1
|
Li Y, Zheng M, Limbara S, Zhang S, Yu Y, Yu L, Jiao J. Effects of the Pituitary-targeted Gland Axes on Hepatic Lipid Homeostasis in Endocrine-associated Fatty Liver Disease-A Concept Worth Revisiting. J Clin Transl Hepatol 2024; 12:416-427. [PMID: 38638376 PMCID: PMC11022059 DOI: 10.14218/jcth.2023.00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatic lipid homeostasis is not only essential for maintaining normal cellular and systemic metabolic function but is also closely related to the steatosis of the liver. The controversy over the nomenclature of non-alcoholic fatty liver disease (NAFLD) in the past three years has once again sparked in-depth discussions on the pathogenesis of this disease and its impact on systemic metabolism. Pituitary-targeted gland axes (PTGA), an important hormone-regulating system, are indispensable in lipid homeostasis. This review focuses on the roles of thyroid hormones, adrenal hormones, sex hormones, and their receptors in hepatic lipid homeostasis, and summarizes recent research on pituitary target gland axes-related drugs regulating hepatic lipid metabolism. It also calls on researchers and clinicians to recognize the concept of endocrine-associated fatty liver disease (EAFLD) and to re-examine human lipid metabolism from the macroscopic perspective of homeostatic balance.
Collapse
Affiliation(s)
- Yifang Li
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Meina Zheng
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Steven Limbara
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Shanshan Zhang
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yutao Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Le Yu
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Jian Jiao
- Department of Gastroenterology & Hepatology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Lee HB, Shams S, Dang Thi VH, Boyum GE, Modhurima R, Hall EM, Green IK, Cervantes EM, Miguez FE, Clark KJ. Key HPI axis receptors facilitate light adaptive behavior in larval zebrafish. Sci Rep 2024; 14:7759. [PMID: 38565594 PMCID: PMC10987622 DOI: 10.1038/s41598-024-57707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. Genetic abrogation of glucocorticoid receptor (nr3c1) decreased basal locomotor activity in light and darkness. Some key HPI axis receptors (mc2r [ACTH receptor], nr3c1), but not nr3c2 (mineralocorticoid receptor), were required to adapt to light more efficiently but became dispensable when longer illumination was provided. Such light adaptation was more efficient in dimmer light. Our findings show that the HPI axis contributes to the SR, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPI axis activity.
Collapse
Affiliation(s)
- Han B Lee
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Soaleha Shams
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Viet Ha Dang Thi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Grace E Boyum
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Rodsy Modhurima
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Emma M Hall
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Izzabella K Green
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Karl J Clark
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Mosili P, Mkhize BC, Sibiya NH, Ngubane PS, Khathi A. Review of the direct and indirect effects of hyperglycemia on the HPA axis in T2DM and the co-occurrence of depression. BMJ Open Diabetes Res Care 2024; 12:e003218. [PMID: 38413177 PMCID: PMC10900365 DOI: 10.1136/bmjdrc-2022-003218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 02/29/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by persistent hyperglycemia which is further associated with hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Several studies have shown that HPA axis hyperactivity is heightened in the chronic hyperglycemic state with severe hyperglycemic events more likely to result in a depressive disorder. The HPA axis is also regulated by the immune system. Upon stress, under homeostatic conditions, the immune system is activated via the sympatho-adrenal-medullary axis resulting in an immune response which secretes proinflammatory cytokines. These cytokines aid in the activation of the HPA axis during stress. However, in T2DM, where there is persistent hyperglycemia, the immune system is dysregulated resulting in the elevated concentrations of these cytokines. The HPA axis, already activated by the hyperglycemia, is further activated by the cytokines which all contribute to a diagnosis of depression in patients with T2DM. However, the onset of T2DM is often preceded by pre-diabetes, a reversible state of moderate hyperglycemia and insulin resistance. Complications often seen in T2DM have been reported to begin in the pre-diabetic state. While the current management strategies have been shown to ameliorate the moderate hyperglycemic state and decrease the risk of developing T2DM, research is necessary for clinical studies to profile these direct effects of moderate hyperglycemia in pre-diabetes on the HPA axis and the indirect effects moderate hyperglycemia may have on the HPA axis by investigating the components of the immune system that play a role in regulating this pathway.
Collapse
Affiliation(s)
- Palesa Mosili
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Bongeka Cassandra Mkhize
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | | | - Phikelelani Sethu Ngubane
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Andile Khathi
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
4
|
Toews JNC, Philippe TJ, Dordevic M, Hill LA, Hammond GL, Viau V. Corticosteroid-Binding Globulin (SERPINA6) Consolidates Sexual Dimorphism of Adult Rat Liver. Endocrinology 2023; 165:bqad179. [PMID: 38015819 PMCID: PMC10699879 DOI: 10.1210/endocr/bqad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Produced by the liver, corticosteroid-binding globulin (CBG) regulates the plasma distribution and actions of glucocorticoids. A sex difference in pituitary growth hormone secretion patterns established during puberty in rats results in increased hepatic CBG production and 2-fold higher plasma corticosterone levels in females. Glucocorticoids control hepatic development and metabolic activities, and we have therefore examined how disrupting the SerpinA6 gene encoding CBG influences plasma corticosterone dynamics, as well as liver gene expression in male and female rats before and after puberty. Comparisons of corticosterone plasma clearance and hepatic uptake in adult rats, with or without CBG, indicated that CBG limits corticosterone clearance by reducing its hepatic uptake. Hepatic transcriptomic profiling revealed minor sex differences (207 differentially expressed genes) and minimal effect of CBG deficiency in 30-day-old rats before puberty. While liver transcriptomes in 60-day-old males lacking CBG remained essentially unchanged, 2710 genes were differentially expressed in wild-type female vs male livers at this age. Importantly, ∼10% of these genes lost their sexually dimorphic expression in adult females lacking CBG, including those related to cholesterol biosynthesis, inflammation, and lipid and amino acid catabolism. Another 203 genes were altered by the loss of CBG specifically in adult females, including those related to xenobiotic metabolism, circadian rhythm, and gluconeogenesis. Our findings reveal that CBG consolidates the sexual dimorphism of the rat liver initiated by sex differences in growth hormone secretion patterns and provide insight into how CBG deficiencies are linked to glucocorticoid-dependent diseases.
Collapse
Affiliation(s)
- Julia N C Toews
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tristan J Philippe
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew Dordevic
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lesley A Hill
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Lee H, Shams S, Dang Thi VH, Boyum G, Modhurima R, Hall E, Green I, Cervantes E, Miguez F, Clark K. The canonical HPA axis facilitates and maintains light adaptive behavior. RESEARCH SQUARE 2023:rs.3.rs-3240080. [PMID: 37720015 PMCID: PMC10503838 DOI: 10.21203/rs.3.rs-3240080/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The vertebrate stress response (SR) is mediated by the hypothalamic-pituitary-adrenal (HPA) axis and contributes to generating context appropriate physiological and behavioral changes. Although the HPA axis plays vital roles both in stressful and basal conditions, research has focused on the response under stress. To understand broader roles of the HPA axis in a changing environment, we characterized an adaptive behavior of larval zebrafish during ambient illumination changes. The glucocorticoid receptor (nr3c1) was necessary to maintain basal locomotor activity in light and darkness. The HPA axis was required to adapt to light more efficiently but became dispensable when longer illumination was provided. Light adaptation was more efficient in dimmer light and did not require the mineralocorticoid receptor (nr3c2). Our findings show that the HPA axis contributes to the SR at various stages, facilitating the phasic response and maintaining an adapted basal state, and that certain adaptations occur without HPA axis activity.
Collapse
|
6
|
Man ISC, Shao R, Hou WK, Xin Li S, Liu FY, Lee M, Wing YK, Yau SY, Lee TMC. Multi-systemic evaluation of biological and emotional responses to the Trier Social Stress Test: A meta-analysis and systematic review. Front Neuroendocrinol 2023; 68:101050. [PMID: 36410619 DOI: 10.1016/j.yfrne.2022.101050] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/28/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Humans experience multiple biological and emotional changes under acute stress. Adopting a multi-systemic approach, we summarized 61 studies on healthy people's endocrinological, physiological, immunological and emotional responses to the Trier Social Stress Test. We found salivary cortisol and negative mood states were the most sensitive markers to acute stress and recovery. Biomarkers such as heart rate and salivary alpha-amylase also showed sensitivity to acute stress, but the numbers of studies were small. Other endocrinological (e.g., dehydroepiandrosterone), inflammatory (C-Reactive Protein, Interleukin-6) and physiological (e.g., skin conductance level) measures received modest support as acute stress markers. Salivary cortisol showed some associations with mood measures (e.g., state anxiety) during acute stress and recovery, and heart rate showed preliminary positive relationship with calmness ratings during response to TSST, but the overall evidence was mixed. While further research is needed, these findings provide updated and comprehensive knowledge on the integrated psychobiological response profiles to TSST.
Collapse
Affiliation(s)
- Idy S C Man
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Robin Shao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China; Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - W K Hou
- Department of Psychology, The Education University of Hong Kong, Hong Kong, China; Centre for Psychosocial Health, The Education University of Hong Kong, Hong Kong, China
| | - Shirley Xin Li
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Sleep Research Clinic and Laboratory, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Fiona Yan Liu
- Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Maggy Lee
- Department of Sociology, The University of Hong Kong, Hong Kong, China
| | - Yun Kwok Wing
- Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China; Mental Health Research Center, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Liu Y, Cao L, Liu J, Zhang Z, Fan P, Zhu Y, Zhang S, Gu Y, Li Q, Xiong Y. Increased Hippocampal Glucocorticoid Receptor Expression and Reduced Anxiety-Like Behavior Following Tuina in a Rat Model With Allergic Airway Inflammation. J Manipulative Physiol Ther 2022; 45:586-594. [PMID: 37294215 DOI: 10.1016/j.jmpt.2023.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/24/2022] [Accepted: 04/12/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE This study aimed to explore the influence mechanism of Tuina on anxiety-like behavior in immature rats with allergic airway inflammation (AAI). METHODS A total of 27 Sprague-Dawley male rats (aged ∼5 weeks) were divided randomly into control, AAI, and AAI with Tuina groups (9 rats per group). The anxiety-like behavior was assessed by an open field test and elevated plus-maze test. Allergic airway inflammation was assessed based on the pathological score of the lung, plasma ovalbumin-specific immunoglobulin E, interleukin 4, interleukin 5, and tumor necrosis factor-alpha levels. Glucocorticoid receptor (GR) messenger RNA and protein expression in the hippocampus and lung were detected by polymerase chain reaction and immunohistochemistry, respectively. Meanwhile, corticotropin-releasing hormone (CRH) messenger RNA in the hypothalamus, the plasma levels of adrenocorticotropic hormone and corticosterone were also determined respectively by polymerase chain reaction and enzyme-linked immunosorbent assay for hypothalamic-pituitary-adrenal axis (HPA) function. RESULTS The AAI group had obvious anxiety-like behavior and hyperactive HPA axis, along with decreased GR expression in the hippocampus and lung. Following Tuina, AAI and the anxiety-like behavior were efficiently reduced, and the hyperactivity of HPA axis was efficiently inhibited, along with enhanced GR expression in the hippocampus and lung. CONCLUSION Glucocorticoid receptor expression in the hippocampus and lung was enhanced, and anxiety-like behavior was reduced following Tuina in rats with AAI.
Collapse
Affiliation(s)
- YaPing Liu
- Acupuncture and Massage College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - LiYue Cao
- Acupuncture and Massage College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Liu
- Pediatric Massage Department, Jiangsu Provincial Hospital of Chinese and Western Medicine, Nanjing, Jiangsu, China
| | - ZhongYuan Zhang
- Acupuncture and Massage College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pu Fan
- Acupuncture and Massage College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Zhu
- Massage Department, Huai'an Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - ShuYing Zhang
- Acupuncture and Massage College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Gu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Acupuncture and Massage College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Acupuncture and Massage College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Xiong
- Acupuncture and Massage College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Yao Y, Chen X, Yang M, Han Y, Xue T, Zhang H, Wang T, Chen W, Qiu X, Que C, Zheng M, Zhu T. Neuroendocrine stress hormones associated with short-term exposure to nitrogen dioxide and fine particulate matter in individuals with and without chronic obstructive pulmonary disease: A panel study in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119822. [PMID: 35870527 DOI: 10.1016/j.envpol.2022.119822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is a major trigger of chronic obstructive pulmonary disease (COPD). Dysregulation of the neuroendocrine hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal medullary (SAM) axes is essential in progression of COPD. However, it is not clear whether air pollution exposure is associated with neuroendocrine responses in individuals with and without COPD. Based on a panel study of 51 stable COPD patients and 78 non-COPD participants with 384 clinical visits, we measured the morning serum levels of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol, norepinephrine, and epinephrine as indicators of stress hormones released from the HPA and SAM axes. Ambient nitrogen dioxide (NO2), fine particulate matter (PM2.5), and meteorological conditions were continuously monitored at the station from 2 weeks before the start of clinical visits. Linear mixed-effects models were used to estimate associations between differences in stress hormones following an average of 1-14-day exposures to NO2 and PM2.5. The average 1 day air pollutant levels prior to the clinical visits were 24.4 ± 14.0 ppb for NO2 and 55.6 ± 41.5 μg/m3 for PM2.5. We observed significant increases in CRH, ACTH, and norepinephrine, and decreases in cortisol and epinephrine with interquartile range increase in the average NO2 and PM2.5 concentrations in all participants. In the stratified analyses, we identified significant between-group difference in epinephrine following NO2 exposure in individuals with and without COPD. These results may suggest the susceptibility of COPD patients to the neuroendocrine responses associated with short-term air pollution exposure.
Collapse
Affiliation(s)
- Yuan Yao
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xi Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Hebei Technology Innovation Center of Human Settlement in Green Building (TCHS), Shenzhen Institute of Building Research Co., Ltd., Shenzhen, 518049, China
| | - Meigui Yang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yiqun Han
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London, W12 0BZ, UK
| | - Tao Xue
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; School of Public Health, Peking University, Beijing, 100191, China
| | - Hanxiyue Zhang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Teng Wang
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Wu Chen
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinghua Qiu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Hu R, Zhang W, Li R, Qin L, Chen R, Zhang L, Gu W, Sun Q, Liu C. Ambient fine particulate matter exposure disrupts circadian rhythm and oscillation of the HPA axis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112524. [PMID: 34274836 DOI: 10.1016/j.ecoenv.2021.112524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Emerging evidence supports that exposure to ambient fine particulate matter (PM2.5) is associated with the metabolic syndrome. As the main neuroendocrine axis in mammals, the hypothalamic-pituitary-adrenal (HPA) axis's circadian rhythm (CR) plays an essential role in regulating metabolic homeostasis. Our previous studies found that ambient PM2.5 exposure caused CR disorder of the critical enzymes involved in lipid metabolism in mouse liver and adipose tissues. However, the impact of ambient PM2.5 exposure on the HPA axis is not fully illustrated yet. Male C57BL/6 mice were randomly exposed to ambient PM2.5 or filtered air for ten weeks via a whole-body exposure system. Rhythmic oscillations of clock genes in the hypothalamus and adrenal gland were characterized. The effects of ambient PM2.5 exposure on clock gene expression and rhythmic expression of molecules related to glucocorticoid synthesis were also examined. Firstly, a more robust CR of clock genes was demonstrated in the adrenal gland than that in the hypothalamus. Secondly, PM2.5 exposure significantly inhibited the expression of Clock at ZT8 in the hypothalamus. However, both circadian oscillation and expression levels of Bmal1, Cry1, Cry2, and Rorα were increased significantly by ambient PM2.5 exposure in the adrenal gland. Moreover, abnormal rhythmic oscillation patterns of corticotropin-releasing hormone and adrenocorticotropic hormone were observed after ambient PM2.5 exposure, with no change at the expression levels. Finally, the expression of Cyp11b1 was markedly decreased at ZT0 in the adrenal gland of PM2.5 exposed mice. Our findings provide new insights into the ambient PM2.5 exposure-induced metabolic syndrome from the perspective of CR disturbances.
Collapse
Affiliation(s)
- Renjie Hu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Ran Li
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Li Qin
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Rucheng Chen
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Lu Zhang
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Weijia Gu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qinghua Sun
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Cuiqing Liu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
10
|
Killoy KM, Pehar M, Harlan BA, Vargas MR. Altered expression of clock and clock-controlled genes in a hSOD1-linked amyotrophic lateral sclerosis mouse model. FASEB J 2021; 35:e21343. [PMID: 33508151 DOI: 10.1096/fj.202000386rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 12/12/2020] [Accepted: 12/20/2020] [Indexed: 11/11/2022]
Abstract
Most physiological processes in mammals are subjected to daily oscillations that are governed by a circadian system. The circadian rhythm orchestrates metabolic pathways in a time-dependent manner and loss of circadian timekeeping has been associated with cellular and system-wide alterations in metabolism, redox homeostasis, and inflammation. Here, we investigated the expression of clock and clock-controlled genes in multiple tissues (suprachiasmatic nucleus, spinal cord, gastrocnemius muscle, and liver) from mutant hSOD1-linked amyotrophic lateral sclerosis (ALS) mouse models. We identified tissue-specific changes in the relative expression, as well as altered daily expression patterns, of clock genes, sirtuins (Sirt1, Sirt3, and Sirt6), metabolic enzymes (Pfkfb3, Cpt1, and Nampt), and redox regulators (Nrf2, G6pd, and Pgd). In addition, astrocytes transdifferentiated from induced pluripotent stem cells from SOD1-linked and FUS RNA binding protein-linked ALS patients also displayed altered expression of clock genes. Overall, our results raise the possibility of disrupted cross-talk between the suprachiasmatic nucleus and peripheral tissues in hSOD1G93A mice, preventing proper peripheral clock regulation and synchronization. Since these changes were observed in symptomatic mice, it remains unclear whether this dysregulation directly drives or it is a consequence of the degenerative process. However, because metabolism and redox homeostasis are intimately entangled with circadian rhythms, our data suggest that altered expression of clock genes may contribute to metabolic and redox impairment in ALS. Since circadian dyssynchrony can be rescued, these results provide the groundwork for potential disease-modifying interventions.
Collapse
Affiliation(s)
- Kelby M Killoy
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin A Harlan
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, SC, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Wheeler ND, Ensminger DC, Rowe MM, Wriedt ZS, Ashley NT. Alpha- and beta- adrenergic receptors regulate inflammatory responses to acute and chronic sleep fragmentation in mice. PeerJ 2021; 9:e11616. [PMID: 34221721 PMCID: PMC8236227 DOI: 10.7717/peerj.11616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/24/2021] [Indexed: 01/17/2023] Open
Abstract
Sleep is a recuperative process, and its dysregulation has cognitive, metabolic, and immunological effects that are largely deleterious to human health. Epidemiological and empirical studies have suggested that sleep fragmentation (SF) as result of obstructive sleep apnea (OSA) and other sleep abnormalities leads to pronounced inflammatory responses, which are influenced by the sympathetic nervous system (SNS). However, the underlying molecular mechanisms contributing to SNS regulation of SF-induced inflammation are not fully understood. To assess the effects of the SNS upon inflammatory responses to SF, C57BL/6j female mice were placed in automated SF chambers with horizontally moving bars across the bottom of each cage at specified intervals to disrupt sleep. Mice were first subjected to either control (no bar movement), acute sleep fragmentation (ASF), or chronic sleep fragmentation (CSF) on a 12:12-h light/dark schedule. ASF involved a bar sweep every 120 s for 24 h, whereas CSF involved a bar sweep every 120 s for 12 h (during 12 L; resting period) over a period of 4 weeks. After exposure to these conditions, mice received an intraperitoneal injection of either phentolamine (5 mg/kg BW; an α-adrenergic receptor blocker), propranolol (5 mg/kg BW; a β-adrenergic receptor blocker), or vehicle (saline). Serum corticosterone concentration, brain and peripheral cytokine (IL1β, TNFα, and TGFβ) mRNA expression, and body mass were assessed. ASF and CSF significantly elevated serum corticosterone concentrations as well as cytokine mRNA expression levels compared with controls, and mice subjected to CSF had decreased body mass relative to controls. Mice subjected to CSF and treated with phentolamine or propranolol had a greater propensity for a decrease in cytokine gene expression compared with ASF, but effects were tissue-specific. Taken together, these results suggest that both α- and β-adrenergic receptors contribute to the SNS mediation of inflammatory responses, and adrenergic antagonists may effectively mitigate tissue-specific SF-mediated inflammation.
Collapse
Affiliation(s)
- Nicholas D Wheeler
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America.,College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| | - David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Megan M Rowe
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Zachary S Wriedt
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| |
Collapse
|
12
|
Milligan Armstrong A, Porter T, Quek H, White A, Haynes J, Jackaman C, Villemagne V, Munyard K, Laws SM, Verdile G, Groth D. Chronic stress and Alzheimer's disease: the interplay between the hypothalamic-pituitary-adrenal axis, genetics and microglia. Biol Rev Camb Philos Soc 2021; 96:2209-2228. [PMID: 34159699 DOI: 10.1111/brv.12750] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022]
Abstract
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic-pituitary-adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals' risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.
Collapse
Affiliation(s)
- Ayeisha Milligan Armstrong
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Hazel Quek
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - Anthony White
- QIMR Berghofer Medical Institute, 300 Herston Rd, Herston, QLD, Australia
| | - John Haynes
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Connie Jackaman
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Victor Villemagne
- School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Kylie Munyard
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Simon M Laws
- Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Giuseppe Verdile
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia.,School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - David Groth
- Curtin Health Innovation Research Institute, Curtin University, Kent St, Bentley, WA, 6102, Australia.,Curtin Medical School, Curtin University, Kent St, Bentley, WA, 6102, Australia
| |
Collapse
|
13
|
d'Errico A, Piccinelli C, Sebastiani G, Ricceri F, Sciannameo V, Demaria M, Di Filippo P, Costa G. Unemployment and mortality in a large Italian cohort. J Public Health (Oxf) 2021; 43:361-369. [PMID: 31740960 DOI: 10.1093/pubmed/fdz100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/28/2019] [Accepted: 07/24/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Aim of this study was to examine the association between unemployment and mortality, taking into account potential confounders of this association. A secondary objective was to assess whether the association between unemployment and mortality was modified by lack of household economic resources. METHODS Prospective cohort composed of a representative sample of Italian subjects 30-55 years who participated in the Italian National Health Survey 1999-2000, followed up for mortality up to 2012 (15 656 men and 11 463 women). Data were analyzed using Cox regression models, stratified by gender and adjusted for health status, behavioral risk factors, socioeconomic position and position in the household. The modifying effect of the lack of economic resources was assessed by testing its interaction with unemployment on mortality. RESULTS Among women, unemployment was not associated with mortality, whereas among men, higher mortality was found from all causes (HR = 1.82), which was not modified by lack of economic resources, and from neoplasms (HR = 1.59), cardiovascular diseases (HR = 2.58) and suicides (HR = 5.01). CONCLUSIONS Results for men were robust to the adjustment for main potential confounders, suggesting a causal relationship between unemployment and mortality. The lack of effect modification by economic resources supports the relevance of the loss of non-material benefits of work on mortality.
Collapse
Affiliation(s)
- Angelo d'Errico
- Epidemiology Department, Local Health Unit TO3, Piedmont Region, Grugliasco, Turin, Italy
| | - Cristiano Piccinelli
- Epidemiology Department, Local Health Unit TO3, Piedmont Region, Grugliasco, Turin, Italy.,Center for Epidemiology and Prevention in Oncology, Città della Salute e della Scienza, Turin, Italy
| | | | - Fulvio Ricceri
- Epidemiology Department, Local Health Unit TO3, Piedmont Region, Grugliasco, Turin, Italy.,Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Veronica Sciannameo
- Epidemiology Department, Local Health Unit TO3, Piedmont Region, Grugliasco, Turin, Italy
| | - Moreno Demaria
- Department of Environmental Epidemiology, Piedmont Environmental Protection Agency, Turin, Italy
| | | | - Giuseppe Costa
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Zhou N, Li Z, Wang JJ, Wu QT, Li K, Zheng XK, Feng WS. Correlation analysis between extracts and endogenous metabolites to characterise the influence of salt-processing on compatibility mechanism of 'Psoraleae Fructus & Foeniculi Fructus'. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113782. [PMID: 33421603 DOI: 10.1016/j.jep.2021.113782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 'Salt-processed Psoraleae Fructus & salt-processed Foeniculi Fructus' (sPF&sFF) is a common Chinese medicinal combination for treating diarrhoea. However, it is not clear how sPF and sFF work together, and why salt-processing is necessary. AIM OF THE STUDY To investigate the compatibility mechanism of sPF&sFF and the influence of salt-processing on it. MATERIALS AND METHODS Firstly, the metabolomics approach was appliedto screen the differential components between four (s)PF&(s)FF extracts, i.e., sPF&sFF, sPF&FF, PF&sFF, and PF&FF extracts. Then, an in vivo metabolomics study was carried out to filter critical metabolites reflecting the curative effects of (s)PF&(s)FF, and construct a metabolic network. Finally, a correlation analysis between chemical components in extracts and critical metabolites in vivo was performed to find out the synergistic and/or antagonistic effects between herbs as well as the influence of salt-processing. RESULTS Salt-processing had a direct influence on the contents of chemical components in sPF and sFF extracts, and there existed positive/negative correlations between the content change of chemical components and the effects of critical metabolites. Therefore, salt-processing indirectly affected on these correlations and was (i) conducive to the positive effects of sPF and sFF on bile acids, making sFF play a synergistic role, thereby, sPF&sFF could perform better than sPF and other three combinations and effectively relieve the symptoms of fatty diarrhoea, osmotic diuresis, malnutrition, and weight loss; (ii) conducive to the positive effects of sPF on triacylglycerol, 12(S)-hydroxyeicosatetraenoic acid, cholesterol, and arachidonic acid, and adverse to that of sFF, making sFF play an antagonistic role, thereby, sPF&sFF could prevent a series of side effects caused by over-regulation and suitably relieve the symptoms of osmotic diuresis, polyuria, malnutrition, and weight loss; and (iii) adverse to the positive effects of sPF and sFF on thromboxane A2, sphinganine and sphingosine, making sFF play a synergistic role, thereby, sPF&sFF could prevent a series of side effects and moderately relieve the symptoms of metabolic diarrhoea and polyuria. CONCLUSIONS Salt-processing indirectly affected on the correlations between chemical components in extracts and critical metabolites in vivo, and exhibited both conducive and adverse effects on the efficacy, making sPF and sFF cooperate with each other to moderately repair the metabolic disorders. Thereby, sPF&sFF could suitably relieve the diarrhoea and polyuria symptoms in the model and exert the most appropriate efficacy. Moreover, this novel strategy provided a feasible approach for further studying the compatibility mechanism of herbs.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| | - Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, PR China.
| | - Jin-Jin Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Qi-Tong Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Kai Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou, 450046, PR China.
| | - Xiao-Ke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, 450046, PR China.
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, PR China.
| |
Collapse
|
15
|
Angoa-Pérez M, Zagorac B, Francescutti DM, Theis KR, Kuhn DM. Responses to chronic corticosterone on brain glucocorticoid receptors, adrenal gland, and gut microbiota in mice lacking neuronal serotonin. Brain Res 2021; 1751:147190. [PMID: 33152342 PMCID: PMC8650149 DOI: 10.1016/j.brainres.2020.147190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Dysregulation of the stress-induced activation of the hypothalamic-pituitary-adrenocortical axis can result in disease. Bidirectional communication exists between the brain and the gut, and alterations in these interactions appear to be involved in stress regulation and in the pathogenesis of neuropsychiatric diseases, such as depression. Serotonin (5HT) plays a crucial role in the functions of these two major organs but its direct influence under stress conditions remains unclear. To investigate the role of neuronal 5HT on chronic stress responses and its influence on the gut microbiome, mice lacking the gene for tryptophan hydroxylase-2 were treated with the stress hormone corticosterone (CORT) for 21 days. The intake of fluid and food, as well as body weights were recorded daily. CORT levels, expression of glucocorticoid receptors (GR) in the brain and the size of the adrenal gland were evaluated. Caecum was used for 16S rRNA gene characterization of the gut microbiota. Results show that 5HT depletion produced an increase in food intake and a paradoxical reduction in body weight that were enhanced by CORT. Neuronal 5HT depletion impaired the feedback regulation of CORT levels but had no putative effect on the CORT-induced decrease in hippocampal GR expression and the reduction of the adrenal cortex size. Finally, the composition and structure of the gut microbiota were significantly impacted by the absence of neuronal 5HT, and these alterations were enhanced by chronic CORT treatment. Therefore, we conclude that neuronal 5HT influences the stress-related responses at different levels involving CORT levels regulation and the gut microbiome.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
16
|
Wood M, Whirledge S. Mechanism of glucocorticoid action in immunology—Basic concepts. REPRODUCTIVE IMMUNOLOGY 2021:147-170. [DOI: 10.1016/b978-0-12-818508-7.00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
17
|
Fudulu DP, Angelini GD, Papadopoulou FF, Evans J, Walker-Smith T, Kema I, van Faassen M, Stoica S, Caputo M, Lightman S, Gibbison B. The Peacock study: feasibility of the dynamic characterisation of the paediatric hypothalamic-pituitary-adrenal function during and after cardiac surgery. BMC Cardiovasc Disord 2020; 20:245. [PMID: 32450805 PMCID: PMC7249405 DOI: 10.1186/s12872-020-01516-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 05/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cortisol is the main stress hormone mobilised during surgery to establish homeostasis. Our current understanding of the hypothalamic-pituitary-adrenal axis physiology in children undergoing cardiopulmonary bypass is very limited due to: (1) very few cortisol time point measurements over long periods (2) difficulties of sampling in low weight babies and (3) the concomitant use of glucocorticoids at anaesthesia induction. This lack of understanding is reflected in a lack of consensus on the utility of glucocorticoids perioperatively in cardiac surgery with the use of cardiopulmonary bypass. METHODS The Peacock Study is a prospective, two-centre, observational cohort study of 78 children (undergoing cardiopulmonary bypass procedures and non-surgical procedures - split by age/cyanosis) that aims to characterise in detail the hypothalamic-pituitary-adrenal axis physiology of children using the stress model of paediatric cardiac surgery. Also, we aim to correlate cortisol profiles with clinical outcome data. We herein describe the main study design and report the full cortisol profile of one child undergoing heart surgery, thus proving the feasibility of the method. RESULTS We used an automated, 24-h tissue microdialysis system to measure cortisol and cortisone, every 20 min. We herein report one cortisol profile of a child undergoing heart surgery. Besides, we measured serum cortisol and adrenocorticotrophic hormone at seven-time points for correlation. Tissue concentrations of cortisol increased markedly several hours after the end of surgery. We also noted an increase in the tissue cortisol/cortisone ratio during this response. CONCLUSION We report for the first time, the use of an automated microdialysis sampling system to evaluate the paediatric adrenal response in children. Changes in cortisol and cortisone could be measured, and the concentration of cortisol in the tissues increased after the end of cardiac surgery. The method has wide application to measure other hormones dynamically and frequently without the limitation of the circulating blood volume. The data from the main study will clarify how these cortisol profiles vary with age, pathology, type of procedure and correlation to clinical outcomes. TRIAL REGISTRATION ISCRTN registry, number: 982586.
Collapse
Affiliation(s)
- Daniel Paul Fudulu
- Department of Cardiac Surgery, Bristol Heart Institute, Bristol, UK. .,Henry Welcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | | | | | - Jonathan Evans
- Clinical Trial and Evaluation Unit, University of Bristol, Bristol, UK
| | | | - Ido Kema
- Department of Laboratory Medicine, University of Groningen, Groningen, Netherlands
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, Groningen, Netherlands
| | - Serban Stoica
- Department of Congenital Heart Surgery, Bristol Royal Hospital for Children, Bristol, UK
| | - Massimo Caputo
- Department of Congenital Heart Surgery, Bristol Royal Hospital for Children, Bristol, UK
| | - Stafford Lightman
- Henry Welcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK
| | - Benjamin Gibbison
- Department of Cardiac Anaesthesia, Bristol Heart Institute, Bristol, UK
| |
Collapse
|
18
|
Napier C, Gan EH, Mitchell AL, Gilligan LC, Rees DA, Moran C, Chatterjee K, Vaidya B, James RA, Mamoojee Y, Ashwell S, Arlt W, Pearce SHS. Residual Adrenal Function in Autoimmune Addison's Disease-Effect of Dual Therapy With Rituximab and Depot Tetracosactide. J Clin Endocrinol Metab 2020; 105:5682802. [PMID: 31863094 PMCID: PMC7067544 DOI: 10.1210/clinem/dgz287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023]
Abstract
CONTEXT In autoimmune Addison's disease (AAD), exogenous glucocorticoid (GC) therapy is an imperfect substitute for physiological GC secretion. Patients on long-term steroid replacement have increased morbidity, reduced life expectancy, and poorer quality of life. OBJECTIVE The objective of this article is to restore adrenocortical steroidogenic function in recent-onset AAD. DESIGN An open-label, multicenter trial of immunotherapy and trophic stimulation in new-onset AAD was conducted. Serial measurement of serum and urine corticosteroids at baseline and throughout a 72-week follow-up period was performed. SETTING This study was conducted at the. UNLABELLED endocrine departments and clinical research facilities at 5 UK tertiary centers. PATIENTS Thirteen participants (9 female, 4 male; age 19-64 years) were included with AAD confirmed by high adrenocorticotropin, low circulating cortisol (basal < 100 nmol/L or post-tetracosactide < 300 nmol/L), and positive serum 21-hydroxylase antibodies. INTERVENTION All participants received dual therapy with B-lymphocyte-depleting immunotherapy (rituximab 1 g given twice) and repeated depot tetracosactide (1 mg on alternate days for 12 weeks). MAIN OUTCOME MEASURE Restoration of normal GC secretion (stimulated cortisol > 550 nmol/L) at week 48 was the main outcome measure. RESULTS Ten of 13 (77%) participants had detectable stimulated serum cortisol (26-265 nmol/L) at trial entry. Following intervention, 7 of 13 (54%) had an increase in stimulated cortisol measurement, with a peak response of 325 nmol/L at week 18 in 1 participant. Increased steroid metabolites, assayed by urine gas chromatography-mass spectrometry at week 12 and week 48, was detected in 8 of 13 (62%) individuals, reflecting an increase in endogenous steroidogenesis. Four of 13 had residual adrenal function at 72 weeks. CONCLUSION Combined treatment with rituximab and depot tetracosactide did not restore normal adrenal function. Nevertheless, adrenocortical plasticity is demonstrated in some patients, and this has the potential to be exploited to improve adrenal function.
Collapse
Affiliation(s)
- Catherine Napier
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, UK
| | - Earn H Gan
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, UK
| | - Anna L Mitchell
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, UK
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - D Aled Rees
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Carla Moran
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Krishna Chatterjee
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC, Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
| | - Bijay Vaidya
- Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, UK
| | - R Andrew James
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, UK
| | - Yaasir Mamoojee
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, UK
| | - Simon Ashwell
- The James Cook University Hospital, Middlesbrough, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Simon H S Pearce
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, UK
- Correspondence: Catherine Napier, MBBS, MRCP, PhD, Endocrine Unit, Leazes Wing, Royal Victoria Infirmary, Newcastle Upon Tyne Hospitals, Queen Victoria Rd, NE1 4LP, UK. E-mail:
| |
Collapse
|
19
|
Mao Y, Xu B, Guan W, Xu D, Li F, Ren R, Zhu X, Gao Y, Jiang L. The Adrenal Cortex, an Underestimated Site of SARS-CoV-2 Infection. Front Endocrinol (Lausanne) 2020; 11:593179. [PMID: 33488517 PMCID: PMC7820749 DOI: 10.3389/fendo.2020.593179] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The majority of the critically ill patients may have critical illness-related corticosteroid insufficiency (CIRCI). The therapeutic effect of dexamethasone may be related to its ability to improve cortical function. Recent study showed that dexamethasone can reduce COVID-19 deaths by up to one third in critically ill patients. The aim of this article is to investigate whether SARS-CoV-2 can attack the adrenal cortex to aggravate the relative adrenal insufficiency. METHODS We summarized the clinical features of COVID-19 reported in currently available observational studies. ACE2 and TMPRSS2 expression was examined in human adrenal glands by immunohistochemical staining. We retrospectively analyzed serum cortisol levels in critically ill patients with or without COVID-19. RESULTS High percentage of critically ill patients with SARS-COV-2 infection in the study were treated with vasopressors. ACE2 receptor and TMPRSS2 serine protease were colocalized in adrenocortical cells in zona fasciculata and zona reticularis. We collected plasma cortisol concentrations in nine critically ill patients with COVID-19. The cortisol levels of critically ill patients with COVID-19 were lower than those in non-COVID-19 critically ill group. Six of the nine COVID-19 critically ill patients had random plasma cortisol concentrations below 10 µg/dl, which met the criteria for the diagnosis of CIRCI. CONCLUSION We demonstrate that ACE2 and TMPRSS2 are colocalized in adrenocortical cells, and that the cortisol levels are lower in critically ill patients with COVID-19 as compared to those of non-COVID-19 critically ill patients. Based on our findings, we recommend measuring plasma cortisol level to guide hormonal therapy.
Collapse
Affiliation(s)
- Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dunfeng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Feng Li
- Department of Respiratory and Critical Care Medicine, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, China
| | - Rongrong Ren
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
- *Correspondence: Lai Jiang, ; Yuan Gao, ; Xiaoyan Zhu,
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Lai Jiang, ; Yuan Gao, ; Xiaoyan Zhu,
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Lai Jiang, ; Yuan Gao, ; Xiaoyan Zhu,
| |
Collapse
|
20
|
Jeries H, Volkova N, Grajeda-Iglesias C, Najjar M, Rosenblat M, Aviram M, Hayek T. Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages. J Cardiovasc Pharmacol Ther 2019; 25:174-186. [PMID: 31648564 DOI: 10.1177/1074248419883591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Synthetic forms of glucocorticoids (GCs; eg, prednisone, prednisolone) are anti-inflammatory drugs that are widely used in clinical practice. The role of GCs in cardiovascular diseases, including atherosclerosis, is highly controversial, and their impact on macrophage foam cell formation is still unknown. We investigated the effects of prednisone and prednisolone on macrophage oxidative stress and lipid metabolism. METHODS AND RESULTS C57BL/6 mice were intraperitoneally injected with prednisone or prednisolone (5 mg/kg) for 4 weeks, followed by lipid metabolism analyses in the aorta and peritoneal macrophages. We also analyzed the effect of serum samples obtained from 9 healthy human volunteers before and after oral administration of prednisone (20 mg for 5 days) on J774A.1 macrophage atherogenicity. Finally, J774A.1 macrophages, human monocyte-derived macrophages, and fibroblasts were incubated with increasing concentrations (0-200 ng/mL) of prednisone or prednisolone, followed by determination of cellular oxidative status, and triglyceride and cholesterol metabolism. Prednisone and prednisolone treatment resulted in a significant reduction in triglyceride and cholesterol accumulation in macrophages, as observed in vivo, ex vivo, and in vitro. These effects were associated with GCs' inhibitory effect on triglyceride- and cholesterol-biosynthesis rates, through downregulation of diacylglycerol acyltransferase 1 and HMG-CoA reductase expression. Glucocorticoid-induced reduction of cellular lipid accumulation was mediated by the GC receptors on the macrophages, because the GC-receptor antagonist (RU486) abolished these effects. In fibroblasts, unlike macrophages, GCs showed no effects. CONCLUSION Prednisone and prednisolone exhibit antiatherogenic activity by protecting macrophages from lipid accumulation and foam cell formation.
Collapse
Affiliation(s)
- Helana Jeries
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nina Volkova
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Claudia Grajeda-Iglesias
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mahmoud Najjar
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| | - Mira Rosenblat
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tony Hayek
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
21
|
Keynejad RC, Frodl T, Kanaan R, Pariante C, Reuber M, Nicholson TR. Stress and functional neurological disorders: mechanistic insights. J Neurol Neurosurg Psychiatry 2019; 90:813-821. [PMID: 30409887 DOI: 10.1136/jnnp-2018-318297] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/04/2022]
Abstract
At the interface between mind and body, psychiatry and neurology, functional neurological disorder (FND) remains poorly understood. Formerly dominant stress-related aetiological models have been increasingly challenged, in part due to cases without any history of past or recent trauma. In this perspective article, we review current evidence for such models, and how research into the role of traumatic stress in other disorders and the neurobiology of the stress response can inform our mechanistic understanding of FND. First, we discuss the association between stress and the onset or exacerbation of a variety of physical and mental health problems. Second, we review the role of hypothalamic-pituitary-adrenal axis dysfunction in the neurobiology of ill-health, alongside evidence for similar mechanisms in FND. Third, we advocate a stress-diathesis model, in which biological susceptibility interacts with early life adversity, where FND can be precipitated by traumatic events later in life and maintained by psychological responses. We hypothesise that greater biological susceptibility to FND is associated with less severe remote and recent stress, and that FND precipitated by more severe stress is associated with lower biological vulnerability. This would explain clinical experience of variable exposure to historical and recent traumatic stress among people with FND and requires empirical investigation. A testable, evidence-based stress-diathesis model can inform nuanced understanding of how biological and psychological factors interact at the individual level, with potential to inform personalised treatment pathways. Much-needed research to establish the aetiology of FND will enhance clinical care and communication, facilitate effective treatment and inform prevention strategies.
Collapse
Affiliation(s)
- Roxanne C Keynejad
- Section of Women's Mental Health, Health Service and Population Research Department, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Thomas Frodl
- Department and Hospital of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Richard Kanaan
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry Psychology & Neuroscience, King's College London, UK, London.,Department of Psychiatry, University of Melbourne, Austin Health, Austin, Heidelberg, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Carmine Pariante
- Stress Psychiatry and Immunology Lab, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Markus Reuber
- Academic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Timothy R Nicholson
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
22
|
Ohe K, Tanaka T, Horita Y, Harada Y, Yamasaki T, Abe I, Tanabe M, Nomiyama T, Kobayashi K, Enjoji M, Yanase T. Circular IRE-type RNAs of the NR5A1 gene are formed in adrenocortical cells. Biochem Biophys Res Commun 2019; 512:1-6. [PMID: 30853179 DOI: 10.1016/j.bbrc.2019.02.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/27/2019] [Indexed: 11/17/2022]
Abstract
The recently discovered circular RNAs (circRNAs) are mostly formed by back-splicing where the downstream 5' splice site splices to the upstream 3' splice site by conventional pre-mRNA splicing. These circRNAs regulate gene expression by acting as sponges for micro-RNAs or RNA-binding proteins. Here we show that the NR5A1 (previously called Ad4BP or SF-1) gene which is exclusively expressed in the adrenal cortex and steroidogenic tissue can form atypical circRNAs by unconventional splicing. Two stem loops with inositol-requiring protein-1α (IRE1α) cleavage sites are connected by an IRE1α cleavage site to form a circRNA (circIRE RNA). From total RNA of normal human adrenal cortex, we detected a circIRE RNA with connected ends by IRE1α cleavage sites in exon 6 and exon 1 (circIRE NR5A1 ex6-1 RNA). circIRE NR5A1 ex6-1 RNA was not detected in the adrenocortical cancer cell line, H295R. When IRE1α was expressed in H295R cells a different circIRE NR5A1 RNA connecting IRE1-cleavage sites in exon 7 and exon 1 was detected (circIRE NR5A1 ex7-1 RNA). The expression of this circIRE RNA was inhibited by the IRE1 inhibitor 1, STF-083010, implicating that it was formed via the ER stress pathway, where IRE1α is a major factor. This is the first report of this type of circular RNA connected by IRE1-cleavage sites found to be expressed in mammalian cells in a tissue-specific manner. To our surprise, the concomitant expression of NR5A1 was increased by IRE1α implicating that NR5A1 was not subjected to IRE1-dependent decay of mRNA (RIDD) but rather activating a transcriptional regulatory network to cope with ER stress in steroidogenic tissue reminiscent to XBP1 in other tissue. We believe this is the first report of such tissue-specific transcriptional cascade responding to ER stress as well as the novel finding of circular RNAs connected by IRE1α cleavage sites expressed in mammalian tissue.
Collapse
Affiliation(s)
- Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan.
| | - Tomoko Tanaka
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan; Department of Bioregulatory Science of Life-related Diseases, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yuta Horita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Yoshihiro Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Takafumi Yamasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Ichiro Abe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyoin, Chikushino, Fukuoka, 818-8502, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan
| | - Toshihiko Yanase
- Department of Endocrinology and Diabetes Mellitus, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan; Department of Bioregulatory Science of Life-related Diseases, Faculty of Medicine, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-180, Japan.
| |
Collapse
|
23
|
Hazell G, Horn G, Lightman SL, Spiga F. Dynamics of ACTH-Mediated Regulation of Gene Transcription in ATC1 and ATC7 Adrenal Zona Fasciculata Cell Lines. Endocrinology 2019; 160:587-604. [PMID: 30768667 PMCID: PMC6380881 DOI: 10.1210/en.2018-00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that mouse ATC1 and ATC7 cells, the first adrenocortical cell lines to exhibit a complete zona fasciculata (ZF) cell phenotype, respond to dynamic ACTH stimulation in a similar manner as the adrenal gland in vivo. Exploiting our previous in vivo observations that gene transcription within the steroidogenic pathway is dynamically regulated in response to a pulse of ACTH, we exposed ATC1 and ATC7 cells to various patterns of ACTH, including pulsatile and constant, and measured the transcriptional activation of this pathway. We show that pulses of ACTH administered to ATC7 cells can reliably stimulate a pulsatile pattern of transcriptional activity that is comparable to that observed in adrenal ZF cells in vivo. Hourly pulses of ACTH stimulate dynamic increases in CREB phosphorylation (pCREB) and transcription of genes involved in critical steps of steroidogenesis including signal transduction (e.g., MRAP), cholesterol delivery (e.g., StAR), and steroid biosynthesis (e.g., CYP11A1), as well as those relating to transcriptional regulation of steroidogenic factors (e.g., SF-1 and Nur-77). In contrast, constant ACTH stimulation results in a prolonged and exaggerated pCREB and steroidogenic gene transcriptional response. We also show that when a large dose of ACTH (100 nM) is applied after these treatment regimens, a significant increase in steroidogenic transcriptional responsiveness is achieved only in cells that have been exposed to pulsatile, rather than constant, ACTH. Our data support our in vivo observations that pulsatile ACTH is important for the optimal transcriptional responsiveness of the adrenal. Importantly, our data suggest that ATC7 cells respond to dynamic ACTH stimulation.
Collapse
Affiliation(s)
- Georgina Hazell
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - George Horn
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Francesca Spiga
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
24
|
Zurfluh S, Nickler M, Ottiger M, Steuer C, Kutz A, Christ-Crain M, Zimmerli W, Thomann R, Hoess C, Henzen C, Bernasconi L, Huber A, Mueller B, Schuetz P. Association of adrenal hormone metabolites and mortality over a 6-year follow-up in COPD patients with acute exacerbation. Clin Chem Lab Med 2018; 56:669-680. [PMID: 29220883 DOI: 10.1515/cclm-2017-0873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/31/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND The release of hormones from the adrenal gland is vital in acute and chronic illnesses such as chronic obstructive pulmonary disease (COPD) involving recurrent exacerbations. Using a metabolomic approach, we aim to investigate associations of different adrenal hormone metabolites with short- and long-term mortality in COPD patients. METHODS We prospectively followed 172 COPD patients (median age 75 years, 62% male) from a previous Swiss multicenter trial. At baseline, we measured levels of a comprehensive spectrum of adrenal hormone metabolites, including glucocorticoid, mineralocorticoid and androgen hormones by liquid chromatography coupled with tandem mass spectrometry (MS). We calculated Cox regression models adjusted for gender, age, comorbidities and previous corticosteroid therapy. RESULTS Mortality was 6.4% after 30 days and increased to 61.6% after 6 years. Higher initial androgen hormones predicted lower long-term mortality with significant results for dehydroepiandrosterone (DHEA) [adjusted hazard ratio (HR), 0.82; 95% confidence interval (CI), 0.70-0.98; p=0.026] and dehydroepiandrosterone sulfate (DHEA-S) (adjusted HR, 0.68; 95% CI, 0.50-0.91; p=0.009). An activation of stress hormones (particularly cortisol and cortisone) showed a time-dependent effect with higher levels pointing towards higher mortality at short term, but lower mortality at long term. Activation of the mineralocorticoid axis tended to be associated with increased short-term mortality (adjusted HR of aldosterone, 2.76; 95% CI, 0.79-9.65; p=0.111). CONCLUSIONS Independent of age, gender, corticosteroid exposure and exacerbation type, adrenal hormones are associated with mortality at short and long term in patients with COPD exacerbation with different time-dependent effects of glucocorticoids, androgens and mineralocorticoids. A better physiopathological understanding of the causality of these effects may have therapeutic implications.
Collapse
Affiliation(s)
- Seline Zurfluh
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Manuela Nickler
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Manuel Ottiger
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Christian Steuer
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Alexander Kutz
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Mirjam Christ-Crain
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Werner Zimmerli
- Basel University Medical Clinic Liestal, Liestal, Switzerland
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Claus Hoess
- Department of Internal Medicine, Kantonsspital Münsterlingen, Münsterlingen, Switzerland
| | - Christoph Henzen
- Department of Internal Medicine, Kantonsspital Lucerne, Lucerne, Switzerland
| | - Luca Bernasconi
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Andreas Huber
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Beat Mueller
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Schuetz
- Division of General Internal and Emergency Medicine, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
25
|
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is the major neuroendocrine axis regulating homeostasis in mammals. Glucocorticoid hormones are rapidly synthesized and secreted from the adrenal gland in response to stress. In addition, under basal conditions glucocorticoids are released rhythmically with both a circadian and an ultradian (pulsatile) pattern. These rhythms are important not only for normal function of glucocorticoid target organs, but also for the HPA axis responses to stress. Several studies have shown that disruption of glucocorticoid rhythms is associated with disease both in humans and in rodents. In this review, we will discuss our knowledge of the negative feedback mechanisms that regulate basal ultradian synthesis and secretion of glucocorticoids, including the role of glucocorticoid and mineralocorticoid receptors and their chaperone protein FKBP51. Moreover, in light of recent findings, we will also discuss the importance of intra-adrenal glucocorticoid receptor signaling in regulating glucocorticoid synthesis.
Collapse
Affiliation(s)
- Julia K Gjerstad
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Francesca Spiga
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- CONTACT Francesca SpigaUniversity of Bristol, Translational Health Sciences, Bristol Medical School, Dorothy Hodgkin Building, Whitson Street, BristolBS1 3NY, UK
| |
Collapse
|
26
|
Stanojević A, Marković VM, Čupić Ž, Kolar-Anić L, Vukojević V. Advances in mathematical modelling of the hypothalamic–pituitary–adrenal (HPA) axis dynamics and the neuroendocrine response to stress. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Abstract
The brain is continuously exposed to varying levels of adrenal corticosteroid hormones such as corticosterone in rodents and cortisol in humans. Natural fluctuations occur due to ultradian and circadian variations or are caused by exposure to stressful situations. Brain cells express two types of corticosteroid receptors, i.e. mineralocorticoid and glucocorticoid receptors, which differ in distribution and affinity. These receptors can mediate both rapid non-genomic and slow gene-mediated neuronal actions. As a consequence of these factors, natural (e.g. stress-induced) shifts in corticosteroid level are associated with a complex mosaic of time- and region-dependent changes in neuronal activity. A series of experiments in humans and rodents have revealed that these time- and region-dependent cellular characteristics are also reflected in distinct cognitive patterns after stress. Thus, directly after a peak of corticosteroids, attention and vigilance are increased, and areas involved in emotional responses and simple behavioral strategies show enhanced activity. In the aftermath of stress, areas involved in higher cognitive functions become activated allowing individuals to link stressful events to the specific context and to store information for future use. Both phases of the brain's response to stress are important to face a continuously changing environment, promoting adaptation at the short as well as long term. We argue that a balanced response during the two phases is essential for resilience. This balance may become compromised after repeated stress exposure, particularly in genetically vulnerable individuals and aggravate disease manifestation. This not only applies to psychiatric disorders but also to neurological diseases such as epilepsy.
Collapse
Affiliation(s)
- Marian Joëls
- Department of Translational NeuroscienceBrain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- University of GroningenUniversity Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Spencer RL, Chun LE, Hartsock MJ, Woodruff ER. Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Front Neuroendocrinol 2018; 49:52-71. [PMID: 29288075 DOI: 10.1016/j.yfrne.2017.12.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/23/2017] [Accepted: 12/23/2017] [Indexed: 12/13/2022]
Abstract
Glucocorticoid hormones are a powerful mammalian systemic hormonal signal that exerts regulatory effects on almost every cell and system of the body. Glucocorticoids act in a circadian and stress-directed manner to aid in adaptation to an ever-changing environment. Circadian glucocorticoid secretion provides for a daily waxing and waning influence on target cell function. In addition, the daily circadian peak of glucocorticoid secretion serves as a timing signal that helps entrain intrinsic molecular clock phase in tissue cells distributed throughout the body. Stress-induced glucocorticoid secretion also modulates the state of these same cells in response to both physiological and psychological stressors. We review the strong functional interrelationships between glucocorticoids and the circadian system, and discuss how these interactions optimize the appropriate cellular and systems response to stress throughout the day. We also discuss clinical implications of this dual aspect of glucocorticoid signaling, especially for conditions of circadian and HPA axis dysregulation.
Collapse
Affiliation(s)
- Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Lauren E Chun
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Elizabeth R Woodruff
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
29
|
Blunted basal corticosterone pulsatility predicts post-exposure susceptibility to PTSD phenotype in rats. Psychoneuroendocrinology 2018; 87:35-42. [PMID: 29035710 DOI: 10.1016/j.psyneuen.2017.09.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 12/24/2022]
Abstract
The basal activity of the hypothalamic-pituitary-adrenal axis is highly dynamic and is characterized by both circadian and ultradian (pulsatile) patterns of hormone secretion. Pulsatility of glucocorticoids has been determined to be critical for optimal transcriptional, neuroendocrine, and behavioral responses. We used an animal model of post-traumatic stress disorder (PTSD) to assess whether stress-induced impairment of behavioral responses is correlated with aberrant secretion of corticosterone. Serial blood samples were collected manually via the jugular vein cannula during the light-(inactive)-phase in conscious male rats at 20-min intervals for a period of 5h before and 6.5h after exposure to predator scent stress. The outcome measures included behavior in an elevated plus-maze and acoustic startle response 7days after exposure. Individual animals were retrospectively classified as having "extreme", "partial", or "minimal" behavioral responses according to pre-set cut-off criteria for behavioral response patterns. Corticosterone secretion patterns were analyzed retrospectively. Under basal conditions, the amplitude of ultradian oscillations of corticosterone levels, rather than the mean corticosterone level or the frequency of corticosterone pulsatility, was significantly reduced in individuals who displayed PTSD-phenotype 8days later. In addition, extreme disruption of behavior on day 8 post-exposure was also characterized by a blunting of corticosterone response to the stressor. Animals with behavior that was only partially affected or unaffected displayed none of the above changes. Blunted basal corticosterone pulse amplitude is a pre-existing susceptibility or risk factor for PTSD, which originates from prior (life) experiences and may therefore predict post-exposure PTSD-phenotype in rats.
Collapse
|
30
|
Myers B, McKlveen JM, Morano R, Ulrich-Lai YM, Solomon MB, Wilson SP, Herman JP. Vesicular Glutamate Transporter 1 Knockdown in Infralimbic Prefrontal Cortex Augments Neuroendocrine Responses to Chronic Stress in Male Rats. Endocrinology 2017; 158:3579-3591. [PMID: 28938481 PMCID: PMC5659688 DOI: 10.1210/en.2017-00426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023]
Abstract
Chronic stress-associated pathologies frequently associate with alterations in the structure and activity of the medial prefrontal cortex (mPFC). However, the influence of infralimbic cortex (IL) projection neurons on hypothalamic-pituitary-adrenal (HPA) axis activity is unknown, as is the involvement of these cells in chronic stress-induced endocrine alterations. In the current study, a lentiviral-packaged vector coding for a small interfering RNA (siRNA) targeting vesicular glutamate transporter (vGluT) 1 messenger RNA (mRNA) was microinjected into the IL of male rats. vGluT1 is responsible for presynaptic vesicular glutamate packaging in cortical neurons, and knockdown reduces the amount of glutamate available for synaptic release. After injection, rats were either exposed to chronic variable stress (CVS) or remained in the home cage as unstressed controls. Fifteen days after the initiation of CVS, all animals were exposed to a novel acute stressor (30-minute restraint) with blood collection for the analysis of adrenocorticotropic hormone (ACTH) and corticosterone. Additionally, brains were collected for in situ hybridization of corticotrophin-releasing hormone mRNA. In previously unstressed rats, vGluT1 siRNA significantly enhanced ACTH and corticosterone secretion. Compared with CVS animals receiving the green fluorescent protein control vector, the vGluT1 siRNA further increased basal and stress-induced corticosterone release. Further analysis revealed enhanced adrenal responsiveness in CVS rats treated with vGluT1 siRNA. Collectively, our results suggest that IL glutamate output inhibits HPA responses to acute stress and restrains corticosterone secretion during chronic stress, possibly at the level of the adrenal. Together, these findings pinpoint a neurochemical mechanism linking mPFC dysfunction with aberrant neuroendocrine responses to chronic stress.
Collapse
Affiliation(s)
- Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Jessica M. McKlveen
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| | - Rachel Morano
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| | - Yvonne M. Ulrich-Lai
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| | - Matia B. Solomon
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| | - Steven P. Wilson
- Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, South Carolina 29208
| | - James P. Herman
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45237
| |
Collapse
|
31
|
Herman JP. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol Neurobiol 2017; 38:25-35. [PMID: 28895001 DOI: 10.1007/s10571-017-0543-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/24/2017] [Indexed: 01/04/2023]
Abstract
Hindbrain neurons in the nucleus of the solitary tract (NTS) are critical for regulation of hypothalamo-pituitary-adrenocortical (HPA) responses to stress. It is well known that noradrenergic (as well as adrenergic) neurons in the NTS send direct projections to hypophysiotropic corticotropin-releasing hormone (CRH) neurons and control activation of HPA axis responses to acute systemic (but not psychogenic) stressors. Norepinephrine (NE) signaling via alpha1 receptors is primarily excitatory, working either directly on CRH neurons or through presynaptic activation of glutamate release. However, there is also evidence for NE inhibition of CRH neurons (possibly via beta receptors), an effect that may occur at higher levels of stimulation, suggesting that NE effects on the HPA axis may be context-dependent. Lesions of ascending NE inputs to the paraventricular nucleus attenuate stress-induced ACTH but not corticosterone release after chronic stress, indicating reduction in central HPA drive and increased adrenal sensitivity. Non-catecholaminergic NTS glucagon-like peptide 1/glutamate neurons play a broader role in stress regulation, being important in HPA activation to both systemic and psychogenic stressors as well as HPA axis sensitization under conditions of chronic stress. Overall, the data highlight the importance of the NTS as a key regulatory node for coordination of acute and chronic stress.
Collapse
Affiliation(s)
- James P Herman
- Stress Neurobiology Laboratory, Department of Psychiatry and Behavioral Neuroscience, UC Neurobiology Research Center, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH, 45237-0506, USA.
| |
Collapse
|
32
|
Gibbison B, López-López JA, Higgins JPT, Miller T, Angelini GD, Lightman SL, Annane D. Corticosteroids in septic shock: a systematic review and network meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:78. [PMID: 28351429 PMCID: PMC5371269 DOI: 10.1186/s13054-017-1659-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/28/2017] [Indexed: 02/08/2023]
Abstract
Background Multiple corticosteroids and treatment regimens have been used as adjuncts in the treatment of septic shock. Qualitative and quantitative differences exist at cellular and tissular levels between the different drugs and their patterns of delivery. The objective of this study was to elucidate any differences between the drugs and their treatment regimens regarding outcomes for corticosteroid use in adult patients with septic shock. Methods Network meta-analysis of the data used for the recently conducted Cochrane review was performed. Studies that included children and were designed to assess respiratory function in pneumonia and acute respiratory distress syndrome, as well as cross-over studies, were excluded. Network plots were created for each outcome, and all analyses were conducted using a frequentist approach assuming a random-effects model. Results Complete data from 22 studies and partial data from 1 study were included. Network meta-analysis provided no clear evidence that any intervention or treatment regimen is better than any other across the spectrum of outcomes. There was strong evidence of differential efficacy in only one area: shock reversal. Hydrocortisone boluses and infusions were more likely than methylprednisolone boluses and placebo to result in shock reversal. Conclusions There was no clear evidence that any one corticosteroid drug or treatment regimen is more likely to be effective in reducing mortality or reducing the incidence of gastrointestinal bleeding or superinfection in septic shock. Hydrocortisone delivered as a bolus or as an infusion was more likely than placebo and methylprednisolone to result in shock reversal. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1659-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ben Gibbison
- Cardiac Anaesthesia and Intensive Care, Bristol Heart Institute - University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK.
| | - José A López-López
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Julian P T Higgins
- Centre for Research Synthesis and Decision Analysis, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Tom Miller
- Cardiac Anaesthesia and Intensive Care, Bristol Heart Institute - University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Gianni D Angelini
- Cardiac Surgery, Bristol Heart Institute - University Hospitals Bristol NHS Foundation Trust, University of Bristol, Bristol, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Metabolism, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Djillali Annane
- Medicine: Critical Care Medicine, Hôpital Raymond Poincaré, Assistance Publique Hôpitaux de Paris (APHP), Garches, France.,School of Medicine, Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
| |
Collapse
|
33
|
Strickland J, McIlmoil S, Williams BJ, Seager DC, Porter JP, Judd AM. Interleukin-6 increases the expression of key proteins associated with steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 2017; 119:1-17. [PMID: 28063793 DOI: 10.1016/j.steroids.2016.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/03/2023]
Abstract
Mechanisms of interleukin-6 (IL-6)-induced cortisol release (CR) were investigated by exposing H295R cells to IL-6 and determining mRNA/protein expression (PCR/western blots) for steroidogenic enzymes (SE), steroidogenic acute regulatory protein (StAR), steroidogenic factor-1 (SF-1) (enhances SE/StAR expression), activator protein 1 (AP-1) (regulates SE/StAR expression) and adrenal hypoplasia congenita-like protein (DAX-1) (inhibits SE/StAR expression). Promoter activity of StAR (SPA) was measured by a luciferase-coupled promoter. Cortisol release was increased by 10ng/mL IL-6 (24h P<0.01). Proteins/mRNAs (StAR, cholesterol side chain cleavage enzyme, SF-1, AP-1) and SPA were increased by IL-6 (60min 1-50ng/mL IL-6; 5ng/mL IL-6 30-120min P<0.05). Four other SE proteins/mRNAs were also increased by 10ng/mL IL-6 (60min P<0.01). Protein/mRNA for DAX-1 was decreased by IL-6 (60min 1-50ng/mL IL-6; 5ng/mL IL-6 30-120min P<0.01). Phosphorylation of Janus kinase (JAK) and signal transducer and activator of transcription (STAT) was increased by IL-6 (JAK2 60min 1-50ng/mL IL-6; 10ng/mL IL-6 5-60min P<0.05; STAT1 and STAT3 60min 10ng/mL IL-6 P<0.01). Inhibition of JAK/STAT with AG490 (10μM) or piceatannol (50μM) blocked (P<0.01 10ng/mL IL-6vs. IL-6 plus AG490 or piceatannol) IL-6-induced increases in SPA and StAR mRNA. In summary, IL-6-induced CR may be facilitated by increased StAR and SE mediated by increased SF-1 and AP-1, decreased DAX-1, and increased phosphorylation of JAK/STAT.
Collapse
Affiliation(s)
- Janae Strickland
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - Stephen McIlmoil
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - Brice J Williams
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - Dennis C Seager
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - James P Porter
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States
| | - Allan M Judd
- Department of Physiology and Developmental Biology and Neuroscience Center, 2025 LSB, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
34
|
Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocr Rev 2017; 38:3-45. [PMID: 27749086 PMCID: PMC5563520 DOI: 10.1210/er.2015-1080] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Adrenal glucocorticoids are major modulators of multiple functions, including energy metabolism, stress responses, immunity, and cognition. The endogenous secretion of glucocorticoids is normally characterized by a prominent and robust circadian (around 24 hours) oscillation, with a daily peak around the time of the habitual sleep-wake transition and minimal levels in the evening and early part of the night. It has long been recognized that this 24-hour rhythm partly reflects the activity of a master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus. In the past decade, secondary circadian clocks based on the same molecular machinery as the central master pacemaker were found in other brain areas as well as in most peripheral tissues, including the adrenal glands. Evidence is rapidly accumulating to indicate that misalignment between central and peripheral clocks has a host of adverse effects. The robust rhythm in circulating glucocorticoid levels has been recognized as a major internal synchronizer of the circadian system. The present review examines the scientific foundation of these novel advances and their implications for health and disease prevention and treatment.
Collapse
Affiliation(s)
- Henrik Oster
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Etienne Challet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Volker Ott
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Emanuela Arvat
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - E Ronald de Kloet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Derk-Jan Dijk
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Stafford Lightman
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Alexandros Vgontzas
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Eve Van Cauter
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
35
|
The effects of restricted feeding on the ultradian rhythm of corticosterone secretion and steroidogenesis in the rat adrenal. Proc Nutr Soc 2017. [DOI: 10.1017/s0029665117003044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Spencer RL, Deak T. A users guide to HPA axis research. Physiol Behav 2016; 178:43-65. [PMID: 27871862 DOI: 10.1016/j.physbeh.2016.11.014] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/19/2016] [Accepted: 11/16/2016] [Indexed: 12/18/2022]
Abstract
Glucocorticoid hormones (cortisol and corticosterone - CORT) are the effector hormones of the hypothalamic-pituitary-adrenal (HPA) axis neuroendocrine system. CORT is a systemic intercellular signal whose level predictably varies with time of day and dynamically increases with environmental and psychological stressors. This hormonal signal is utilized by virtually every cell and physiological system of the body to optimize performance according to circadian, environmental and physiological demands. Disturbances in normal HPA axis activity profiles are associated with a wide variety of physiological and mental health disorders. Despite numerous studies to date that have identified molecular, cellular and systems-level glucocorticoid actions, new glucocorticoid actions and clinical status associations continue to be revealed at a brisk pace in the scientific literature. However, the breadth of investigators working in this area poses distinct challenges in ensuring common practices across investigators, and a full appreciation for the complexity of a system that is often reduced to a single dependent measure. This Users Guide is intended to provide a fundamental overview of conceptual, technical and practical knowledge that will assist individuals who engage in and evaluate HPA axis research. We begin with examination of the anatomical and hormonal components of the HPA axis and their physiological range of operation. We then examine strategies and best practices for systematic manipulation and accurate measurement of HPA axis activity. We feature use of experimental methods that will assist with better understanding of CORT's physiological actions, especially as those actions impact subsequent brain function. This research approach is instrumental for determining the mechanisms by which alterations of HPA axis function may contribute to pathophysiology.
Collapse
Affiliation(s)
- Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| | - Terrence Deak
- Department of Psychology, Binghamton University - SUNY, Binghamton, NY, USA
| |
Collapse
|
37
|
Bird IM, Abbott DH. The hunt for a selective 17,20 lyase inhibitor; learning lessons from nature. J Steroid Biochem Mol Biol 2016; 163:136-46. [PMID: 27154414 PMCID: PMC5046225 DOI: 10.1016/j.jsbmb.2016.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 01/10/2023]
Abstract
Given prostate cancer is driven, in part, by its responsiveness to androgens, treatments historically employ methods for their removal from circulation. Approaches as crude as castration, and more recently blockade of androgen synthesis or receptor binding, are still of limited use long term, since other steroids of adrenal origin or tumor origin can supersede that role as the 'castration resistant' tumor re-emerges. Broader inhibition of steroidogenesis using relatively nonselective P450 inhibitors such as ketoconazole is not an alternative since a general disruption of steroid biosynthesis is neither safe nor effective. The recent emergence of drugs more selectively targeting CYP17 have been more effective, and yet extension of life has been on the scale of months rather than years. It is now becoming clear this shortcoming arises from the adaptive capabilities of many tumors to initiate local steroid synthesis and/or become responsive to novel early pathway adrenal steroids that are synthesized when lyase activity is not selectively blocked, and ACTH rises in the face of declining cortisol feedback. Abiraterone has been described as a lyase selective inhibitor, yet its use still requires co-administration of prednisone to suppress such a rise of ACTH and fall in cortisol. So is creation of a selective lyase inhibitor even possible? Can C19 steroid production be achieved without a prominent decline in cortisol and corresponding rise in ACTH? Decades of scientific study of CYP17 in humans and nonhuman primates, as well as nature's own experiments of gene mutations in humans, reveal 'true' or 'isolated' 17,20 lyase deficiency does quite selectively prevent C19 steroid biosynthesis whereas simple 17 hydroxylase deficiency also suppresses cortisol. We propose these known outcomes of natural mutations should be used to guide analysis of clinical trials and long term outcomes of CYP17 targeted drugs. In this review, we use that framework to re-evaluate the basic and clinical outcomes of many compounds being used or in development for treatment of castration resistant prostate cancer. Specifically, we include the nonselective drug ketoconazole, and then the CYP17 targeted drugs abiraterone, orteronel (TAK-700), galaterone (TOK-001), and seviteronel (VT-464). Using this framework, we can fully discriminate the clinical outcomes for ketoconazole, a drug with broad specificity, yet clinically ineffective, from that of abiraterone, the first CYP17 targeted therapy that is limited by its need for prednisone co-therapy. We also can identify potential next generation CYP17 targeted drugs now emerging that show signs of being far more 17,20 lyase selective. We conclude that a future for improved therapy without substantial cortisol decline, thus avoiding prednisone co-administration, seems possible at long last.
Collapse
Affiliation(s)
- Ian M Bird
- Department Ob/Gyn, University of Wisconsin-Madison SMPH, Madison, WI, USA.
| | - David H Abbott
- Department Ob/Gyn, University of Wisconsin-Madison SMPH, Madison, WI, USA; Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
38
|
Hawley JM, Keevil BG. Endogenous glucocorticoid analysis by liquid chromatography-tandem mass spectrometry in routine clinical laboratories. J Steroid Biochem Mol Biol 2016; 162:27-40. [PMID: 27208627 DOI: 10.1016/j.jsbmb.2016.05.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a powerful analytical technique that offers exceptional selectivity and sensitivity. Used optimally, LC-MS/MS provides accurate and precise results for a wide range of analytes at concentrations that are difficult to quantitate with other methodologies. Its implementation into routine clinical biochemistry laboratories has revolutionised our ability to analyse small molecules such as glucocorticoids. Whereas immunoassays can suffer from matrix effects and cross-reactivity due to interactions with structural analogues, the selectivity offered by LC-MS/MS has largely overcome these limitations. As many clinical guidelines are now beginning to acknowledge the importance of the methodology used to provide results, the advantages associated with LC-MS/MS are gaining wider recognition. With their integral role in both the diagnosis and management of hypo- and hyperadrenal disorders, coupled with their widespread pharmacological use, the accurate measurement of glucocorticoids is fundamental to effective patient care. Here, we provide an up-to-date review of the LC-MS/MS techniques used to successfully measure endogenous glucocorticoids, particular reference is made to serum, urine and salivary cortisol.
Collapse
Affiliation(s)
| | - Brian G Keevil
- University Hospital South Manchester, Manchester, UK; Manchester Healthcare Academy, Manchester, UK
| |
Collapse
|
39
|
Čupić Ž, Marković VM, Maćešić S, Stanojević A, Damjanović S, Vukojević V, Kolar-Anić L. Dynamic transitions in a model of the hypothalamic-pituitary-adrenal axis. CHAOS (WOODBURY, N.Y.) 2016; 26:033111. [PMID: 27036189 DOI: 10.1063/1.4944040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dynamic properties of a nonlinear five-dimensional stoichiometric model of the hypothalamic-pituitary-adrenal (HPA) axis were systematically investigated. Conditions under which qualitative transitions between dynamic states occur are determined by independently varying the rate constants of all reactions that constitute the model. Bifurcation types were further characterized using continuation algorithms and scale factor methods. Regions of bistability and transitions through supercritical Andronov-Hopf and saddle loop bifurcations were identified. Dynamic state analysis predicts that the HPA axis operates under basal (healthy) physiological conditions close to an Andronov-Hopf bifurcation. Dynamic properties of the stress-control axis have not been characterized experimentally, but modelling suggests that the proximity to a supercritical Andronov-Hopf bifurcation can give the HPA axis both, flexibility to respond to external stimuli and adjust to new conditions and stability, i.e., the capacity to return to the original dynamic state afterwards, which is essential for maintaining homeostasis. The analysis presented here reflects the properties of a low-dimensional model that succinctly describes neurochemical transformations underlying the HPA axis. However, the model accounts correctly for a number of experimentally observed properties of the stress-response axis. We therefore regard that the presented analysis is meaningful, showing how in silico investigations can be used to guide the experimentalists in understanding how the HPA axis activity changes under chronic disease and/or specific pharmacological manipulations.
Collapse
Affiliation(s)
- Željko Čupić
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Vladimir M Marković
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stevan Maćešić
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Stanojević
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Svetozar Damjanović
- Institute of Endocrinology, Diabetes and Metabolic Diseases, School of Medicine, University of Belgrade, Dr Subotica 13, 11000 Belgrade, Serbia
| | - Vladana Vukojević
- Department of Clinical Neuroscience, Karolinska Institutet, CMM L8:01, 17176 Stockholm, Sweden
| | - Ljiljana Kolar-Anić
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| |
Collapse
|
40
|
Lightman S. Rhythms Within Rhythms: The Importance of Oscillations for Glucocorticoid Hormones. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2016. [DOI: 10.1007/978-3-319-27069-2_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Spiga F, Walker JJ, Gupta R, Terry JR, Lightman SL. 60 YEARS OF NEUROENDOCRINOLOGY: Glucocorticoid dynamics: insights from mathematical, experimental and clinical studies. J Endocrinol 2015; 226:T55-66. [PMID: 26148724 DOI: 10.1530/joe-15-0132] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2015] [Indexed: 02/03/2023]
Abstract
A pulsatile pattern of secretion is a characteristic of many hormonal systems, including the glucocorticoid-producing hypothalamic-pituitary-adrenal (HPA) axis. Despite recent evidence supporting its importance for behavioral, neuroendocrine and transcriptional effects of glucocorticoids, there has been a paucity of information regarding the origin of glucocorticoid pulsatility. In this review we discuss the mechanisms regulating pulsatile dynamics of the HPA axis, and how these dynamics become disrupted in disease. Our recent mathematical, experimental and clinical studies show that glucocorticoid pulsatility can be generated and maintained by dynamic processes at the level of the pituitary-adrenal axis, and that an intra-adrenal negative feedback may contribute to these dynamics.
Collapse
Affiliation(s)
- Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - Jamie J Walker
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - Rita Gupta
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - John R Terry
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and EndocrinologyUniversity of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UKCollege of EngineeringMathematics and Physical Sciences, University of Exeter, Harrison Building, Streatham Campus, North Park Road, Exeter EX4 4QF, UKWellcome Trust Centre for Biomedical Modelling and AnalysisRILD Building, University of Exeter, Exeter, UK
| |
Collapse
|