1
|
Pavithra S, Kishor Kumar DG, Ramesh G, Panigrahi M, Sahoo M, Madhu CL, Singh TU, Kumar D, Parida S. Leptin decreases the transcription of BK Ca channels and Gs to Gi protein-ratio in late pregnant rat uterus. Gene 2024; 891:147831. [PMID: 37769981 DOI: 10.1016/j.gene.2023.147831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Obesity can have a significant impact on pregnancy outcomes by compromising the ability of the uterus to relax, which increases the likelihood of conditions such as preterm labor. One of the key pathways responsible for uterine relaxation is the β-adrenergic signaling pathway, and it is well-documented that obesity, often linked to a high-fat diet, can disrupt this pathway within the uterine environment. Hyperleptinemia is a significant feature of pregnancy as well as obesity. However, the effect of leptin on β-adrenergic signaling pathway has not been studied. In the present study, we studied the effects of leptin on transcriptions of the major proteins defining the β-adrenergic signaling pathway in pregnant rat uterus. Leptin treatment at a supraphysiological concentration to pregnant rat uterine strips increased the mRNA and protein expressions of Gs protein but not the mRNA of β2- and β3-adrenoceptors. It also enhanced the expression of Gi-protein, but not the Gq protein. Nevertheless, the mRNA ratio of Gs to Gi protein experienced a significant decrease. Further, leptin reduced the transcription of BKCaα and BKCaβ channel subunits. In leptin-stimulated tissues, there was also an increase in the expression of leptin receptor and JAK-2. In conclusion, leptin decreases the ratio of Gs to Gi proteins and BKCaα and BKCaβ channel subunits suggesting hyperleptinemia is a likely factor inducing uterine relaxant dysfunction in obesity.
Collapse
Affiliation(s)
- S Pavithra
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - D G Kishor Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - G Ramesh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - C L Madhu
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India.
| |
Collapse
|
2
|
Gém JB, Kovács KB, Szalai L, Szakadáti G, Porkoláb E, Szalai B, Turu G, Tóth AD, Szekeres M, Hunyady L, Balla A. Characterization of Type 1 Angiotensin II Receptor Activation Induced Dual-Specificity MAPK Phosphatase Gene Expression Changes in Rat Vascular Smooth Muscle Cells. Cells 2021; 10:3538. [PMID: 34944046 PMCID: PMC8700539 DOI: 10.3390/cells10123538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Activation of the type I angiotensin receptor (AT1-R) in vascular smooth muscle cells (VSMCs) plays a crucial role in the regulation of blood pressure; however, it is also responsible for the development of pathological conditions such as vascular remodeling, hypertension and atherosclerosis. Stimulation of the VSMC by angiotensin II (AngII) promotes a broad variety of biological effects, including gene expression changes. In this paper, we have taken an integrated approach in which an analysis of AngII-induced gene expression changes has been combined with the use of small-molecule inhibitors and lentiviral-based gene silencing, to characterize the mechanism of signal transduction in response to AngII stimulation in primary rat VSMCs. We carried out Affymetrix GeneChip experiments to analyze the effects of AngII stimulation on gene expression; several genes, including DUSP5, DUSP6, and DUSP10, were identified as upregulated genes in response to stimulation. Since various dual-specificity MAPK phosphatase (DUSP) enzymes are important in the regulation of mitogen-activated protein kinase (MAPK) signaling pathways, these genes have been selected for further analysis. We investigated the kinetics of gene-expression changes and the possible signal transduction processes that lead to altered expression changes after AngII stimulation. Our data shows that the upregulated genes can be stimulated through multiple and synergistic signal transduction pathways. We have also found in our gene-silencing experiments that epidermal growth factor receptor (EGFR) transactivation is not critical in the AngII-induced expression changes of the investigated genes. Our data can help us understand the details of AngII-induced long-term effects and the pathophysiology of AT1-R. Moreover, it can help to develop potential interventions for those symptoms that are induced by the over-functioning of this receptor, such as vascular remodeling, cardiac hypertrophy or atherosclerosis.
Collapse
Affiliation(s)
- Janka Borbála Gém
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Kinga Bernadett Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Laura Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Gyöngyi Szakadáti
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Edit Porkoláb
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
3
|
Bardsley EN, Paterson DJ. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 2020; 598:2957-2976. [PMID: 30307615 PMCID: PMC7496613 DOI: 10.1113/jp276962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiac sympathetic overactivity is a well-established contributor to the progression of neurogenic hypertension and heart failure, yet the underlying pathophysiology remains unclear. Recent studies have highlighted the importance of acutely regulated cyclic nucleotides and their effectors in the control of intracellular calcium and exocytosis. Emerging evidence now suggests that a significant component of sympathetic overactivity and enhanced transmission may arise from impaired cyclic nucleotide signalling, resulting from compromised phosphodiesterase activity, as well as alterations in receptor-coupled G-protein activation. In this review, we address some of the key cellular and molecular pathways that contribute to sympathetic overactivity in hypertension and discuss their potential for therapeutic targeting.
Collapse
Affiliation(s)
- E. N. Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| | - D. J. Paterson
- Wellcome Trust OXION Initiative in Ion Channels and DiseaseOxfordUK
- Burdon Sanderson Cardiac Science Centre, Department of PhysiologyAnatomy and Genetics, University of OxfordOxfordOX1 3PTUK
| |
Collapse
|
4
|
Fernandez TJ, De Maria M, Lobingier BT. A cellular perspective of bias at G protein-coupled receptors. Protein Sci 2020; 29:1345-1354. [PMID: 32297394 DOI: 10.1002/pro.3872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) modulate cell function over short- and long-term timescales. GPCR signaling depends on biochemical parameters that define the what, when, and where of receptor function: what proteins mediate and regulate receptor signaling, where within the cell these interactions occur, and how long these interactions persist. These parameters can vary significantly depending on the activating ligand. Collectivity, differential agonist activity at a GPCR is called bias or functional selectivity. Here we review agonist bias at GPCRs with a focus on ligands that show dramatically different cellular responses from their unbiased counterparts.
Collapse
Affiliation(s)
- Thomas J Fernandez
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, Oregon, USA
| |
Collapse
|
5
|
Sanz AB, Ramos AM, Soler MJ, Sanchez-Niño MD, Fernandez-Fernandez B, Perez-Gomez MV, Ortega MR, Alvarez-Llamas G, Ortiz A. Advances in understanding the role of angiotensin-regulated proteins in kidney diseases. Expert Rev Proteomics 2018; 16:77-92. [DOI: 10.1080/14789450.2018.1545577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Belén Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Adrian Mario Ramos
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Jose Soler
- Department of Nephrology, Hospital del Mar-IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | | | | | - Marta Ruiz Ortega
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Gloria Alvarez-Llamas
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz and Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Tóth AD, Gyombolai P, Szalai B, Várnai P, Turu G, Hunyady L. Angiotensin type 1A receptor regulates β-arrestin binding of the β 2-adrenergic receptor via heterodimerization. Mol Cell Endocrinol 2017; 442:113-124. [PMID: 27908837 DOI: 10.1016/j.mce.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 11/26/2016] [Indexed: 02/06/2023]
Abstract
Heterodimerization between angiotensin type 1A receptor (AT1R) and β2-adrenergic receptor (β2AR) has been shown to modulate G protein-mediated effects of these receptors. Activation of G protein-coupled receptors (GPCRs) leads to β-arrestin binding, desensitization, internalization and G protein-independent signaling of GPCRs. Our aim was to study the effect of heterodimerization on β-arrestin coupling. We found that β-arrestin binding of β2AR is affected by activation of AT1Rs. Costimulation with angiotensin II and isoproterenol markedly enhanced the interaction between β2AR and β-arrestins, by prolonging the lifespan of β2AR-induced β-arrestin2 clusters at the plasma membrane. While candesartan, a conventional AT1R antagonist, had no effect on the β-arrestin2 binding to β2AR, TRV120023, a β-arrestin biased agonist, enhanced the interaction. These findings reveal a new crosstalk mechanism between AT1R and β2AR, and suggest that enhanced β-arrestin2 binding to β2AR can contribute to the pharmacological effects of biased AT1R agonists.
Collapse
Affiliation(s)
- András D Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Pál Gyombolai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Tsvetanova NG, Trester-Zedlitz M, Newton BW, Riordan DP, Sundaram AB, Johnson JR, Krogan NJ, von Zastrow M. G Protein-Coupled Receptor Endocytosis Confers Uniformity in Responses to Chemically Distinct Ligands. Mol Pharmacol 2017; 91:145-156. [PMID: 27879340 PMCID: PMC5267521 DOI: 10.1124/mol.116.106369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022] Open
Abstract
The ability of chemically distinct ligands to produce different effects on the same G protein-coupled receptor (GPCR) has interesting therapeutic implications, but, if excessively propagated downstream, would introduce biologic noise compromising cognate ligand detection. We asked whether cells have the ability to limit the degree to which chemical diversity imposed at the ligand-GPCR interface is propagated to the downstream signal. We carried out an unbiased analysis of the integrated cellular response elicited by two chemically and pharmacodynamically diverse β-adrenoceptor agonists, isoproterenol and salmeterol. We show that both ligands generate an identical integrated response, and that this stereotyped output requires endocytosis. We further demonstrate that the endosomal β2-adrenergic receptor signal confers uniformity on the downstream response because it is highly sensitive and saturable. Based on these findings, we propose that GPCR signaling from endosomes functions as a biologic noise filter to enhance reliability of cognate ligand detection.
Collapse
Affiliation(s)
- Nikoleta G Tsvetanova
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Michelle Trester-Zedlitz
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Billy W Newton
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Daniel P Riordan
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Aparna B Sundaram
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Jeffrey R Johnson
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Nevan J Krogan
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| | - Mark von Zastrow
- Department of Psychiatry (N.G.T., M.T.-Z., M.Z.), Department of Cellular and Molecular Pharmacology (M.Z.), California Institute for Quantitative Biosciences (B.W.N., J.R.J., N.J.K.), and Lung Biology Center, Department of Medicine (A.B.S.), University of California, San Francisco, San Francisco, California; J. David Gladstone Institute, San Francisco, California (N.J.K.); and Department of Biochemistry, Stanford University, Stanford, California (D.P.R.)
| |
Collapse
|
8
|
Wiesen K, Kaiser E, Schröder L, Scholz A, Ruppenthal S, Reil JC, Backes C, Meese E, Meier C, Bogdanova A, Lipp P, Kaestner L. Cardiac remodeling in Gαq and Gα11 knockout mice. Int J Cardiol 2015; 202:836-45. [PMID: 26476043 DOI: 10.1016/j.ijcard.2015.10.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/29/2015] [Accepted: 10/03/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND Although both Gαq- and Gα11-protein signaling are believed to be involved in the regulation of cardiac hypertrophy, their detailed contribution to myocardial function remains elusive. METHODS AND RESULTS We studied remodeling processes in healthy transgenic mice with genetically altered Gαq/Gα11-expression, in particular a global Gα11-knockout and a novel inducible cardiac specific Gαq-knockout, as well as a combined double knockout (dKO) mouse line. Echocardiography and telemetric ECG recordings revealed that compared with wild type mice, hearts of dKO mice showed an increased ejection fraction and a decreased heart rate, irrespective of age resulting in a maintained cardiac output. We attributed these findings to the lack of Gα11, which the absence was associated with a decreased afterload. Histological analysis of the extracellular matrix in the heart depicted a diminished presence of collagen in aging hearts of dKO mice compared to wild-type mice. The results of a transcriptome analysis on isolated ventricular cardiac myocytes revealed alterations of the activity of genes involved in the Gαq/Gα11-dependent regulation of the extracellular matrix, such as the matricellular protein Cyr61. CONCLUSIONS From our data we conclude that Gαq/Gα11 signaling pathways play a pivotal role in maintaining gene activity patterns. For the heart we revealed their importance in modulating the properties of the extracellular matrix, a mechanism that might be an important contributor and mechanistic basis for the development of pressure-overload induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Kathrina Wiesen
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich Center for Integrative Human Physiology, University of Zürich, 8057 Zürich, Switzerland; Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Elisabeth Kaiser
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Laura Schröder
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Anke Scholz
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Sandra Ruppenthal
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany
| | - Jan-Christian Reil
- Clinic for Internal Medicine III, Saarland University, 66421 Homburg/Saar, Germany
| | - Christina Backes
- Institute for Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Eckart Meese
- Institute for Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Carola Meier
- Anatomy, Saarland University, 66421 Homburg/Saar, Germany
| | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zürich Center for Integrative Human Physiology, University of Zürich, 8057 Zürich, Switzerland
| | - Peter Lipp
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany.
| | - Lars Kaestner
- Institute for Molecular Cell Biology and Research Centre for Molecular Imaging and Screening, Saarland University, 66421 Homburg/Saar, Germany.
| |
Collapse
|
9
|
Zhang P, Kofron CM, Mende U. Heterotrimeric G protein-mediated signaling and its non-canonical regulation in the heart. Life Sci 2015; 129:35-41. [PMID: 25818188 PMCID: PMC4415990 DOI: 10.1016/j.lfs.2015.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/31/2015] [Accepted: 02/11/2015] [Indexed: 11/20/2022]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) regulate a multitude of signaling pathways in mammalian cells by transducing signals from G protein-coupled receptors (GPCRs) to effectors, which in turn regulate cellular function. In the myocardium, G protein signaling occurs in all cardiac cell types and is centrally involved in the regulation of heart rate, pump function, and vascular tone and in the response to hemodynamic stress and injury. Perturbations in G protein-mediated signaling are well known to contribute to cardiac hypertrophy, failure, and arrhythmias. Most of the currently used drugs for cardiac and other diseases target GPCR signaling. In the canonical G protein signaling paradigm, G proteins that are located at the cytoplasmic surface of the plasma membrane become activated after an agonist-induced conformational change of GPCRs, which then allows GTP-bound Gα and free Gβγ subunits to activate or inhibit effector proteins. Research over the past two decades has markedly broadened the original paradigm with a GPCR-G protein-effector at the cell surface at its core by revealing novel binding partners and additional subcellular localizations for heterotrimeric G proteins that facilitate many previously unrecognized functional effects. In this review, we focus on non-canonical and epigenetic-related mechanisms that regulate heterotrimeric G protein expression, activation, and localization and discuss functional consequences using cardiac examples where possible. Mechanisms reviewed involve microRNAs, histone deacetylases, chaperones, alternative modes of G protein activation, and posttranslational modifications. Some of these newly characterized mechanisms may be further developed into novel strategies for the treatment of cardiac disease and beyond.
Collapse
Affiliation(s)
- Peng Zhang
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Providence, RI, USA
| | - Celinda M Kofron
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI, USA; Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
10
|
Rukavina Mikusic NL, Kravetz MC, Kouyoumdzian NM, Della Penna SL, Rosón MI, Fernández BE, Choi MR. Signaling pathways involved in renal oxidative injury: role of the vasoactive peptides and the renal dopaminergic system. JOURNAL OF SIGNAL TRANSDUCTION 2014; 2014:731350. [PMID: 25436148 PMCID: PMC4243602 DOI: 10.1155/2014/731350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/16/2014] [Indexed: 12/24/2022]
Abstract
The physiological hydroelectrolytic balance and the redox steady state in the kidney are accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Angiotensin II, atrial natriuretic peptide and intrarenal dopamine play a pivotal role in this interactive network. The balance between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide, by one side, and the prooxidant effect of the renin angiotensin system, by the other side, contributes to ensuring the normal function of the kidney. Different pathological scenarios, as nephrotic syndrome and hypertension, where renal sodium excretion is altered, are associated with an impaired interaction between two natriuretic systems as the renal dopaminergic system and atrial natriuretic peptide that may be involved in the pathogenesis of renal diseases. The aim of this review is to update and comment the most recent evidences about the intracellular pathways involved in the relationship between endogenous antioxidant agents like the renal dopaminergic system and atrial natriuretic peptide and the prooxidant effect of the renin angiotensin system in the pathogenesis of renal inflammation.
Collapse
Affiliation(s)
- N. L. Rukavina Mikusic
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - M. C. Kravetz
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - N. M. Kouyoumdzian
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - S. L. Della Penna
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - M. I. Rosón
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - B. E. Fernández
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| | - M. R. Choi
- Department of Pathophysiology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, CONICET, INFIBIOC, 1113 Buenos Aires, Argentina
| |
Collapse
|
11
|
Satou R, Gonzalez-Villalobos RA. JAK-STAT and the renin-angiotensin system: The role of the JAK-STAT pathway in blood pressure and intrarenal renin-angiotensin system regulation. JAKSTAT 2014; 1:250-6. [PMID: 24058780 PMCID: PMC3670281 DOI: 10.4161/jkst.22729] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The renin-angiotensin system (RAS) plays important roles in blood pressure control and tissue disease. An inappropriate local angiotensin II elevation in the kidneys leads to the development of hypertension, tissue damage and chronic injury. Studies have demonstrated that the JAK-STAT pathway mediates angiotensin II-triggered gene transcription. The JAK-STAT pathway in turn, acting as an amplifying system, contributes to further intrarenal RAS activation. These observations prompt the suggestion that the JAK-STAT pathway may be of importance in elucidating the mechanisms RAS-associated tissue injury. Accordingly, this review provides a brief overview of the interactions between the JAK-STAT pathway and the RAS, specifically the RAS expressed in the kidneys.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and Hypertension and Renal Center of Excellence; Tulane University Health Sciences Center; New Orleans, LA USA
| | | |
Collapse
|
12
|
Bøgebo R, Horn H, Olsen JV, Gammeltoft S, Jensen LJ, Hansen JL, Christensen GL. Predicting kinase activity in angiotensin receptor phosphoproteomes based on sequence-motifs and interactions. PLoS One 2014; 9:e94672. [PMID: 24722691 PMCID: PMC3983226 DOI: 10.1371/journal.pone.0094672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/17/2014] [Indexed: 01/14/2023] Open
Abstract
Recent progress in the understanding of seven-transmembrane receptor (7TMR) signalling has promoted the development of a new generation of pathway selective ligands. The angiotensin II type I receptor (AT1aR) is one of the most studied 7TMRs with respect to selective activation of the β-arrestin dependent signalling. Two complimentary global phosphoproteomics studies have analyzed the complex signalling induced by the AT1aR. Here we integrate the data sets from these studies and perform a joint analysis using a novel method for prediction of differential kinase activity from phosphoproteomics data. The method builds upon NetworKIN, which applies sophisticated linear motif analysis in combination with contextual network modelling to predict kinase-substrate associations with high accuracy and sensitivity. These predictions form the basis for subsequently nonparametric statistical analysis to identify likely activated kinases. This suggested that AT1aR-dependent signalling activates 48 of the 285 kinases detected in HEK293 cells. Of these, Aurora B, CLK3 and PKG1 have not previously been described in the pathway whereas others, such as PKA, PKB and PKC, are well known. In summary, we have developed a new method for kinase-centric analysis of phosphoproteomes to pinpoint differential kinase activity in large-scale data sets.
Collapse
Affiliation(s)
- Rikke Bøgebo
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark
| | - Heiko Horn
- Department of Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V. Olsen
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Steen Gammeltoft
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark
| | - Lars J. Jensen
- Department of Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jakob L. Hansen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JLH); (GLC)
| | - Gitte L. Christensen
- Department of Clinical Biochemistry, Glostrup Research Institute, Glostrup Hospital, Glostrup, Denmark
- Cellular and Metabolic Research Section, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JLH); (GLC)
| |
Collapse
|
13
|
Saulière A, Bellot M, Paris H, Denis C, Finana F, Hansen JT, Altié MF, Seguelas MH, Pathak A, Hansen JL, Sénard JM, Galés C. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nat Chem Biol 2012; 8:622-30. [PMID: 22634635 DOI: 10.1038/nchembio.961] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 02/28/2012] [Indexed: 02/06/2023]
Abstract
Functional selectivity of G protein-coupled receptor (GPCR) ligands toward different downstream signals has recently emerged as a general hallmark of this receptor class. However, pleiotropic and crosstalk signaling of GPCRs makes functional selectivity difficult to decode. To look from the initial active receptor point of view, we developed new, highly sensitive and direct bioluminescence resonance energy transfer-based G protein activation probes specific for all G protein isoforms, and we used them to evaluate the G protein-coupling activity of [(1)Sar(4)Ile(8)Ile]-angiotensin II (SII), previously described as an angiotensin II type 1 (AT(1)) receptor-biased agonist that is G protein independent but β-arrestin selective. By multiplexing assays sensing sequential signaling events, from receptor conformations to downstream signaling, we decoded SII as an agonist stabilizing a G protein-dependent AT(1A) receptor signaling module different from that of the physiological agonist angiotensin II, both in recombinant and primary cells. Thus, a biased agonist does not necessarily select effects from the physiological agonist but may instead stabilize and create a new distinct active pharmacological receptor entity.
Collapse
Affiliation(s)
- Aude Saulière
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pahlavan S, Oberhofer M, Sauer B, Ruppenthal S, Tian Q, Scholz A, Kaestner L, Lipp P. Gαq and Gα11 contribute to the maintenance of cellular electrophysiology and Ca2+ handling in ventricular cardiomyocytes. Cardiovasc Res 2012; 95:48-58. [DOI: 10.1093/cvr/cvs162] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
15
|
Jeppesen PL, Christensen GL, Schneider M, Nossent AY, Jensen HB, Andersen DC, Eskildsen T, Gammeltoft S, Hansen JL, Sheikh SP. Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes. Br J Pharmacol 2012; 164:394-404. [PMID: 21449976 DOI: 10.1111/j.1476-5381.2011.01375.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The angiotensin II type 1 receptor (AT(1)R) is a key regulator of blood pressure and cardiac contractility and is profoundly involved in development of cardiac disease. Since several microRNAs (miRNAs) have been implicated in cardiac disease, we determined whether miRNAs might be regulated by AT(1)R signals in a Gαq/11-dependent or -independent manner. EXPERIMENTAL APPROACH We performed a global miRNA array analysis of angiotensin II (Ang II)-mediated miRNA regulation in HEK293N cells overexpressing the AT(1)R and focused on separating the role of Gαq/11-dependent and -independent pathways. MiRNA regulation was verified with quantitative PCR in both HEK293N cells and primary cardiac myocytes and fibroblasts. KEY RESULTS Our studies revealed five miRNAs (miR-29b, -129-3p, -132, -132* and -212) that were up-regulated by Ang II in HEK293N cells. In contrast, the biased Ang II analogue, [Sar1, Ile4, Ile8] Ang II (SII Ang II), which selectively activates Gαq/11-independent signalling, failed to regulate miRNAs in HEK293N cells. Furthermore, Ang II-induced miRNA regulation was blocked following Gαq/11 and Mek1 inhibition. The observed Ang II regulation of miRNA was confirmed in primary cultures of adult cardiac fibroblasts. Interestingly, Ang II did not regulate miRNA expression in cardiac myocytes, but SII Ang II significantly down-regulated miR-129-3p. CONCLUSIONS AND IMPLICATIONS Five miRNAs were regulated by Ang II through mechanisms depending on Gαq/11 and Erk1/2 activation. These miRNAs may be involved in Ang II-mediated cardiac biology and disease, as several of these miRNAs have previously been associated with cardiovascular disease and were found to be regulated in cardiac cells.
Collapse
Affiliation(s)
- Pia Lindgren Jeppesen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark and Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, Odense, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tilley DG. Functional relevance of biased signaling at the angiotensin II type 1 receptor. Endocr Metab Immune Disord Drug Targets 2011; 11:99-111. [PMID: 21476968 DOI: 10.2174/187153011795564133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/07/2011] [Indexed: 01/04/2023]
Abstract
Angiotensin II type 1 receptor antagonists (AT1R blockers, or ARBs) are used commonly in the treatment of cardiovascular disorders such as heart failure and hypertension. Their clinical success arises from their ability to prevent deleterious Gα(q) protein activation downstream of AT1R, which leads to a decrease in morbidity and mortality. Recent studies have identified AT1R ligands that concurrently inhibit Gα(q) protein-dependent signaling and activate Gα(q) protein-independent/β-arrestin-dependent signaling downstream of AT1R, events that may actually improve cardiovascular performance more than conventional ARBs. The ability of such ligands to induce intracellular signaling events in an AT1R-β-arrestin-dependent manner while preventing AT1R-Gα(q) protein activity defines them as biased AT1R ligands. This mini-review will highlight recent studies that have defined biased signaling at the AT1R and discuss the possible clinical relevance of β-arrestin-biased AT1R ligands in the cardiovascular system.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, Thomas Jefferson University, Philadelphia, PA 1917, USA.
| |
Collapse
|
17
|
Tilley DG. G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function. Circ Res 2011; 109:217-30. [PMID: 21737817 PMCID: PMC3138127 DOI: 10.1161/circresaha.110.231225] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 04/13/2011] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors signal through a variety of mechanisms that impact cardiac function, including contractility and hypertrophy. G protein-dependent and G protein-independent pathways each have the capacity to initiate numerous intracellular signaling cascades to mediate these effects. G protein-dependent signaling has been studied for decades and great strides continue to be made in defining the intricate pathways and effectors regulated by G proteins and their impact on cardiac function. G protein-independent signaling is a relatively newer concept that is being explored more frequently in the cardiovascular system. Recent studies have begun to reveal how cardiac function may be regulated via G protein-independent signaling, especially with respect to the ever-expanding cohort of β-arrestin-mediated processes. This review primarily focuses on the impact of both G protein-dependent and β-arrestin-dependent signaling pathways on cardiac function, highlighting the most recent data that illustrate the comprehensive nature of these mechanisms of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Pharmaceutical Sciences, Jefferson School of Pharmacy, and Center for Translational Medicine, Thomas Jefferson University, 1025 Walnut Street, 402 College Building, Philadelphia, PA 19107, USA.
| |
Collapse
|