/estrogen receptor pathways control the balance between M1/M2 macrophages is only partially understood. Estrogen-dependent effects on the macrophage system may be regarded as potential targets of pharmacological approaches to protect postmenopausal women from the elevated risk of cardiovascular disease.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | | | | | | |
Collapse
|
34
|
Abstract
OBJECTIVE Women are more affected than men by many chronic pain conditions, suggesting the effect of sex-related mechanisms in their occurrence. The role of gonadal hormones has been studied but with contrasting results depending on the pain syndrome, reproductive status, and hormone considered. The aim of the present study was to evaluate the pain changes related to the menopausal transition period. METHODS In this observational study, postmenopausal women were asked to evaluate the presence of pain in their life during the premenopausal and postmenopausal periods and its modification with menopause. RESULTS One hundred one women were enrolled and completed questionnaires on their sociodemographic status, pain characteristics, and evolution. The most common pain syndromes were headache (38%), osteoarticular pain (31%), and cervical/lumbar pain (21%). Pain was present before menopause in 66 women, ceased with menopause in 17, and started after menopause in 18. Data were used for cluster analysis, which allowed the division of participants into four groups. In the first, all women experienced headaches that disappeared or improved with menopause. The second group included osteoarticular pain; the pain improved in half of these women and remained stable in the other half. The third group had cervical/lumbar pain, which disappeared or improved with menopause in all. The fourth group presented different kinds of moderate pain, which worsened in all. CONCLUSIONS The present study provides preliminary data suggesting that menopause can affect pain depending on the painful condition experienced by the woman. This underlines the different interactions of menopause-related events with body structures involved in pain.
Collapse
|
35
|
Durrani F, Phelps DS, Weisz J, Silveyra P, Hu S, Mikerov AN, Floros J. Gonadal hormones and oxidative stress interaction differentially affects survival of male and female mice after lung Klebsiella pneumoniae infection. Exp Lung Res 2012; 38:165-72. [PMID: 22394250 DOI: 10.3109/01902148.2011.654045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Survival of mice after Klebsiella pneumoniae infection and phagocytosis by alveolar macrophages (AMs), in the presence or absence of ozone (O(3)) exposure prior to infection, is sex dependent. The objective of this work was to study the role of gonadal hormones, 5α-dihydrotestosterone (DHT) and 17β-estradiol (E(2)), on mouse survival after filtered air (FA) or O(3) exposure. Gonadectomized female (G×F) and male (G×M) mice implanted with control or hormone pellets (DHT in G×F, or E(2) in G×M), exposed to O(3) (2 ppm, 3h) or FA, and infected with K. pneumoniae were monitored for survival. Survival in G×F was identical after FA or O(3) exposure; in G×M O(3) exposure resulted in lower survival compared to FA. In O(3)-exposed females, gonadectomy resulted in increased survival compared to intact females or to G×M+E(2). A similar effect was observed in G×F+DHT. The combined negative effect of oxidative stress and hormone on survival was higher for E(2). Gonadectomy eliminated (females) or minimized (males) the previously observed sex differences in survival in response to oxidative stress, and hormone treatment restored them. These findings indicate that gonadal hormones and/or oxidative stress have a significant effect on mouse survival.
Collapse
Affiliation(s)
- Faryal Durrani
- Center for Host defense, Inflammation, and Lung Disease (CHILD), Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Kastbom A, Cöster L, Ärlestig L, Chatzidionysiou A, van Vollenhoven RF, Padyukov L, Rantapää-Dahlqvist S, Saevarsdottir S. Influence of FCGR3A genotype on the therapeutic response to rituximab in rheumatoid arthritis: an observational cohort study. BMJ Open 2012; 2:bmjopen-2012-001524. [PMID: 23002160 PMCID: PMC3467642 DOI: 10.1136/bmjopen-2012-001524] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES To determine whether a polymorphism in the Fcγ receptor type IIIA (FCGR3A-F158V), influencing immunoglobulin G binding affinity, relates to the therapeutic efficacy of rituximab in rheumatoid arthritis (RA) patients. DESIGN Observational cohort study. SETTING Three university hospital rheumatology units in Sweden. PARTICIPANTS Patients with established RA (n=177; 145 females and 32 males) who started rituximab (Mabthera) as part of routine care. PRIMARY OUTCOME MEASURES Response to rituximab therapy in relation to FCGR3A genotype, including stratification for sex. RESULTS The frequency of responders differed significantly across FCGR3A genotypes (p=0.017 in a 3×2 contingency table). Heterozygous patients showed the highest response rate at 83%, as compared with patients carrying 158FF (68%) or 158VV (56%) (p=0.028 and 0.016, respectively). Among 158VV patients, response rates differed between male and female patients (p=0.036), but not among 158FF or 158VF patients (p=0.72 and 0.46, respectively). CONCLUSIONS Therapeutic efficacy of rituximab in RA patients is influenced by FCGR3A genotype, with the highest response rates found among heterozygous patients. This may suggest that different rituximab mechanisms of action in RA are optimally balanced in FCGR3A-158VF patients. Similar to the previously described associations with RA susceptibility and disease course, the impact of 158VV on rituximab response may be influenced by sex.
Collapse
Affiliation(s)
- Alf Kastbom
- Department of Clinical and Experimental Medicine, Linköping University/ Department of Rheumatology in Östergötland, County Council of Östergötland, Linköping, Sweden
| | - Lars Cöster
- Department of Clinical and Experimental Medicine, Linköping University/ Department of Rheumatology in Östergötland, County Council of Östergötland, Linköping, Sweden
| | - Lisbeth Ärlestig
- Department of Public Health and Clinical Medicine/Rheumatology, Umeå University, Umeå, Sweden
| | - Aikaterini Chatzidionysiou
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
- Unit for Clinical Therapy Research of Inflammatory Diseases, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ronald F van Vollenhoven
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
- Unit for Clinical Therapy Research of Inflammatory Diseases, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| | | | - Saedis Saevarsdottir
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
37
|
Rheumatic complaints in women taking aromatase inhibitors for treatment of hormone-dependent breast cancer. J Clin Rheumatol 2011; 17:169-72. [PMID: 21617557 DOI: 10.1097/rhu.0b013e31821bfc48] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The rheumatic adverse effects accompanying treatment with aromatase inhibitors (AIs) in hormone-dependent breast cancer represent an area of clinical relevance and emerging concern. This report describes these rheumatic complaints detailing their clinical pattern. METHODS During 1-year period, 18 consecutive postmenopausal women (mean age, 58.33 years; range, 52-66 years) in treatment with AIs for hormone-dependent breast cancer (mean duration of therapy, 12.0 months; range, 9.1-17.7 months) were referred for evaluation in the outpatient clinic of the rheumatology unit in relation to rheumatic complaints. According to a routine protocol planned with oncologists, patient evaluations consisted of a complete clinical examination with careful assessment of rheumatic complaints and related physical symptoms, followed by laboratory testing and a bone scintiscan. In no cases were rheumatic complaints present before AI therapy. RESULTS On the basis of clinical data and investigations and by applying accepted diagnostic criteria, a diagnosis of an undifferentiated spondyloarthropathy was reached in 10 (55.5%) of the 18 patients studied, and an oligoarthritis was shown in 2 more patients (11.1%), whereas a simple arthralgia was found in the remaining 6 patients (33.3%). In the patients meeting criteria as belonging to a spondyloarthritic subset, a family history positive for psoriasis and celiac disease was shown in 2 and 1 instance, respectively, whereas HLA-CW6 and HLA-B27 were detected in 3 and 1 case. A high serum level of anti-cyclic citrullinated peptide antibodies was shown in 1 patient with oligoarthritis. Most of the patients (16/18) were treated with nonsteroidal anti-inflammatory drugs or with corticosteroids. Methotrexate (10 mg weekly) was added in 3 of these patients, nonresponders. Aromatase inhibitor discontinuation was needed in the remaining 2 cases with spontaneous resolution of symptoms over time. CONCLUSIONS Data from the present study emphasize a previously unsuspected high prevalence of defined arthritides underlying these rheumatic complaints. Therefore, investigative efforts should be addressed to better clarify the clinical and pathogenetic significance of these important consequences of AI therapy. An accurate monitoring of rheumatic complaints has to be suggested to patients taking AI therapy, with a rapid referral to a rheumatologist in the case of consistent suspicion of an inflammatory arthritis.
Collapse
|
38
|
Kramer PR, Puri J, Bellinger LL. Knockdown of Fcγ receptor III in an arthritic temporomandibular joint reduces the nociceptive response in rats. ACTA ACUST UNITED AC 2010; 62:3109-18. [PMID: 20589683 DOI: 10.1002/art.27630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Fcγ receptor III (FcγRIII; CD16) is a receptor expressed on immune cells that selectively binds IgG molecules. IgG binding results in cellular activation and cytokine release. IgG is an important factor in arthritis and can be found in the arthritic temporomandibular joint (TMJ). We undertook this study to test the hypothesis that a reduction in FcγRIII expression in TMJ tissues would reduce the nociceptive and inflammatory responses in an inflamed joint. METHODS Small interfering RNA (siRNA), either naked or complexed with linear polyethyleneimine, was injected into the superior joint space of the TMJ in rats. After administration of siRNA the joint was injected with saline or with Freund's complete adjuvant to induce arthritis. Nociceptive responses were quantitated in the rat by measuring the animal's meal duration. FcγRIII expression in the TMJ tissue was assayed by immunocytochemistry or Western blotting. Cleavage of FcγRIII transcript was then assayed by 5' rapid amplification of complementary DNA ends. Interleukin-1β (IL-1β) and IgG content was measured in the TMJ tissue by enzyme-linked immunosorbent assay. RESULTS Injection of FcγRIII siRNA reduced the amount of FcγRIII in the TMJ tissues, and the transcript was cleaved in a manner consistent with an RNA interference mechanism. Moreover, injection of FcγRIII siRNA reduced the nociceptive response of rats with an arthritic TMJ and reduced the amount of the proinflammatory cytokine IL-1β. CONCLUSION FcγRIII contributes to the pain resulting from inflammatory arthritis of the TMJ, and siRNA has the potential to be an effective treatment for this disorder.
Collapse
Affiliation(s)
- Phillip R Kramer
- Texas A&M Health Science Center and Baylor College of Dentistry, Dallas. TX. USA.
| | | | | |
Collapse
|
39
|
Abstract
CVD (cardiovascular disease) is the leading cause of death for women. Considerable progress has been made in both our understanding of the complexities governing menopausal hormone therapy and our understanding of the cellular and molecular mechanisms underlying hormone and hormone receptor function. Understanding the interplay of atherosclerosis and sex steroid hormones and their cognate receptors at the level of the vessel wall has important ramifications for clinical practice. In the present review, we discuss the epidemiology of CVD in men and women, the clinical impact of sex hormones on CVD, and summarize our current understanding of the pathogenesis of atherosclerosis with a focus on gender differences in CVD, its clinical presentation and course, and pathobiology. The critical animal and human data that pertain to the role of oestrogens, androgens and progestins on the vessel wall is also reviewed, with particular attention to the actions of sex hormones on each of the three key cell types involved in atherogenesis: the endothelium, smooth muscle cells and macrophages. Where relevant, the systemic (metabolic) effects of sex hormones that influence atherogenesis, such as those involving vascular reactivity, inflammation and lipoprotein metabolism, are discussed. In addition, four key current concepts in the field are explored: (i) total hormone exposure time and coronary heart disease risk; (ii) the importance of tissue specificity of sex steroid hormones, critical timing and the stage of atherosclerosis in hormone action; (iii) biomarkers for atherosclerosis with regard to hormone therapy; and (iv) the complex role of sex steroids in inflammation. Future studies in this field will contribute to guiding clinical treatment recommendations for women and help define research priorities.
Collapse
|
40
|
Puri J, Hutchins B, Bellinger LL, Kramer PR. Estrogen and inflammation modulate estrogen receptor alpha expression in specific tissues of the temporomandibular joint. Reprod Biol Endocrinol 2009; 7:155. [PMID: 20043825 PMCID: PMC2811708 DOI: 10.1186/1477-7827-7-155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/31/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Estrogen is known to play role in temporomandibular joint (TMJ) disorders and estrogen effects can be mediated by estrogen receptor (ER) alpha present in the TMJ. Cells expressing the estrogen receptor ERalpha are present in the temporomandibular joint (TMJ) but changes in expression due to estrogen and inflammation have not been characterized. In this study, ERalpha protein content and the number of cells expressing ERalpha was measured in 17 beta-estradiol-treated rats after inflammation was induced in the TMJ. METHODS Sixteen ovariectomized female rats were divided into two groups such that one group received 17 beta estradiol (E2) and the other was given vehicle (VEH). Groups were then subdivided further, one received injections of saline and the other received Complete Freund's adjuvant (CFA) within the superior joint space of the TMJ. Thus the four groups include no E2/saline, E2/saline, no E2/CFA and E2/CFA. After treatment, the rats were sacrificed, and the TMJ anterior, disc, retrodiscal and synovial tissues were analyzed by western blot and immunocytochemistry. Positive stained cells were counted using a Nikon epifluorescent microscope. RESULTS The western blot showed that ERalpha protein significantly decreased with inflammation. The number of ERalpha-positive cells in the TMJ was not affected by inflammation or 17 beta-estradiol with exception of the retrodiscal tissue. In the retrodiscal tissue 17 beta-estradiol significantly decreased the number of ERalpha-positive cells but only in a non-inflamed joint. CONCLUSIONS In conclusion, inflammation and 17 beta-estradiol can modulate ERalpha expression in the TMJ but the effects are tissue specific.
Collapse
Affiliation(s)
- Jyoti Puri
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas, USA
| | - Bob Hutchins
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas, USA
| | - Larry L Bellinger
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M Health Science Center, Baylor College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
41
|
Inflammatory response of coronary artery disease postmenopausal women is associated with the IVS1-397T > C estrogen receptor α polymorphism. Clin Immunol 2009; 130:355-64. [PMID: 19008156 DOI: 10.1016/j.clim.2008.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 09/02/2008] [Accepted: 09/17/2008] [Indexed: 01/09/2023]
|
42
|
Abstract
Sex-based differences in immune responses can influence the susceptibility to autoimmune and infectious diseases and the efficacy of therapeutic drugs. In this Perspective, Eleanor Fish discusses factors, such as X-linked genes, hormones and societal context, that underlie disparate immune responses in men and women. Despite accumulating evidence in support of sex-based differences in innate and adaptive immune responses, in the susceptibility to infectious diseases and in the prevalence of autoimmune diseases, health research and clinical practice do not address these distinctions, and most research studies of immune responses do not stratify by sex. X-linked genes, hormones and societal context are among the many factors that contribute to disparate immune responses in males and females. It is crucial to address sex-based differences in disease pathogenesis and in the pharmacokinetics and pharmacodynamics of therapeutic medications to provide optimal disease management for both sexes.
Collapse
Affiliation(s)
- Eleanor N Fish
- Toronto General Research Institute, University Health Network, Department of Immunology, University of Toronto, Women's College Research Institute, Ontario, Canada.
| |
Collapse
|
43
|
|