1
|
Ling QH, Lou ZC, Zhang L, Jin T, Dou WT, Yang HB, Xu L. Supramolecular cage-mediated cargo transport. Chem Soc Rev 2024; 53:6042-6067. [PMID: 38770558 DOI: 10.1039/d3cs01081c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A steady stream of material transport based on carriers and channels in living systems plays an extremely important role in normal life activities. Inspired by nature, researchers have extensively applied supramolecular cages in cargo transport because of their unique three-dimensional structures and excellent physicochemical properties. In this review, we will focus on the development of supramolecular cages as carriers and channels for cargo transport in abiotic and biological systems over the past fifteen years. In addition, we will discuss future challenges and potential applications of supramolecular cages in substance transport.
Collapse
Affiliation(s)
- Qing-Hui Ling
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Zhen-Chen Lou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Tongxia Jin
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| |
Collapse
|
2
|
Chakrabarti M, Amzel LM, Lau AY. Sodium/Iodide Symporter Metastable Intermediates Provide Insights into Conformational Transition between Principal Thermodynamic States. J Phys Chem B 2023; 127:1540-1551. [PMID: 36758032 DOI: 10.1021/acs.jpcb.2c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The Sodium/Iodide Symporter (NIS), a 13-helix transmembrane protein found in the thyroid and other tissues, transports iodide, a required constituent of thyroid hormones T3 and T4. Despite extensive experimental information and clinical data, structural details of the intermediate microstates comprising the conformational transition of NIS between its inwardly and outwardly open states remain unresolved. We present data from a combination of enhanced sampling and transition path molecular dynamics (MD) simulations that elucidate the principal intermediate states comprising the inwardly to outwardly open transition of fully bound and apo NIS under an enforced ionic gradient. Our findings suggest that in both the absence and presence of bound physiological ions, NIS principally occupies a proximally inward to inwardly open state. When fully bound, NIS is also found to occupy a rare "inwardly occluded" state. The results of this work provide novel insight into the populations of NIS intermediates and the free energy landscape comprising the conformational transition, adding to a mechanistic understanding of NIS ion transport. Moreover, the knowledge gained from this approach can serve as a basis for studies of NIS mutants to target therapeutic interventions.
Collapse
Affiliation(s)
- Mayukh Chakrabarti
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., PO Box B, Frederick, Maryland 21702, United States
| | - L Mario Amzel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Jo D, Kim HK, Kim YK, Song J. Transcriptome Profile of Thyroid Glands in Bile Duct Ligation Mouse Model. Int J Mol Sci 2022; 23:ijms23158244. [PMID: 35897811 PMCID: PMC9332885 DOI: 10.3390/ijms23158244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormone (TH) contributes to multiple cellular mechanisms in the liver, muscle cells, adipose tissue, and brain, etc. In particular, the liver is an important organ in TH metabolism for the conversion of thyronine (T4) into triiodothyronine (T3) by the deiodinase enzyme. TH levels were significantly decreased and thyroid-stimulating hormone (TSH) levels were significantly increased in patients with liver failure compared with normal subjects. Among liver failure diseases, hepatic encephalopathy (HE) deserves more attention because liver damage and neuropathologies occur simultaneously. Although there is numerous evidence of TH dysregulation in the HE model, specific mechanisms and genetic features of the thyroid glands in the HE model are not fully understood. Here, we investigated the significantly different genes in the thyroid glands of a bile duct ligation (BDL) mouse model as the HE model, compared to the thyroid glands of the control mouse using RNA sequencing. We also confirmed the alteration in mRNA levels of thyroid gland function-related genes in the BDL mouse model. Furthermore, we evaluated the increased level of free T4 and TSH in the BDL mouse blood. Thus, we emphasize the potential roles of TH in liver metabolism and suggest that thyroid dysfunction-related genes in the HE model should be highlighted for finding the appropriate solution for an impaired thyroid system in HE.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Korea;
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Korea
| | - Hee Kyung Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Korea;
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Korea;
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Korea
- Correspondence: ; Tel.: +82-61-379-2706
| |
Collapse
|
4
|
Gong L, Yang N, Zhao J, Tang Y, Li L, Yang H, Kong Y. Clinical characteristics and genetics analysis for the ITD of congenital hypothyroidism. J Pediatr Endocrinol Metab 2022; 35:741-748. [PMID: 35438852 DOI: 10.1515/jpem-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Iodide transport defect (ITD) is one of the principal causes of congenital hypothyroidism (CH) and its primary molecular mechanism is a mutation of the sodium/iodide symporter (NIS) gene. This study aims to analyse the clinical characteristics and genetic mutations of ITD. METHODS The participants were a pair of siblings diagnosed with congenital hypothyroidism. Inductively coupled plasma mass spectrometry was used to determine the concentration of salivary iodine and serum iodine and to calculate their ratio. At the same time, next-generation sequencing (NGS) was applied to detect all exons of congenital hypothyroidism-related genes. All suspicious variants were further validated in the patients and their parents by PCR and Sanger sequencing. RESULTS Both patients were conclusively diagnosed with thyroid iodine transport defect (ITD). NGS identified two variants of the NIS gene in the siblings: c.1021G>A (p.Gly341Arg) with paternal origin and c.1330-2A>C with maternal origin. Both of these variants have not been reported to date. They are predicted to be pathogenic based on these clinical symptoms and comprehensive software analysis. CONCLUSIONS This is the first reported family study of congenital hypothyroidism with SLC5A5 mutation in China. Next-generation sequencing technology is an effective means of studying the genetics of congenital hypothyroidism. The therapeutic effect of potassium iodide needs to be further evaluated.
Collapse
Affiliation(s)
- Lifei Gong
- Department of Newborn Screening Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Nan Yang
- Department of Newborn Screening Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Jinqi Zhao
- Department of Newborn Screening Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Yue Tang
- Department of Newborn Screening Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Lulu Li
- Department of Newborn Screening Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Haihe Yang
- Department of Newborn Screening Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| | - Yuanyuan Kong
- Department of Newborn Screening Centre, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, P. R. China
| |
Collapse
|
5
|
Functions of the Thyroid-Stimulating Hormone on Key Developmental Features Revealed in a Series of Zebrafish Dyshormonogenesis Models. Cells 2021; 10:cells10081984. [PMID: 34440752 PMCID: PMC8391828 DOI: 10.3390/cells10081984] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
The hypothalamic–pituitary–thyroid (HPT) axis regulates many critical features in vertebrates. Utilizing TALENs and CRISPR/Cas9 techniques, thyroid-stimulating hormone subunit beta a (tshba), thyroglobulin (tg), and solute carrier family 16 member 2 (slc16a2) mutant zebrafish lines were generated. Among the three mutants, the earliest time point for the significantly altered T3 contents was observed in tshba mutants, which resulted in the most severe defects, including typical defects such as the retardation of inflated anterior swimming bladder (aSB), proper formation of fin ray and posterior squamation (SP), the larval-to-juvenile transition (LTJT) process, juvenile growth retardation, and mating failure. In tg mutants, which are actually compensated with an alternative splicing form, growth retardation was observed in the juvenile stage without LTJT and reproductive defects. The evident goiter phenotype was only observed in tg- and slc16a2 mutants, but not in tshba mutants. Other than goiters being observed, no other significant developmental defects were found in the slc16a2 mutants. Regarding the reproductive defects observed in tshba mutants, the defective formation of the secondary sex characteristics (SSCs) was observed, while no obvious alterations during gonad development were found. Based on our analyses, zebrafish at the 6–12 mm standard length or 16–35 days post-fertilization (dpf) should be considered to be in their LTJT phase. Using a series of zebrafish dyshormonogenesis models, this study demonstrated that the TSH function is critical for the proper promotion of zebrafish LTJT and SSC formation. In addition, the elevation of TSH levels appears to be essential for goiter appearance in zebrafish.
Collapse
|
6
|
Citterio CE, Rivolta CM, Targovnik HM. Structure and genetic variants of thyroglobulin: Pathophysiological implications. Mol Cell Endocrinol 2021; 528:111227. [PMID: 33689781 DOI: 10.1016/j.mce.2021.111227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Thyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared. Although TG deficiency is thought to be of autosomal recessive inheritance, the introduction of massive sequencing platforms led to the identification of a variety of monoallelic TG variants (combined with mutations in other thyroid gene products) opening new questions regarding the possibility of oligogenic inheritance of the disease. In this review we discuss remarkable advances in the understanding of the TG architecture and the pathophysiology of CH associated with TG defects, providing new insights for the management of congenital disorders as well as counseling benefits for families with a history of TG abnormalities. Moreover, we summarize relevant aspects of TH synthesis within TG and offer an updated analysis of animal and cellular models of TG deficiency for pathophysiological studies of thyroid dyshormonogenesis while highlighting perspectives for new investigations. All in all, even though there has been sustained progress in understanding the role of TG in thyroid pathophysiology during the past 50 years, functional characterization of TG variants remains an important area of study for future advancement in the field.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Zhang C, Zhang J, Li W, Mao S, Dong Z. Anion Transmembrane Nanochannels from Pore-Forming Helices Constructed by the Dynamic Covalent Reaction of Dihydrazide and Dialdehyde Units. Chempluschem 2021; 86:492-495. [PMID: 33733612 DOI: 10.1002/cplu.202000813] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Indexed: 01/08/2023]
Abstract
Anion transmembrane nanochannels constructed from dynamic covalent helices (DCHs) are reported. The dynamic covalent structures can be synthesized by one-pot dynamic covalent reactions and helically self-fold into nanotubes through intramolecular hydrogen bonding and π-π interactions. Such helical structures can vertically self-assemble into long nanofibers under π-π stacking and their hollow nanocavities finally form ion permeation pathways across the lipid membranes. Single-channel electrophysiology signals provide solid evidence of DCHs following the channel rather than the carrier mechanism. Owing to the pore-forming capacity of DCHs, nanochannels are able to accelerate the movement of anions across lipid membranes with high transport activity (EC50 =0.08 mol %). Moreover, DCH channels show dehydration energy dependent anion selectivity. This report highlights the importance of such DCHs as general channel scaffolds with economical synthesis and special nanocavities.
Collapse
Affiliation(s)
- Chenyang Zhang
- Department State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Jing Zhang
- Department State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Wencan Li
- Department State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Shizhong Mao
- Department State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| | - Zeyuan Dong
- Department State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Street, Changchun, P. R. China
| |
Collapse
|
8
|
Wang S, Zhang J, Zhang S, Shi F, Feng D, Feng X. Exposure to Melamine cyanuric acid in adolescent mice caused emotional disorder and behavioral disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111938. [PMID: 33476844 DOI: 10.1016/j.ecoenv.2021.111938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Melamine cyanuric acid (MCA) is a flame retardant linked by hydrogen bonds between melamine and cyanuric acid. MCA is used in an excellent series of phosphorus and nitrogen flame retardants. MCA can harm the kidney, liver, testis, and spleen cells. However, the effects of MCA on the emotions and behaviour of adolescent mice have not yet been investigated. In this article, male mice were exposed to MCA at 10, 20, and 40 mg/kg for four weeks. MCA exposure resulted in enhanced mouse locomotor and nocturnal activity. We also observed anxiety-like and depression-like behaviours. Moreover, after MCA exposure, the serum concentrations of thyroid-related hormones were changed, and the mRNA levels were affected. In short, MCA exposure can cause behavioural and emotion disorders.
Collapse
Affiliation(s)
- Sijie Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jingwen Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Shaozhi Zhang
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Feifei Shi
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China.
| | - Xizeng Feng
- The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Pio MG, Molina MF, Siffo S, Chiesa A, Rivolta CM, Targovnik HM. A novel mutation in intron 11 donor splice site, responsible of a rare genotype in thyroglobulin gene by altering the pre-mRNA splincing process. Cell expression and bioinformatic analysis. Mol Cell Endocrinol 2021; 522:111124. [PMID: 33321114 DOI: 10.1016/j.mce.2020.111124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023]
Abstract
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene have been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. The purpose of the present study was to identify and characterize new variants in the TG gene. We report an Argentine patient with congenital hypothyroidism, enlarged thyroid gland and low levels of serum TG. Sequencing of DNA, expression of chimeric minigenes as well as bioinformatics analysis were performed. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a c.3001+5G > A, whereas the paternal mutation consists of p.Arg296*. Minigen analysis of the variant c.3001+5A performed in HeLa, CV1 and Hek293T cell lines, showed a total lack of transcript expression. So, in order to validate that the loss of expression was caused by such variation, site-directed mutagenesis was performed on the mutated clone, which previously had a pSPL3 vector change, to give rise to a wild-type clone c.3001+5G, endorsing that the mutation c.3001+5G > A is the cause of the total lack of expression. In conclusion, we demonstrate that the c.3001+5G > A mutation causes a rare genotype, altering the splicing of the pre-mRNA. This work contributes to elucidating the molecular bases of TG defects associated with congenital hypothyroidism and expands our knowledge in relation to the pathologic roles of the position 5 in the donor splice site.
Collapse
Affiliation(s)
- Mauricio Gomes Pio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Maricel F Molina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Sofia Siffo
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Venugopalan V, Al-Hashimi A, Rehders M, Golchert J, Reinecke V, Homuth G, Völker U, Manirajah M, Touzani A, Weber J, Bogyo MS, Verrey F, Wirth EK, Schweizer U, Heuer H, Kirstein J, Brix K. The Thyroid Hormone Transporter Mct8 Restricts Cathepsin-Mediated Thyroglobulin Processing in Male Mice through Thyroid Auto-Regulatory Mechanisms That Encompass Autophagy. Int J Mol Sci 2021; 22:ijms22010462. [PMID: 33466458 PMCID: PMC7796480 DOI: 10.3390/ijms22010462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.
Collapse
Affiliation(s)
- Vaishnavi Venugopalan
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Alaa Al-Hashimi
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Maren Rehders
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Vivien Reinecke
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany; (J.G.); (V.R.); (G.H.); (U.V.)
| | - Mythili Manirajah
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Adam Touzani
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Jonas Weber
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
| | - Matthew S. Bogyo
- Department of Pathology, School of Medicine, Stanford University, 300 Pasteur Dr., Stanford, CA 94305-5324, USA;
| | - Francois Verrey
- Physiologisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland;
| | - Eva K. Wirth
- Berlin Institute of Health, Department of Endocrinology and Metabolism, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Hessische Str. 3-4, Germany and DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, D-10115 Berlin, Germany;
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nußallee 11, D-53115 Bonn, Germany;
| | - Heike Heuer
- Klinik für Endokrinologie, Diabetologie und Stoffwechsel, Universitätsklinikum Essen (AöR), Universität Duisburg-Essen, Hufelandstr. 55, D-45147 Essen, Germany;
| | - Janine Kirstein
- Fachbereich 2 Biologie/Chemie, Faculty of Cell Biology, Universität Bremen, Leobener Straße 5, D-28359 Bremen, Germany;
| | - Klaudia Brix
- Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-29759 Bremen, Germany; (V.V.); (A.A.-H.); (M.R.); (M.M.); (A.T.); (J.W.)
- Correspondence: ; Tel.: +49-421-200-3246
| |
Collapse
|
11
|
Guo M, Chen Z, Li Y, Li S, Shen F, Gan X, Feng J, Cai W, Liu Q, Xu B. Tumor Mutation Burden Predicts Relapse in Papillary Thyroid Carcinoma With Changes in Genes and Immune Microenvironment. Front Endocrinol (Lausanne) 2021; 12:674616. [PMID: 34248843 PMCID: PMC8261145 DOI: 10.3389/fendo.2021.674616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The risk factors of papillary thyroid carcinoma (PTC) recurrence are meaningful for patients and clinicians. Tumor mutation burden (TMB) has been a biomarker for the effectiveness of immune checkpoint inhibitor (ICI) and prognosis in cancer. However, the role of TMB and its latent significance with immune cell infiltration in PTC are still unclear. Herein, we aimed to explore the effect of TMB on PTC prognosis. MATERIAL AND METHODS RNA-seq and DNA-seq datasets of PTC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The Gene Ontology (GO) and gene set enrichment analysis (GSEA 4.0.1) were applied further to explore potential differences in PTC patients' biological functions. The differentially expressed genes (DEGs) and immune microenvironment between the high and low TMB groups were determined. RESULTS TMB had the highest AUC score than other clinical indicators in ROC analysis on recurrence-free survival, and a higher TMB score was related to a worse prognosis. Further, GSEA showed a higher level of oxidative phosphorylation (OXPHOS) in the high TMB group, and four genes correlated with recurrence-free survival rate were identified. The abundance of CD8+ T cells and M1 macrophages in the high TMB group was significantly lower than that in the low TMB group. CONCLUSIONS Our study found that TMB was a better predictor variable at evaluating the risk of PTC recurrence. Moreover, TMB-related genes conferred dramatically correlated prognosis, which was worth exploring in guiding postoperative follow-up and predicting recurrence for PTC patients.
Collapse
Affiliation(s)
- Mengli Guo
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhen Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yayi Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Sijin Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Fei Shen
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaoxiong Gan
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianhua Feng
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wensong Cai
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Qingzhi Liu
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Qingzhi Liu, ; Bo Xu,
| | - Bo Xu
- Department of Thyroid Surgery, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Qingzhi Liu, ; Bo Xu,
| |
Collapse
|
12
|
Zhang CX, Zhang JX, Yang L, Zhang CR, Cheng F, Zhang RJ, Fang Y, Wang Z, Wu FY, Li PZ, Liang J, Li R, Song HD. Novel Compound Heterozygous Pathogenic Mutations of SLC5A5 in a Chinese Patient With Congenital Hypothyroidism. Front Endocrinol (Lausanne) 2021; 12:620117. [PMID: 33815280 PMCID: PMC8018529 DOI: 10.3389/fendo.2021.620117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/05/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Defects in the human sodium/iodide symporter (SLC5A5) gene have been reported to be one of the causes of congenital hypothyroidism (CH). We aimed to identify SLC5A5 mutations in Chinese patients with CH and to evaluate the function of the mutation. METHODS Two hundred and seventy-three patients with primary CH were screened for mutations in SLC5A5 using next-generation sequencing. We investigated the expression and cellular localization of the novel compound heterozygous mutation in SLC5A5. The functional activity of the mutants was further examined in vitro. RESULTS In 273 patients with CH, two previously undescribed pathogenic mutations p.Gly51AlafsTer45 (G51fs) and p.Gly421Arg (G421R) in a compound heterozygous state in SLC5A5 were identified in a pediatric patient. G51fs was located in the first intercellular loop connecting transmembrane segment I and II, whereas G421R was in the transmembrane segment (TMS) XI. G51fs and G421R resulted in a truncated NIS and reduced protein expression, respectively. In vitro experiments further showed that the normal function of iodine transport of sodium-iodide symporter (NIS) mutants was markedly impaired. CONCLUSION The undescribed compound heterozygous mutation of SLC5A5 was discovered in a Chinese CH patient. The mutation led to significantly reduced NIS expression and impaired iodide transport function accompanied by the impaired location of the NIS on the plasma membrane. Our study thus provides further insights into the roles of SLC5A5 in CH pathogenesis.
Collapse
Affiliation(s)
- Cao-Xu Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Xiu Zhang
- Department of Endocrinology, Maternal and Child Health Institute of Bozhou, Bozhou, China
| | - Liu Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang-Run Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Cheng
- Department of Laboratory Medicine, Fujian Children’s Hospital, Fujian Provincial Maternity and Children’s Hospital, Fuzhou, China
| | - Rui-Jia Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Fang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Yao Wu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei-Zhang Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liang
- Department of Endocrinology, The Central Hospital of Xuzhou Affiliated to Xuzhou Medical College, Xuzhou, China
- *Correspondence: Huai-Dong Song, ; Rui Li, ; Jun Liang,
| | - Rui Li
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Huai-Dong Song, ; Rui Li, ; Jun Liang,
| | - Huai-Dong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Huai-Dong Song, ; Rui Li, ; Jun Liang,
| |
Collapse
|
13
|
Zhekova HR, Sakuma T, Johnson R, Concilio SC, Lech PJ, Zdravkovic I, Damergi M, Suksanpaisan L, Peng KW, Russell SJ, Noskov S. Mapping of Ion and Substrate Binding Sites in Human Sodium Iodide Symporter (hNIS). J Chem Inf Model 2020; 60:1652-1665. [PMID: 32134653 DOI: 10.1021/acs.jcim.9b01114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human sodium iodide symporter (hNIS) is a theranostic reporter gene which concentrates several clinically approved SPECT and PET radiotracers and plays an essential role for the synthesis of thyroid hormones as an iodide transporter in the thyroid gland. Development of hNIS mutants which could enhance translocation of the desired imaging ions is currently underway. Unfortunately, it is hindered by lack of understanding of the 3D organization of hNIS and its relation to anion transport. There are no known crystal structures of hNIS in any of its conformational states. Homology modeling can be very effective in such situations; however, the low sequence identity between hNIS and relevant secondary transporters with available experimental structures makes the choice of a template and the generation of 3D models nontrivial. Here, we report a combined application of homology modeling and molecular dynamics refining of the hNIS structure in its semioccluded state. The modeling was based on templates from the LeuT-fold protein family and was done with emphasis on the refinement of the substrate-ion binding pocket. The consensus model developed in this work is compared to available biophysical and biochemical experimental data for a number of different LeuT-fold proteins. Some functionally important residues contributing to the formation of putative binding sites and permeation pathways for the cotransported Na+ ions and I- substrate were identified. The model predictions were experimentally tested by generation of mutant versions of hNIS and measurement of relative (to WT hNIS) 125I- uptake of 35 hNIS variants.
Collapse
Affiliation(s)
- Hristina R Zhekova
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Toshie Sakuma
- Imanis Life Sciences, Rochester, Minnesota 55901, United States.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Ryan Johnson
- Imanis Life Sciences, Rochester, Minnesota 55901, United States
| | - Susanna C Concilio
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Patrycja J Lech
- Imanis Life Sciences, Rochester, Minnesota 55901, United States
| | - Igor Zdravkovic
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mirna Damergi
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Kah-Whye Peng
- Imanis Life Sciences, Rochester, Minnesota 55901, United States.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Stephen J Russell
- Imanis Life Sciences, Rochester, Minnesota 55901, United States.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55902, United States
| | - Sergei Noskov
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
14
|
Targovnik HM, Scheps KG, Rivolta CM. Defects in protein folding in congenital hypothyroidism. Mol Cell Endocrinol 2020; 501:110638. [PMID: 31751626 DOI: 10.1016/j.mce.2019.110638] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
Primary congenital hypothyroidism (CH) is the most common endocrine disease in children and one of the most common preventable causes of both cognitive and motor deficits. CH is a heterogeneous group of thyroid disorders in which inadequate production of thyroid hormone occurs due to defects in proteins involved in the gland organogenesis (dysembryogenesis) or in multiple steps of thyroid hormone biosynthesis (dyshormonogenesis). Dysembryogenesis is associated with genes responsible for the development or growth of thyroid cells: such as NKX2-1, FOXE1, PAX8, NKX2-5, TSHR, TBX1, CDCA8, HOXD3 and HOXB3 resulting in agenesis, hypoplasia or ectopia of thyroid gland. Nevertheless, the etiology of the dysembryogenesis remains unknown for most cases. In contrast, the majority of patients with dyshormonogenesis has been linked to mutations in the SLC5A5, SLC26A4, SLC26A7, TPO, DUOX1, DUOX2, DUOXA1, DUOXA2, IYD or TG genes, which usually originate goiter. About 800 genetic mutations have been reported to cause CH in patients so far, including missense, nonsense, in-frame deletion and splice-site variations. Many of these mutations are implicated in specific domains, cysteine residues or glycosylation sites, affecting the maturation of nascent proteins that go through the secretory pathway. Consequently, misfolded proteins are permanently entrapped in the endoplasmic reticulum (ER) and are translocated to the cytosol for proteasomal degradation by the ER-associated degradation (ERAD) machinery. Despite of all these remarkable advances in the field of the CH pathogenesis, several points on the development of this disease remain to be elucidated. The continuous study of thyroid gene mutations with the application of new technologies will be useful for the understanding of the intrinsic mechanisms related to CH. In this review we summarize the present status of knowledge on the disorders in the protein folding caused by thyroid genes mutations.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| | - Karen G Scheps
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|
15
|
Wang Y, Chen T, Sun Y, Zhao X, Zheng D, Jing L, Zhou X, Sun Z, Shi Z. A comparison of the thyroid disruption induced by decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:224-235. [PMID: 30844666 DOI: 10.1016/j.ecoenv.2019.02.080] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
In recent years, decabromodiphenyl ethane (DBDPE), a new alternative flame retardant to the decabrominated diphenyl ethers (BDE-209), is widely used in a variety of products. Previous studies have indicated that DBDPE, like BDE-209, could disrupt thyroid function. However, compared with BDE-209, the degrees of thyrotoxicosis induced by DBDPE were not clear. In addition, the mechanism of thyrotoxicosis induced by DBDPE or BDE-209 was still under further investigation. In this study, male rats as a model were orally exposed to DBDPE or BDE-209 by 5, 50, 500 mg/kg bw/day for 28 days. Then, we assessed the thyrotoxicosis of DBDPE versus BDE-209 and explored the mechanisms of DBDPE and BDE-209-induced thyrotoxicosis. Results showed that decreased free triiodothyronine (FT3) and increased thyroid-stimulating hormone (TSH) and thyrotropin-releasing hormone (TRH) in serum were observed in both 500 mg/kg bw/day BDE-209 and DBDPE group. Decreased total thyroxine (TT4), total T3 (TT3), and free T4 (FT4) were only observed in BDE-209 group but not in DBDPE group. Histological examination and transmission electron microscope examination showed that high level exposure to BDE-209 and DBDPE both caused significant changes in histological structure and ultrastructure of the thyroid gland. Additionally, oxidative damages of thyroid gland (decreased SOD and GSH activities, and increased MDA content) were also observed in both BDE-209 and DBDPE groups. TG contents in the thyroid gland was reduced in BDE-209 group but not in DBDPE group. Both BDE-209 and DBDPE affected the expression of hypothalamic-pituitary-thyroid (HPT) axis related genes. These findings suggested that both BDE-209 and DBDPE exposure could disrupt thyroid function in the direction of hypothyroidism and the underlying mechanism was likely to be oxidative stress and perturbations of HPT axis. However, DBDPE was found to be less toxic than BDE-209.
Collapse
Affiliation(s)
- Yuwei Wang
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanmin Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xuezhen Zhao
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Dan Zheng
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Jing
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Xianqing Zhou
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhixiong Shi
- School of Public Health and Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
16
|
Siffo S, Adrover E, Citterio CE, Miras MB, Balbi VA, Chiesa A, Weill J, Sobrero G, González VG, Papendieck P, Martinez EB, Gonzalez-Sarmiento R, Rivolta CM, Targovnik HM. Molecular analysis of thyroglobulin mutations found in patients with goiter and hypothyroidism. Mol Cell Endocrinol 2018; 473:1-16. [PMID: 29275168 DOI: 10.1016/j.mce.2017.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 01/23/2023]
Abstract
Thyroid dyshormonogenesis due to thyroglobulin (TG) gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Up to now, one hundred seventeen deleterious mutations in the TG gene have been identified and characterized. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report eight patients from seven unrelated families with goiter, hypothyroidism and low levels of serum TG. All patients underwent clinical, biochemical and image evaluation. Sequencing of DNA, genotyping, as well as bioinformatics analysis were performed. Molecular analyses revealed three novel inactivating TG mutations: c.5560G>T [p.E1835*], c.7084G>C [p.A2343P] and c.7093T>C [p.W2346R], and four previously reported mutations: c.378C>A [p.Y107*], c.886C>T [p.R277*], c.1351C>T [p.R432*] and c.7007G>A [p.R2317Q]. Two patients carried homozygous mutations (p.R277*/p.R277*, p.W2346R/p.W2346R), four were compound heterozygous mutations (p.Y107*/p.R277* (two unrelated patients), p.R432*/p.A2343P, p.Y107*/p.R2317Q) and two siblings from another family had a single p.E1835* mutated allele. Additionally, we include the analysis of 48 patients from 31 unrelated families with TG mutations identified in our present and previous studies. Our observation shows that mutations in both TG alleles were found in 27 families (9 as homozygote and 18 as heterozygote compound), whereas in the remaining four families only one mutated allele was detected. The majority of the detected mutations occur in exons 4, 7, 38 and 40. 28 different mutations were identified, 33 of the 96 TG alleles encoded the change p.R277*. In conclusion, our results confirm the genetic heterogeneity of TG defects and the pathophysiological importance of the predicted TG misfolding and therefore thyroid hormone formation as a consequence of truncated TG proteins and/or missense mutations located within its ACHE-like domain.
Collapse
Affiliation(s)
- Sofia Siffo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Mirta B Miras
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Viviana A Balbi
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Jacques Weill
- Clinique de Pédiatrie, Hôpital Jeanne de Flandre, Centre Hospitalier Regional Universitaire de Lille, Lille, France
| | - Gabriela Sobrero
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, Córdoba, Argentina
| | - Verónica G González
- Servicio de Endocrinología, Hospital de Niños "Sor María Ludovica", La Plata, Argentina
| | - Patricia Papendieck
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Elena Bueno Martinez
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Rogelio Gonzalez-Sarmiento
- Unidad de Medicina Molecular-Departamento de Medicina, IBMCC and IBSAL, Universidad de Salamanca-CSIC, Salamanca, Spain
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
17
|
Watanabe Y, Ebrhim RS, Abdullah MA, Weiss RE. A Novel Missense Mutation in the SLC5A5 Gene in a Sudanese Family with Congenital Hypothyroidism. Thyroid 2018; 28:1068-1070. [PMID: 29759035 PMCID: PMC6098405 DOI: 10.1089/thy.2018.0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thyroid hormone synthesis requires the presence of iodide. The sodium-iodide symporter (NIS) is a glycoprotein that mediates the active uptake of iodide from the blood stream into the thyroid grand. NIS defects due to SLC5A5 gene mutations are known to cause congenital hypothyroidism (CH). The proposita is a 28-year-old female whose origin is North Sudan where neonatal screening for CH is not available. She presented with severe constipation and a goiter at the age of 40 days. Laboratory testing confirmed CH, and she was started on levothyroxine. Presumably due to the delayed treatment, the patient developed mental retardation. Her younger sister presented with a goiter, tongue protrusion, and umbilical hernia, and the youngest brother was also diagnosed with CH based on a thyrotropin level >100 μIU/mL at the age of 22 days and 8 days, respectively. The two siblings were treated with levothyroxine and had normal development. Their consanguineous parents had no history of thyroid disorders. Whole-exome sequencing was performed on the proposita. This identified a novel homozygous missense mutation in the SLC5A5 gene-c.1042T>G, p.Y348D-which was subsequently confirmed by Sanger sequencing. All affected children were homozygous for the same mutation, and their unaffected mother was heterozygous. The NIS protein is composed of 13 transmembrane segments (TMS), an extracellular amino-terminus, and an intracellular carboxy-terminus. The mutation is located in the TMS IX, which has the most β-OH group-containing amino acids (serine and threonine), which is implicated in Na+ binding and translocation. In conclusion, a novel homozygous missense mutation in the SLC5A5 gene was identified in this Sudanese family with CH. The mutation is located in the TMS IX of the NIS protein, which is essential for NIS function. Low iodine intake in Sudan is considered to affect the severity of hypothyroidism in patients.
Collapse
Affiliation(s)
- Yui Watanabe
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Reham S. Ebrhim
- Department of Pediatrics and Child Health, Faulty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed A. Abdullah
- Department of Pediatrics and Child Health, Faulty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Roy E. Weiss
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
- Address correspondence to:Roy E. Weiss, MD, PhDUniversity of Miami Miller School of Medicine1120 NW 14th Street, Room 310FMiami, FL 33136
| |
Collapse
|
18
|
de Morais RM, Sobrinho AB, de Souza Silva CM, de Oliveira JR, da Silva ICR, de Toledo Nóbrega O. The Role of the NIS (SLC5A5) Gene in Papillary Thyroid Cancer: A Systematic Review. Int J Endocrinol 2018; 2018:9128754. [PMID: 30595693 PMCID: PMC6282135 DOI: 10.1155/2018/9128754] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 11/17/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most common thyroid malignancy. Genetic and epigenetic alterations play a decisive role in the onset of several human neoplasms. Mutations and polymorphisms are two frequent genetic alterations. Located on chromosome 19 (19p13.11), the NIS SLC5A5 (solute carrier family 5 member 5) gene encodes a highly specialized and efficient 80-90 kDa transmembrane glycoprotein that mediates active transport of iodide from the bloodstream into the follicular cells. Given the highly significant role of NIS in the physiology and the cancer pathogenesis process, this paper's objective is to provide a comprehensive assessment of the associations between NIS gene and protein with papillary thyroid cancer.
Collapse
|
19
|
Benke BP, Aich P, Kim Y, Kim KL, Rohman MR, Hong S, Hwang IC, Lee EH, Roh JH, Kim K. Iodide-Selective Synthetic Ion Channels Based on Shape-Persistent Organic Cages. J Am Chem Soc 2017; 139:7432-7435. [DOI: 10.1021/jacs.7b02708] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bahiru Punja Benke
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Pulakesh Aich
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Younghoon Kim
- Department
of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Kyung Lock Kim
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Md Rumum Rohman
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Soonsang Hong
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department
of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - In-Chul Hwang
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Eun Hui Lee
- Department
of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joon Ho Roh
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Kimoon Kim
- Center
for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department
of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
20
|
Abstract
Iodide Handling Disorders lead to defects of the biosynthesis of thyroid hormones (thyroid dyshormonogenesis, TD) and thereafter congenital hypothyroidism (CH), the most common endocrine disease characterized by low levels of circulating thyroid hormones. The prevalence of CH is 1 in 2000-3000 live births. Prevention of CH is based on prenatal diagnosis, carrier identification, and genetic counseling. In neonates a complete diagnosis of TD should include clinical examination, biochemical thyroid tests, thyroid ultrasound, radioiodine or technetium scintigraphy and perchlorate discharge test (PDT). Biosynthesis of thyroid hormones requires the presence of iodide, thyroid peroxidase (TPO), a supply of hydrogen peroxide (DUOX system), an iodine acceptor protein, thyroglobulin (TG), and the rescue and recycling of iodide by the action of iodotyrosine deiodinase or iodotyrosine dehalogenase 1 (IYD or DEHAL1). The iodide transport is a two-step process involving transporters located either in the basolateral or apical membranes, sodium iodide symporter (NIS) and pendrin (PDS), respectively. TD has been linked to mutations in the solute carrier family 5, member 5 transporter (SLC5A5, encoding NIS), solute carrier family 26, member 4 transporter (SLC26A4, encoding PDS), TPO, DUOX2, DUOXA2, TG and IYD genes. These mutations produce a heterogeneous spectrum of CH, with an autosomal recessive inheritance. Thereafter, the patients are usually homozygous or compound heterozygous for the gene mutations and the parents, carriers of one mutation. In the last two decades, considerable progress has been made in identifying the genetic and molecular causes of TD. Recent advances in DNA sequencing technology allow the massive screening and facilitate the studies of phenotype variability. In this article we included the most recent data related to disorders caused by mutations in NIS, TPO, TG and IYD.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| | - Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| |
Collapse
|
21
|
Ramesh BG, Bhargav PR, Rajesh BG, Devi NV, Vijayaraghavan R, Varma BA. Genotype-phenotype correlations of dyshormonogenetic goiter in children and adolescents from South India. Indian J Endocrinol Metab 2016; 20:816-824. [PMID: 27867886 PMCID: PMC5105567 DOI: 10.4103/2230-8210.192923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Dyshormonogenetic goiter is one of the most common causes of hypothyroidism in children and adolescents in iodine nonendemic areas. The exact genotype-phenotypic correlations (GPCs) and risk categorization of hypothyroid phenotypes of dyshormonogenetic mutations are largely speculative. The genetic studies in pediatric dyshormonogenesis are very sparse from Indian sub-continent. In this context, we analyzed the implications of TPO, NIS, and DUOX2 gene mutations in hypothyroid children with dyshormonogenetic hypothyroidism (DH) from South India. MATERIALS AND METHODS This is interdisciplinary prospective study, we employed eight sets of primers and screened for 142 known single nucleotide polymorphisms in TPO, NIS, and DUOX2 genes. The subjects were children and adolescents with hypothyroidism due to dyshormonogenetic goiter. Congenital hypothyroidism, iodine deficiency, and Hashimoto's thyroiditis cases were excluded. RESULTS We detected nine mutations in 8/22 (36%) children. All the mutations were observed in the intronic regions of NIS gene and none in TPO or DUOX2 genes. Except for bi-allelic, synonymous polymorphism of TPO gene in child number 14, all other mutations were heterozygous in nature. GPCs show that our mutations significantly expressed the phenotypic traits such as overt hypothyroidism, goiter, and existence of family history. Other phenotypic characters such as sex predilection, the age of onset and transitory nature of hypothyroidism were not significantly affected by these mutations. CONCLUSION NIS gene mutations alone appears to be most prevalent mutations in DH among South Indian children and these mutations significantly influenced phenotypic expressions such as severity of hypothyroidism, goiter rates, and familial clustering.
Collapse
Affiliation(s)
- Bangaraiah Gari Ramesh
- Department of Biochemistry, MediCiti Institute of Medical Sciences, Hyderabad, Telangana, India
| | | | - Bangaraiah Gari Rajesh
- Department of Anatomy, MediCiti Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Nangedda Vimala Devi
- Department of Endocrine Surgery, Endocare Hospital, Vijayawada, Andhra Pradesh, India
| | | | - Bhongir Aparna Varma
- Department of Biochemistry, MediCiti Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
22
|
Agretti P, Bagattini B, De Marco G, Di Cosmo C, Dionigi G, Vitti P, Tonacchera M. Papillary thyroid cancer in a patient with congenital goitrous hypothyroidism due to a novel deletion in NIS gene. Endocrine 2016; 54:256-258. [PMID: 26563437 DOI: 10.1007/s12020-015-0790-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Patrizia Agretti
- Sezione di Endocrinologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Azienda Ospedaliero-Universitaria Pisana, Via Paradisa 2, 56124, Pisa, Italy
| | - Brunella Bagattini
- Sezione di Endocrinologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Azienda Ospedaliero-Universitaria Pisana, Via Paradisa 2, 56124, Pisa, Italy
| | - Giuseppina De Marco
- Sezione di Endocrinologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Azienda Ospedaliero-Universitaria Pisana, Via Paradisa 2, 56124, Pisa, Italy
| | - Caterina Di Cosmo
- Sezione di Endocrinologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Azienda Ospedaliero-Universitaria Pisana, Via Paradisa 2, 56124, Pisa, Italy
| | - Gianlorenzo Dionigi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, Varese, Italy
| | - Paolo Vitti
- Sezione di Endocrinologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Azienda Ospedaliero-Universitaria Pisana, Via Paradisa 2, 56124, Pisa, Italy
| | - Massimo Tonacchera
- Sezione di Endocrinologia, Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Azienda Ospedaliero-Universitaria Pisana, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
23
|
Genetic and functional analysis of two missense DUOX2 mutations in congenital hypothyroidism and goiter. Oncotarget 2016; 9:4366-4374. [PMID: 29435108 PMCID: PMC5796979 DOI: 10.18632/oncotarget.10525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Mutations in the dual oxidase 2 gene (DUOX2) impair hydrogen peroxide (H2O2) production and cause dyshormonogenesis. In addition, these mutations have been implicated in autosomal recessive congenital hypothyroidism (CH) with goiter. In this study, we identified DUOX2 mutations that were causative for CH and explored the effects of these mutations on DUOX2 function. Blood samples were collected from 10 infants born with CH and goiter to unrelated parents. We extracted genomic DNA and sequenced all exons by polymerase chain reaction direct sequencing. The effects of DUOX2 mutations were characterized by H2O2 production assays and cycloheximide (CHX) chase experiments. Sequence analysis revealed one novel DUOX2 mutation and one known DUOX2 mutation in unrelated families: c.1060C>T (p.R354W) and c.3616 G>A (p.A1206T). Both mutations impaired H2O2 production. CHX chase experiments demonstrated the DUOX2 mutants had shorter half-lives and degraded more rapidly than wild-type DUOX2. Our study identified two novel DUOX2 mutations in Chinese patients with CH and goiter, which were responsible for the deficit in the organification process.
Collapse
|
24
|
Miranzadeh-Mahabadi H, Emadi-Baygi M, Nikpour P, Mostofizade N, Hovsepian S, Hashemipour M. Analysis of the T354P mutation of the sodium/iodide cotransporter gene in children with congenital hypothyroidism due to dyshormonogenesis. Adv Biomed Res 2016; 5:73. [PMID: 27169104 PMCID: PMC4854026 DOI: 10.4103/2277-9175.180642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
Background: Congenital hypothyroidism (CH) due to the thyroid dyshormonogenesis is more prevalent in Iran in comparison to other countries. Sodium iodide symporter (NIS) is one of the plasma membrane glycoproteins that is located on the basolateral side of thyroid follicular cells and mediates active I− trapping into these cells. Playing a prominent role in thyroid hormone synthesis, NIS gene mutations can be a cause of permanent CH with the etiology of dyshormonogenesis. The aim of this study was to investigate the occurrence of T354P mutation of the NIS gene, in a group of children affected with permanent CH in Isfahan. Materials and Methods: Thirty-five patients with the etiology of dyshormonogenesis, and 35 healthy children, collected between 2002 and 2011 in Isfahan Endocrine and Metabolism Research Center, were examined for T354P mutation of the NIS gene by direct polymerase chain reaction-sequencing method. Results: No T354P mutation was detected in any of the studied children. Conclusions: More subjects with confirmed iodide transport defects should be screened for detecting the frequency of different reported NIS gene mutations in our population.
Collapse
Affiliation(s)
| | - Modjtaba Emadi-Baygi
- Department of Genetics, School of Basic Sciences, Shahrekord University, Shahrekord, Iran; Institute of Biotechnology, School of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Parvaneh Nikpour
- Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Mostofizade
- Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Silva Hovsepian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Pediatrics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Sparling DP, Fabian K, Harik L, Jobanputra V, Anyane-Yeboa K, Oberfield SE, Fennoy I. Congenital hypothyroidism and thyroid dyshormonogenesis: a case report of siblings with a newly identified mutation in thyroperoxidase. J Pediatr Endocrinol Metab 2016; 29:627-31. [PMID: 26894573 PMCID: PMC4853235 DOI: 10.1515/jpem-2015-0253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/14/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Thyroid dyshormonogenesis continues to be a significant cause of congenital hypothyroidism. Over time, forms of thyroid dyshormonogenesis can result in goiter, which can lead to difficult management decisions as the pathologic changes can both mimic or lead to thyroid cancer. METHODS Herein we describe the cases of two brothers diagnosed with congenital hypothyroidism, with initial findings consistent with thyroid dyshormonogenesis. One brother eventually developed multinodular goiter with complex pathology on biopsy, resulting in thyroidectomy. RESULTS Whole exome sequencing revealed the brothers carry a novel frameshift mutation in thyroperoxidase; the mutation, while not previously described, was likely both deleterious and pathogenic. Conlcusions: These cases highlight the complex pathology that can occur within thyroid dyshormonogenesis, with similar appearance to possible thyroid cancer, leading to complex management decisions. They also highlight the role that a genetic diagnosis can play in interpreting the impact of dyshormonogenesis on nodular thyroid development, and the need for long-term follow-up in these patients.
Collapse
Affiliation(s)
- David P. Sparling
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University, New York, NY, USA. http://orcid.org/0000-0001-5940-1544
| | - Kendra Fabian
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Lara Harik
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Kwame Anyane-Yeboa
- Division of Genetics, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Sharon E. Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Ilene Fennoy
- Corresponding author: Ilene Fennoy, MD, MPH, Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, 622 West 168th St, PH-5E-522, New York, NY 10032, USA, Phone: +212-305-6559; Fax: +212-305-4778,
| |
Collapse
|
26
|
Belforte FS, Citterio CE, Testa G, Olcese MC, Sobrero G, Miras MB, Targovnik HM, Rivolta CM. Compound heterozygous DUOX2 gene mutations (c.2335-1G>C/c.3264_3267delCAGC) associated with congenital hypothyroidism. Characterization of complex cryptic splice sites by minigene analysis. Mol Cell Endocrinol 2016; 419:172-84. [PMID: 26506010 DOI: 10.1016/j.mce.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Iodide Organification defects (IOD) represent 10% of cases of congenital hypothyroidism (CH) being the main genes affected that of TPO (thyroid peroxidase) and DUOX2 (dual oxidasa 2). From a patient with clinical and biochemical criteria suggestive with CH associated with IOD, TPO and DUOX2 genes were analyzed by means of PCR-Single Strand Conformation Polymorphism analysis and sequencing. A novel heterozygous compound to the mutations c.2335-1G>C (paternal mutation, intron 17) and c.3264_3267delCAGC (maternal mutation, exon 24) was identified in the DUOX2 gene. Ex-vivo splicing assays and subsequent RT-PCR and sequencing analyses were performed on mRNA isolated from the HeLa cells transfected with wild-type and mutant pSPL3 expression vectors. The wild-type and c.2335-1G>C mutant alleles result in the complete inclusion or exclusion of exon 18, or in the activation of an exonic cryptic 5' ss with the consequent deletion of 169 bp at the end of this exon. However, we observed only a band of the expected size in normal thyroid tissue by RT-PCR. Additionally, the c.2335-1G>C mutation activates an unusual cryptic donor splice site in intron 17, located at position -14 of the authentic intron 17/exon 18 junction site, with an insertion of the last 14 nucleotides of the intron 17 in mutant transcripts with complete and partial inclusion of exon 18. The theoretical consequences of splice site mutation, predicted with the bioinformatics NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses confirm that c.2335-1G>C mutant allele would result in the abolition of the authentic splice acceptor site. The results suggest the coexistence in our patient of four putative truncated proteins of 786, 805, 806 and 1105 amino acids, with conservation of peroxidase-like domain and loss of gp91(phox)/NOX2-like domain. In conclusion a novel heterozygous compound was identified being responsible of IOD. Cryptic splicing sites have been characterized in DUOX2 gene for the first time. The use of molecular biology techniques is a valuable tool for understanding the molecular pathophysiology of this type of thyroid defects.
Collapse
Affiliation(s)
- Fiorella S Belforte
- Laboratorio de Genética Molecular Tiroidea, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Cintia E Citterio
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Graciela Testa
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, 5000 Córdoba, Argentina
| | - María Cecilia Olcese
- Laboratorio de Genética Molecular Tiroidea, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Gabriela Sobrero
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, 5000 Córdoba, Argentina
| | - Mirta B Miras
- Servicio de Endocrinología, Hospital de Niños Santísima Trinidad, 5000 Córdoba, Argentina
| | - Héctor M Targovnik
- Laboratorio de Genética y Biología Molecular, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina
| | - Carina M Rivolta
- Laboratorio de Genética Molecular Tiroidea, Instituto de Inmunología, Genética y Metabolismo (INIGEM, CONICET-UBA), Hospital de Clínicas "José de San Martín", C1120AAR Buenos Aires, Argentina; Cátedra de Genética (FFyB-UBA), C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
27
|
Ramesh BG, Bhargav PR, Rajesh BG, Vimala Devi N, Vijayaraghavan R, Aparna Varma B. Genomics and phenomics of Hashimoto's thyroiditis in children and adolescents: a prospective study from Southern India. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:280. [PMID: 26697440 DOI: 10.3978/j.issn.2305-5839.2015.10.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hashimoto's thyroiditis (HT) is the commonest cause of acquired hypothyroidism in children and adolescents in iodine non-endemic areas. The genetic analysis in HT shows two types of susceptibility genes-immune regulatory and thyroid specific genes. The exact genotype-phenotypic correlations and risk categorization of hypothyroid phenotypes resulting from these known mutations are largely speculative. The genetic studies in pediatric HT are very sparse from Indian sub-continent. In this context, we analysed the prevalence of TPO, NIS and DUOX2 gene mutations along with genotype-phenotype correlations in hypothyroid children with HT. METHODS This is inter-disciplinary study conducted by collaboration between a tertiary care endocrinology hospital, biochemistry department of a teaching medical institute and genetics lab. In this prospective study, we employed 8 sets of primers and screened for 142 known single nucleotide polymorphisms in TPO, NIS, DUOX2 genes. The subjects were children and adolescents with hypothyroidism due to HT. Congenital hypothyroidism, iodine deficiency and dyshormonogenetic hypothyroidism cases were excluded. RESULTS We detected 8 mutations in 7/20 (35%) children in the entire cohort (6 in NIS and 2 in TPO genes. No mutations were observed in DUOX2 gene. All our mutations were localized in introns and we found none in exons. Except for bi-allelic, synonymous polymorphism of TPO gene in child No. 18, all other mutations were heterozygous in nature. Genotype-phenotype correlations show that our mutations significantly expressed the presence of associated autoimmune manifestations and existence of family history. Clinical phenotypes of painful thyroiditis, severity of hypothyroidism and absence of goiter were statistically significant in the presence of these mutations. But, they could not reach significance on multivariate analysis. CONCLUSIONS NIS gene followed by TPO mutations appears to be most prevalent mutations in HT amongst South Indian children and these mutations significantly influenced phenotypic expressions such as severity of hypothyroidism, goiter, auto-immune manifestations and family history.
Collapse
Affiliation(s)
- Bangaraiah Gari Ramesh
- 1 Department of Biochemistry, Mediciti Institute of Medical Sciences, Hyderabad, India ; 2 Endocrine Surgery, Endocare Hospital, Vijayawada, India ; 3 Department of Anatomy, Mediciti Institute of Medical Sciences, Hyderabad, India ; 4 Endocare Hospital, Vijayawada, India ; 5 Saveetha University, Chennai, India
| | - Panchangam Ramakanth Bhargav
- 1 Department of Biochemistry, Mediciti Institute of Medical Sciences, Hyderabad, India ; 2 Endocrine Surgery, Endocare Hospital, Vijayawada, India ; 3 Department of Anatomy, Mediciti Institute of Medical Sciences, Hyderabad, India ; 4 Endocare Hospital, Vijayawada, India ; 5 Saveetha University, Chennai, India
| | - Bangaraiah Gari Rajesh
- 1 Department of Biochemistry, Mediciti Institute of Medical Sciences, Hyderabad, India ; 2 Endocrine Surgery, Endocare Hospital, Vijayawada, India ; 3 Department of Anatomy, Mediciti Institute of Medical Sciences, Hyderabad, India ; 4 Endocare Hospital, Vijayawada, India ; 5 Saveetha University, Chennai, India
| | - Nangedda Vimala Devi
- 1 Department of Biochemistry, Mediciti Institute of Medical Sciences, Hyderabad, India ; 2 Endocrine Surgery, Endocare Hospital, Vijayawada, India ; 3 Department of Anatomy, Mediciti Institute of Medical Sciences, Hyderabad, India ; 4 Endocare Hospital, Vijayawada, India ; 5 Saveetha University, Chennai, India
| | - Rajagopalan Vijayaraghavan
- 1 Department of Biochemistry, Mediciti Institute of Medical Sciences, Hyderabad, India ; 2 Endocrine Surgery, Endocare Hospital, Vijayawada, India ; 3 Department of Anatomy, Mediciti Institute of Medical Sciences, Hyderabad, India ; 4 Endocare Hospital, Vijayawada, India ; 5 Saveetha University, Chennai, India
| | - Bhongir Aparna Varma
- 1 Department of Biochemistry, Mediciti Institute of Medical Sciences, Hyderabad, India ; 2 Endocrine Surgery, Endocare Hospital, Vijayawada, India ; 3 Department of Anatomy, Mediciti Institute of Medical Sciences, Hyderabad, India ; 4 Endocare Hospital, Vijayawada, India ; 5 Saveetha University, Chennai, India
| |
Collapse
|
28
|
Abstract
Rare diseases are usually defined as entities affecting less than 1 person per 2,000. About 7,000 different rare entities are distinguished and, among them, rare diseases of the thyroid gland. Although not frequent, they can be found in the everyday practice of endocrinologists and should be considered in differential diagnosis. Rare non-neoplastic thyroid diseases will be discussed. Congenital hypothyroidism's frequency is relatively high and its early treatment is of vital importance for neonatal psychomotor development; CH is caused primarily by thyroid dysgenesis (85%) or dyshormonogenesis (10-15%), although secondary defects - hypothalamic and pituitary - can also be found; up to 40% of cases diagnosed on neonatal screening are transient. Inherited abnormalities of thyroid hormone binding proteins (TBG, TBP and albumin) include alterations in their concentration or affinity for iodothyronines, this leads to laboratory test abnormalities, although usually with normal free hormones and clinical euthyroidism. Thyroid hormone resistance is most commonly found in THRB gene mutations and more rarely in THRA mutations; in some cases both genes are unchanged (non-TR RTH). Recently the term 'reduced sensitivity to thyroid hormones' was introduced, which encompass not only iodothyronine receptor defects but also their defective transmembrane transport or metabolism. Rare causes of hyperthyroidism are: activating mutations in TSHR or GNAS genes, pituitary adenomas, differentiated thyroid cancer or gestational trophoblastic disease; congenital hyperthyroidism cases are also seen, although less frequently than CH. Like other organs and tissues, the thyroid can be affected by different inflammatory and infectious processes, including tuberculosis and sarcoidosis. In most of the rare thyroid diseases genetic factors play a key role, many of them can be classified as monogenic disorders. Although there are still some limitations, progress has been made in our understanding of rare thyroid diseases etiopathogenesis, and, thanks to these studies, also in our understanding of how normal thyroid gland functions.
Collapse
Affiliation(s)
- Katarzyna Lacka
- Department of Endocrinology, Metabolism and Internal Medicine, University of Medical Sciences, Poznan, Poland
| | - Adam Maciejewski
- Department of Endocrinology, Metabolism and Internal Medicine, University of Medical Sciences, Poznan, Poland
| |
Collapse
|
29
|
|
30
|
Fu C, Chen S, Chen R, Fan X, Luo J, Li C, Qian J. Mutation screening of the sodium iodide symporter gene in a cohort of 105 China patients with congenital hypothyroidism. ACTA ACUST UNITED AC 2014; 58:828-32. [PMID: 25465605 DOI: 10.1590/0004-2730000003436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/04/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Dyshormonogenetic congenital hypothyroidism (CH) was reported to be associated with a mutation in the sodium iodide symporter (NIS) gene. The present study was undertaken in the Guangxi Zhuang Autonomous Region of China, to determine the nature and frequency of NIS gene mutations among patients with CH due to dyshormonogenesis. SUBJECTS AND METHODS Blood samples were collected from 105 dyshormonogenetic CH patients in Guangxi Zhuang Autonomous Region, China, and genomic DNA was extracted from peripheral blood leukocytes. All exons of the NIS gene together with their exon-intron boundaries were screened by next-generation sequencing. RESULTS Two silent variations (T221T and T557T) and one missense variation (M435L), as well as two polymorphisms (rs200587561 and rs117626343) were found. CONCLUSIONS Our results indicate that the NIS mutation rate is very low in the Guangxi Zhuang Autonomous Region, China, and it is necessary to study mutations of other genes that have major effects on thyroid dyshormonogenesis and have not as yet been studied in this population.
Collapse
Affiliation(s)
- Chunyun Fu
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region
| | - Shaoke Chen
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region
| | - Rongyu Chen
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region
| | - Xin Fan
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region
| | - Jingsi Luo
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region
| | - Chuan Li
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region
| | - Jiale Qian
- Department of Genetic Metabolism, Children's Hospital, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region
| |
Collapse
|
31
|
Brommage R, Liu J, Hansen GM, Kirkpatrick LL, Potter DG, Sands AT, Zambrowicz B, Powell DR, Vogel P. High-throughput screening of mouse gene knockouts identifies established and novel skeletal phenotypes. Bone Res 2014; 2:14034. [PMID: 26273529 PMCID: PMC4472125 DOI: 10.1038/boneres.2014.34] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022] Open
Abstract
Screening gene function in vivo is a powerful approach to discover novel drug targets. We present high-throughput screening (HTS) data for 3 762 distinct global gene knockout (KO) mouse lines with viable adult homozygous mice generated using either gene-trap or homologous recombination technologies. Bone mass was determined from DEXA scans of male and female mice at 14 weeks of age and by microCT analyses of bones from male mice at 16 weeks of age. Wild-type (WT) cagemates/littermates were examined for each gene KO. Lethality was observed in an additional 850 KO lines. Since primary HTS are susceptible to false positive findings, additional cohorts of mice from KO lines with intriguing HTS bone data were examined. Aging, ovariectomy, histomorphometry and bone strength studies were performed and possible non-skeletal phenotypes were explored. Together, these screens identified multiple genes affecting bone mass: 23 previously reported genes (Calcr, Cebpb, Crtap, Dcstamp, Dkk1, Duoxa2, Enpp1, Fgf23, Kiss1/Kiss1r, Kl (Klotho), Lrp5, Mstn, Neo1, Npr2, Ostm1, Postn, Sfrp4, Slc30a5, Slc39a13, Sost, Sumf1, Src, Wnt10b), five novel genes extensively characterized (Cldn18, Fam20c, Lrrk1, Sgpl1, Wnt16), five novel genes with preliminary characterization (Agpat2, Rassf5, Slc10a7, Slc26a7, Slc30a10) and three novel undisclosed genes coding for potential osteoporosis drug targets.
Collapse
Affiliation(s)
| | - Jeff Liu
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| | | | | | | | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals , The Woodlands, TX, USA
| |
Collapse
|
32
|
Lagier JC, Fenollar F, Chiaroni J, Picard C, Oddoze C, Abi-Rached L, Raoult D. Common subclinical hypothyroidism during Whipple's disease. BMC Infect Dis 2014; 14:370. [PMID: 24996424 PMCID: PMC4099391 DOI: 10.1186/1471-2334-14-370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/30/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Classic Whipple's disease is caused by T. whipplei and likely involves genetic predispositions, such as the HLA alleles DRB1*13 and DQB1*06, that are more frequently observed in patients. T. whipplei carriage occurs in 2-4% of the general population in France. Subclinical hypothyroidism, characterized by high levels of TSH and normal free tetra-iodothyronine (fT4) dosage, has been rarely associated with specific HLA factors. METHODS We retrospectively tested TSHus in 80 patients and 42 carriers. In cases of dysthyroidism, we tested the levels of free-T4 and anti-thyroid antibodies, and the HLA genotypes were also determined for seven to eight patients. RESULTS In this study, 72-74% of patients and carriers were male, and among the 80 patients, 14 (17%) individuals had a high level of TSH, whereas none of the carriers did (p<0. 01). In the 14 patients with no clinical manifestations, the T4 levels were normal, and no specific antibodies were present. Four patients treated with antibiotics, without thyroxine supplementation, showed normal levels of TSHus after one or two years. One patient displayed a second episode of subclinical hypothyroidism during a Whipple's disease relapse five years later, but the subclinical hypothyroidism regressed after antibiotic treatment. HLA typing revealed nine alleles that appeared more frequently in patients than in the control cohort, but none of these differences reached significance due to the small size of the patient group. CONCLUSION Regardless of the substratum, classic Whipple's disease could lead to subclinical hypothyroidism. We recommend systematically testing the TSH levels in patients with Whipple's disease.
Collapse
Affiliation(s)
- Jean-Christophe Lagier
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Florence Fenollar
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Jacques Chiaroni
- UMR 7268 (ADES), Aix-Marseille Université, CNRS, EFS, 51 Bd Pierre Dramard, 13916 Marseille, France
| | - Christophe Picard
- UMR 7268 (ADES), Aix-Marseille Université, CNRS, EFS, 51 Bd Pierre Dramard, 13916 Marseille, France
| | | | - Laurent Abi-Rached
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
- Centre National de la Recherche Scientifique, Laboratoire d’Analyse, Topologie, Probabilités - Unité Mixte de Recherche 7353, Equipe ATIP, Aix-Marseille Université, 13331 Marseille, France
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| |
Collapse
|
33
|
Galrão AL, Camargo RY, Friguglietti CU, Moraes L, Cerutti JM, Serrano-Nascimento C, Suzuki MF, Medeiros-Neto G, Rubio IGS. Hypermethylation of a New Distal Sodium/Iodide Symporter (NIS) enhancer (NDE) is associated with reduced NIS expression in thyroid tumors. J Clin Endocrinol Metab 2014; 99:E944-52. [PMID: 24432988 DOI: 10.1210/jc.2013-1450] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT In thyroid tumors, reduced radioiodine uptake is associated with worse patient outcome concomitantly with low sodium/iodide symporter (NIS) mRNA expression. Previous studies showed that CpG-island methylation in the NIS proximal promoter does not correlate with mRNA expression. OBJECTIVES The aim of the study was to identify new CpG-islands within the NIS 5'region and investigate the involvement of their methylation in NIS expression. DESIGN DNA was obtained from 30 pairs of thyroid samples: tumor (T) and surrounding nontumor (NT) samples. All T samples had reduced NIS mRNA expression compared to NT samples. MAIN OUTCOME MEASURES Methylation degree was quantified by bisulfite sequencing, and NIS expression by real-time PCR and Western blot. Reporter gene assays were performed to determine CpG-island functionality. Tumor cell cultures were treated with 5-Aza demethylating agent to determine NIS expression, methylation status, and (125)I uptake. RESULTS We identified a new CpG-island2 with 14 CpG sites, located -2152/-1887 relative to ATG site. CpG-island2 was hypermethylated in T compared to NT samples, in both benign and malignant tumor groups. There was a significant inverse correlation between NIS mRNA expression and degree of CpG-island2 methylation in NT and T samples. This sequence increased the expression of a reporter gene; thus, it was considered a new enhancer. Cell culture treatments with 5-Aza reduced CpG-island2 methylation levels concomitantly with restoration of NIS mRNA and protein expression and (125)I uptake. CONCLUSIONS We identified a new distal enhancer, NIS distal enhancer, that regulates gene expression through DNA methylation. This enhancer is hypermethylated in T compared to NT samples and is associated with decreased NIS expression in tumors. This epigenetic deregulation may be an early event in tumorigenesis.
Collapse
Affiliation(s)
- Ana Luiza Galrão
- Thyroid Unit (A.L.G., R.Y.C., G.M.-N.), Cellular and Molecular Endocrine Laboratory, LIM-25, University of São Paulo Medical School (FM-USP), 01246-903 São Paulo, Brazil; Head and Neck Surgery of Santa Catarina Hospital (C.U.F.), 01310-000 São Paulo, Brazil; Genetic Bases of Thyroid Tumors Laboratory (L.M., J.M.C.), Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), 04039-032 São Paulo, Brazil; Department of Physiology and Biophysics (C.S.-N.), Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil; Center of Biotechnology (M.F.S.), Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, 05508-000 São Paulo, Brazil; and Department of Biological Sciences (I.G.S.R.), UNIFESP, 09972-270 São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pesce L, Kopp P. Iodide transport: implications for health and disease. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2014; 2014:8. [PMID: 25009573 PMCID: PMC4089555 DOI: 10.1186/1687-9856-2014-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/22/2014] [Indexed: 12/15/2022]
Abstract
Disorders of the thyroid gland are among the most common conditions diagnosed and managed by pediatric endocrinologists. Thyroid hormone synthesis depends on normal iodide transport and knowledge of its regulation is fundamental to understand the etiology and management of congenital and acquired thyroid conditions such as hypothyroidism and hyperthyroidism. The ability of the thyroid to concentrate iodine is also widely used as a tool for the diagnosis of thyroid diseases and in the management and follow up of the most common type of endocrine cancers: papillary and follicular thyroid cancer. More recently, the regulation of iodide transport has also been the center of attention to improve the management of poorly differentiated thyroid cancer. Iodine deficiency disorders (goiter, impaired mental development) due to insufficient nutritional intake remain a universal public health problem. Thyroid function can also be influenced by medications that contain iodide or interfere with iodide metabolism such as iodinated contrast agents, povidone, lithium and amiodarone. In addition, some environmental pollutants such as perchlorate, thiocyanate and nitrates may affect iodide transport. Furthermore, nuclear accidents increase the risk of developing thyroid cancer and the therapy used to prevent exposure to these isotopes relies on the ability of the thyroid to concentrate iodine. The array of disorders involving iodide transport affect individuals during the whole life span and, if undiagnosed or improperly managed, they can have a profound impact on growth, metabolism, cognitive development and quality of life.
Collapse
Affiliation(s)
- Liuska Pesce
- Stead Family Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, University of Iowa Carver School of Medicine, Iowa City, Iowa 52242, USA
| | - Peter Kopp
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
35
|
Oral contrast enhances the resolution of in-life NIS reporter gene imaging. Cancer Gene Ther 2013; 20:638-41. [PMID: 24030210 PMCID: PMC3867790 DOI: 10.1038/cgt.2013.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/10/2013] [Indexed: 11/25/2022]
Abstract
NIS reporter gene imaging is an excellent technology for noninvasive cell fate determination in living animals unless the NIS-transduced cells reside in perigastric organs such as spleen, liver, diaphragm, omentum, pancreas, perigastric lymph nodes or perigastric tumor deposits. Here we report that orally administered barium sulfate enhances CT definition of the stomach, masks background gamma ray emissions from the stomach, and enhances signal detection from radiotracer uptake in NIS-transduced organs.
Collapse
|
36
|
Darrouzet E, Lindenthal S, Marcellin D, Pellequer JL, Pourcher T. The sodium/iodide symporter: state of the art of its molecular characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:244-53. [PMID: 23988430 DOI: 10.1016/j.bbamem.2013.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/05/2013] [Accepted: 08/19/2013] [Indexed: 12/30/2022]
Abstract
The sodium/iodide symporter (NIS or SLC5A5) is an intrinsic membrane protein implicated in iodide uptake into thyroid follicular cells. It plays a crucial role in iodine metabolism and thyroid regulation and its function is widely exploited in the diagnosis and treatment of benign and malignant thyroid diseases. A great effort is currently being made to develop a NIS-based gene therapy also allowing the radiotreatment of nonthyroidal tumors. NIS is also expressed in other tissues, such as salivary gland, stomach and mammary gland during lactation, where its physiological role remains unclear. The molecular identity of the thyroid iodide transporter was elucidated approximately fifteen years ago. It belongs to the superfamily of sodium/solute symporters, SSS (and to the human transporter family, SLC5), and is composed of 13 transmembrane helices and 643 amino acid residues in humans. Knowledge concerning NIS structure/function relationship has been obtained by taking advantage of the high resolution structure of one member of the SSS family, the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT), and from studies of gene mutations leading to congenital iodine transport defects (ITD). This review will summarize current knowledge regarding the molecular characterization of NIS.
Collapse
Affiliation(s)
- Elisabeth Darrouzet
- SBTN, bât 170, centre de Marcoule, BP 17171, 30207 Bagnols sur Cèze CEDEX, France; Laboratoire TIRO, Faculté de médecine, Université de Nice Sophia-Antipolis, 28 Avenue de Valombrose, 06107 Nice CEDEX, France; CAL, TIRO, F-06107 Nice, France.
| | | | | | | | | |
Collapse
|
37
|
Paroder V, Nicola JP, Ginter CS, Carrasco N. The iodide-transport-defect-causing mutation R124H: a δ-amino group at position 124 is critical for maturation and trafficking of the Na+/I- symporter. J Cell Sci 2013; 126:3305-13. [PMID: 23690546 DOI: 10.1242/jcs.120246] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Na(+)/I(-) symporter (NIS)-mediated active accumulation of I(-) in thyrocytes is a key step in the biosynthesis of the iodine-containing thyroid hormones T3 and T4. Several NIS mutants have been identified as a cause of congenital I(-) transport defect (ITD), and their investigation has yielded valuable mechanistic information on NIS. Here we report novel findings derived from the thorough characterization of the ITD-causing mutation R124H, located in the second intracellular loop (IL-2). R124H NIS is incompletely glycosylated and colocalizes with endoplasmic reticulum (ER)-resident protein markers. As a result, R124H NIS is not targeted to the plasma membrane and therefore does not mediate any I(-) transport in transfected COS-7 cells. Strikingly, however, the mutant is intrinsically active, as revealed by its ability to mediate I(-) transport in membrane vesicles. Of all the amino acid substitutions we carried out at position 124 (K, D, E, A, W, N and Q), only Gln restored targeting of NIS to the plasma membrane and NIS activity, suggesting a key structural role for the δ-amino group of R124 in the transporter's maturation and cell surface targeting. Using our NIS homology model based on the structure of the Vibrio parahaemolyticus Na(+)/galactose symporter, we propose an interaction between the δ-amino group of either R or Q124 and the thiol group of C440, located in IL-6. We conclude that the interaction between IL-2 and IL-6 is critical for the local folding required for NIS maturation and plasma membrane trafficking.
Collapse
Affiliation(s)
- Viktoriya Paroder
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
38
|
Li W, Nicola JP, Amzel LM, Carrasco N. Asn441 plays a key role in folding and function of the Na+/I- symporter (NIS). FASEB J 2013; 27:3229-38. [PMID: 23650190 DOI: 10.1096/fj.13-229138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Na(+)/I(-) symporter (NIS) is a plasma membrane glycoprotein that mediates active I(-) transport in the thyroid, the first step in the biosynthesis of the iodine-containing thyroid hormones T3 and T4. Several NIS mutants have been identified as a cause of congenital I(-) transport defect (ITD), and their investigation has yielded valuable mechanistic information on NIS. Here we report a thorough characterization of the ITD-causing NIS mutation in which the sixth intracellular loop residues 439-443 are missing. This mutant protein was intracellularly retained, incompletely glycosylated, and intrinsically inactive. Engineering 5 Ala at positions 439-443 partially recovered cell surface targeting and activity (∼15%). Strikingly, NIS with the sequence 439-AANAA-443, in which Asn was restored at position 441, was targeted to the plasma membrane and exhibited ∼95% the transport activity of WT NIS. Based on our NIS homology model, we propose that the side chain of N441, a residue conserved throughout most of the SLC5 family, interacts with the main chain amino group of G444, capping the α-helix of transmembrane segment XII and thus stabilizing the structure of the molecule. Our data provide insight into a critical interhelical interaction required for NIS folding and activity.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | |
Collapse
|
39
|
Ringseis R, Rauer C, Rothe S, Gessner DK, Schütz LM, Luci S, Wen G, Eder K. Sterol regulatory element-binding proteins are regulators of the NIS gene in thyroid cells. Mol Endocrinol 2013; 27:781-800. [PMID: 23542164 DOI: 10.1210/me.2012-1269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The uptake of iodide into the thyroid, an essential step in thyroid hormone synthesis, is an active process mediated by the sodium-iodide symporter (NIS). Despite its strong dependence on TSH, the master regulator of the thyroid, the NIS gene was also reported to be regulated by non-TSH signaling pathways. In the present study we provide evidence that the rat NIS gene is subject to regulation by sterol regulatory element-binding proteins (SREBPs), which were initially identified as master transcriptional regulators of lipid biosynthesis and uptake. Studies in FRTL-5 thyrocytes revealed that TSH stimulates expression and maturation of SREBPs and expression of classical SREBP target genes involved in lipid biosynthesis and uptake. Almost identical effects were observed when the cAMP agonist forskolin was used instead of TSH. In TSH receptor-deficient mice, in which TSH/cAMP-dependent gene regulation is blocked, the expression of SREBP isoforms in the thyroid was markedly reduced when compared with wild-type mice. Sterol-mediated inhibition of SREBP maturation and/or RNA interference-mediated knockdown of SREBPs reduced expression of NIS and NIS-specific iodide uptake in FRTL-5 cells. Conversely, overexpression of active SREBPs caused a strong activation of the 5'-flanking region of the rat NIS gene mediated by binding to a functional SREBP binding site located in the 5'-untranslated region of the rat NIS gene. These findings show that TSH acts as a regulator of SREBP expression and maturation in thyroid epithelial cells and that SREBPs are novel transcriptional regulators of NIS.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mostofizade N, Nikpour P, Javanmard SH, Emadi-Baygi M, Miranzadeh-Mahabadi H, Hovsepian S, Hashemipour M. The G395R Mutation of the Sodium/Iodide Symporter (NIS) Gene in Patients with Dyshormonogenetic Congenital Hypothyroidism. Int J Prev Med 2013; 4:57-62. [PMID: 23412840 PMCID: PMC3570912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 11/13/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Considering the high prevalence of congenital hypothyroidism (CH) in Isfahan and its different etiologies in comparison with other countries, the high rate of parental consanguinity, and the role of NIS gene in permanent CH due to dyshormonogenesis, the aim of this study was to investigate the G395R mutation of the NIS gene in patients with permanent CH due to dyshormonogenesis METHODS In this case-control study, patients diagnosed with permanent CH due to dyshormonogenesis during CH screening program were selected. Venous blood sample was obtained to determine the G395R mutations of NIS gene using polymerase chain reaction (PCR) sequencing method. RESULTS In this study, 35 CH patients with permanent CH due to dyshormonogenesis and 35 neonates with normal screening results as a control group were studied. We did not find any changes of the mentioned mutation of NIS gene in the patients' group. CONCLUSION Considering the findings of the current study, it seems that further studies with larger sample size and with consideration of other gene mutations such as pendrin and thyroglobulin are needed for more accurate conclusion.
Collapse
Affiliation(s)
- Neda Mostofizade
- Department of Pediatrics, School of Medicine, Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Division of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology and Applied Physiology Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Modjtaba Emadi-Baygi
- Department of Genetics, School of Basic Sciences, Shahrekord University, Shahrekord, Iran,Institute of Biotechnology, School of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | | | - Silva Hovsepian
- General Practitioner, Child Growth and Development Research Center, Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Department of Pediatric Endocrinology, Endocrine and Metabolism Research Center, Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Correspondence to: Prof. Mahin Hashemipour, Department of Pediatric Endocrinology, Endocrine and Metabolism Research Center, Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
41
|
Kasahara T, Narumi S, Okasora K, Takaya R, Tamai H, Hasegawa T. Delayed onset congenital hypothyroidism in a patient withDUOX2mutations and maternal iodine excess. Am J Med Genet A 2012; 161A:214-7. [DOI: 10.1002/ajmg.a.35693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/17/2012] [Indexed: 11/10/2022]
|
42
|
Penheiter AR, Russell SJ, Carlson SK. The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 2012; 12:33-47. [PMID: 22263922 PMCID: PMC3367315 DOI: 10.2174/156652312799789235] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
Abstract
Preclinical and clinical tomographic imaging systems increasingly are being utilized for non-invasive imaging of reporter gene products to reveal the distribution of molecular therapeutics within living subjects. Reporter gene and probe combinations can be employed to monitor vectors for gene, viral, and cell-based therapies. There are several reporter systems available; however, those employing radionuclides for positron emission tomography (PET) or singlephoton emission computed tomography (SPECT) offer the highest sensitivity and the greatest promise for deep tissue imaging in humans. Within the category of radionuclide reporters, the thyroidal sodium iodide symporter (NIS) has emerged as one of the most promising for preclinical and translational research. NIS has been incorporated into a remarkable variety of viral and non-viral vectors in which its functionality is conveniently determined by in vitro iodide uptake assays prior to live animal imaging. This review on the NIS reporter will focus on 1) differences between endogenous NIS and heterologously-expressed NIS, 2) qualitative or comparative use of NIS as an imaging reporter in preclinical and translational gene therapy, oncolytic viral therapy, and cell trafficking research, and 3) use of NIS as an absolute quantitative reporter.
Collapse
Affiliation(s)
- Alan R Penheiter
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
43
|
Belforte FS, Miras MB, Olcese MC, Sobrero G, Testa G, Muñoz L, Gruñeiro-Papendieck L, Chiesa A, González-Sarmiento R, Targovnik HM, Rivolta CM. Congenital goitrous hypothyroidism: mutation analysis in the thyroid peroxidase gene. Clin Endocrinol (Oxf) 2012; 76:568-76. [PMID: 21981063 DOI: 10.1111/j.1365-2265.2011.04249.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Iodide organification defect (IOD) is characterized by a reduced ability of the thyroid gland to retain iodide resulting in hypothyroidism. Mutations in thyroid peroxidase (TPO) gene appear to be the most common cause of IOD and are commonly inherited in an autosomal recessive fashion. The TPO gene is located on the chromosome 2p25. It comprises 17 exons, covers approximately 150 kb of genomic DNA and codes 933 amino acids. OBJECTIVES In this study, we characterize the clinical and molecular basis of seven patients from four unrelated families with congenital hypothyroidism (CH) because of IOD. DESIGN AND METHODS All patients underwent clinical, biochemical and imaging evaluation. The promoter and the complete coding regions of the human TPO along with the flanking intronic regions were analysed by single-strand conformation polymorphism analysis and direct DNA sequencing. Segregation analysis of mutations was carried out, and the effect of the novel missense identified mutations was investigated by 'in silico' studies. RESULTS All subjects had congenital and persistent primary hypothyroidism. Three novel mutations: c.796C>T [p.Q266X], c.1784G>A [p.R595K] and c.2000G>A [p.G667D] and a previously reported mutation: c.1186_1187insGGCC [p.R396fsX472] have been identified. Four patients were compound heterozygous for p.R396fsX472/p.R595K mutations, two patients were homozygous for p.R595K, and the remaining patient was a compound heterozygous for p.Q266X/p.G667D. CONCLUSIONS Our findings confirm the genetic heterogeneity of TPO defects and the importance of the implementation of molecular studies to determinate the aetiology of the CH with dyshormonogenesis.
Collapse
Affiliation(s)
- Fiorella S Belforte
- Laboratorio de Biología Molecular, Cátedra de Genética y Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Targovnik HM, Edouard T, Varela V, Tauber M, Citterio CE, González-Sarmiento R, Rivolta CM. Two novel mutations in the thyroglobulin gene as cause of congenital hypothyroidism: identification a cryptic donor splice site in the exon 19. Mol Cell Endocrinol 2012; 348:313-21. [PMID: 21958696 DOI: 10.1016/j.mce.2011.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, 52 mutations of the TG gene have been identified in humans. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report a French patient with congenital hypothyroidism, mild enlarged thyroid gland and low levels of serum TG. Sequencing of DNA, genotyping, expression of chimeric minigenes as well as bioinformatics analysis were performed. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the paternal mutation consists of a c.3788-3789insT or c.3788dupT, whereas the maternal mutation consists of g.IVS19+3_+4delAT. Minigene analysis of the g.IVS19+3_+4delAT mutant showed that the exon 19 is skipped during pre-mRNA splicing or partially included by use of cryptic 5' splice site located to 100 nucleotides downstream of the wild type exon-intron junction. The c.3788-3789insT mutation results in a putative truncated protein of 1245 amino acids, whereas g.IVS19+3_4delAT mutation originates two putative truncated proteins of 1330 and 1349 amino acids. In conclusion, we show that the g.IVS19+3_+4delAT mutation promotes the activation of a cryptic donor splice site in the exon 19 of the TG gene. These results open up new perspectives in the knowledge of the mechanism of splicing for the TG pre-mRNA.
Collapse
Affiliation(s)
- Héctor M Targovnik
- Laboratorio de Biología Molecular, Cátedra de Genética y Biología Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, 1113 Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
45
|
Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS). Proc Natl Acad Sci U S A 2011; 108:17933-8. [PMID: 22011571 DOI: 10.1073/pnas.1108278108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
I(-) uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na(+)/I(-) symporter (NIS) with an electrogenic 2Na(+):1I(-) stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I(-) transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the K(m) for the anion substrates. Unlike WT NIS, which mediates symport of Na(+) and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 21 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na(+)/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot.
Collapse
|
46
|
Leoni SG, Kimura ET, Santisteban P, De la Vieja A. Regulation of thyroid oxidative state by thioredoxin reductase has a crucial role in thyroid responses to iodide excess. Mol Endocrinol 2011; 25:1924-35. [PMID: 21903721 DOI: 10.1210/me.2011-0038] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The phenomenon that supraphysiological doses of iodide (I(-)) temporarily inhibit thyroid hormone synthesis is known as thyroid iodide autoregulation. Recovery of thyroid function has been attributed to sodium-iodide symporter (NIS) inhibition, but the diversity of available data makes it difficult to reach definitive conclusions. Iodide excess induces reactive oxygen species production and cell toxicity. However, the roles of the oxidative state of the cell and antioxidant selenoproteins in I(-) autoregulation have never been explored. Here we analyze the effects of high I(-) doses in rat thyroids and in PCCl3 cells in the period comprising I(-) autoregulation (i.e. 0-72 h after I(-) administration), focusing on NIS expression, redox state, and the expression and activity of selenoproteins. Our results show that NIS mRNA inhibition by I(-) does not occur at the transcriptional level, because neither NIS promoter activity nor Pax8 expression or its binding to DNA was modulated. Because I(-) uptake was inhibited much earlier than NIS protein, and no effect was observed on its subcellular localization, we suggest that I(-) is inhibiting NIS in the plasma membrane. The increased reactive oxygen species production leads to an increase in thioredoxin reductase mRNA levels and enzyme activity, which reduces the oxidative stress. Inhibition of thioredoxin reductase at either gene expression or activity levels prevented NIS recovery, thus illustrating a new role played by this selenoprotein in the regulation of cell homeostasis and consequently in I(-) autoregulation.
Collapse
Affiliation(s)
- Suzana G Leoni
- Instituto de Investigaciones Biome´ dicas “Alberto Sols” Consejo Superior de Investigaciones Científicas y Universidad Auto´ noma de Madrid, Spain
| | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Overview of congenital hypothyroidism caused by thyroid hormone synthesis defects, the current understanding of their pathophysiology, and clinical implications of molecular diagnoses. RECENT FINDINGS Genetic defects in all known thyroid-specific factors required for thyroid hormone synthesis have been described. These include defects in iodide trapping (NIS), in the facilitated iodide efflux across the apical membrane (PDS), the organification of iodide within the follicular lumen (thyroid peroxidase, DUOX2, DUOXA2), the substrate for thyroid hormone synthesis (thyroglobulin) and the ability to recover and retain intrathyroidal iodine (iodotyrosine deiodinase). Clinical and biochemical evaluation aids in selecting the most appropriate candidate gene(s). A definite molecular diagnosis of thyroid dyshormonogenesis allows genetic counseling and has prognostic value in differentiating transient from permanent congenital hypothyroidism and predicting the response of patients to iodine supplementation as adjunct or alternative treatment to L-T4 replacement. SUMMARY Congenital hypothyroidism due to thyroid dyshormonogenesis is a heterogenic disorder that may be caused by mutations in any of the known steps in the thyroid hormone biosynthesis pathway. An exact molecular diagnosis allows genetic counseling and the identification of asymptomatic mutation carriers at risk of recurrent hypothyroidism, and provides a rationale for adjunct iodide supplementation.
Collapse
Affiliation(s)
- Helmut Grasberger
- Department of Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Samuel Refetoff
- Departments of Medicine, Pediatrics and Committee on Genetics, University of Chicago Chicago, Illinois 60637
| |
Collapse
|
48
|
Nicola JP, Nazar M, Serrano-Nascimento C, Goulart-Silva F, Sobrero G, Testa G, Nunes MT, Muñoz L, Miras M, Masini-Repiso AM. Iodide transport defect: functional characterization of a novel mutation in the Na+/I- symporter 5'-untranslated region in a patient with congenital hypothyroidism. J Clin Endocrinol Metab 2011; 96:E1100-7. [PMID: 21565787 DOI: 10.1210/jc.2011-0349] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Iodide transport defect (ITD) is an autosomal recessive disorder caused by impaired Na(+)/I(-) symporter (NIS)-mediated active iodide accumulation into thyroid follicular cells. Clinical manifestations comprise a variable degree of congenital hypothyroidism and goiter, and low to absent radioiodide uptake, as determined by thyroid scintigraphy. Hereditary molecular defects in NIS have been shown to cause ITD. OBJECTIVE Our objective was to perform molecular studies on NIS in a patient with congenital hypothyroidism presenting a clinical ITD phenotype. DESIGN The genomic DNA encoding NIS was sequenced, and an in vitro functional study of a newly identified NIS mutation was performed. RESULTS The analysis revealed the presence of an undescribed homozygous C to T transition at nucleotide -54 (-54C>T) located in the 5'-untranslated region in the NIS sequence. Functional studies in vitro demonstrated that the mutation was associated with a substantial decrease in iodide uptake when transfected into Cos-7 cells. The mutation severely impaired NIS protein expression, although NIS mRNA levels remained similar to those in cells transfected with wild-type NIS, suggesting a translational deficiency elicited by the mutation. Polysome profile analysis demonstrated reduced levels of polyribosomes-associated mutant NIS mRNA, consistent with reduced translation efficiency. CONCLUSIONS We described a novel mutation in the 5'-untranslated region of the NIS gene in a newborn with congenital hypothyroidism bearing a clinical ITD phenotype. Functional evaluation of the molecular mechanism responsible for impaired NIS-mediated iodide concentration in thyroid cells indicated that the identified mutation reduces NIS translation efficiency with a subsequent decrease in protein expression and function.
Collapse
Affiliation(s)
- Juan Pablo Nicola
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, 5000 Córdoba, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tatsumi KI, Fujiwara H, Tanaka S, Amino N. Characterization of Thr-354 in the human sodium/iodide symporter (NIS) by site-directed mutagenesis. Endocr J 2010; 57:997-9. [PMID: 20834191 DOI: 10.1507/endocrj.k10e-236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sodium/iodide symporter (NIS) is the key molecule concentrating iodide in the thyroid gland. The first-described human NIS (hNIS) mutation to cause a complete iodide transport defect was the T354P mutation. The Thr-354 lies in the midst of the putative ninth transmembrane segment which is well-conserved within the members of the SLC5A transporter family. Here we have investigated the molecular function of Thr-354 using site-directed mutagenesis and found that T354S and T354A mutations result in significantly decreased iodide transport activity, 50 % and 2 % of wild-type hNIS. Our findings indicate that whereas Thr-354 is indispensable for the complete NIS activity, the β-hydroxyl group accounts for half, and the α-helical structure alone contributes for one-fiftieth of wild-type hNIS activity.
Collapse
Affiliation(s)
- Ke-ita Tatsumi
- Department of Laboratory Medicine, Osaka University Graduate School of Medicine, Suita-shi Yamada-oka 2-2-D2, Osaka, Japan.
| | | | | | | |
Collapse
|