1
|
Salagre D, Navarro-Alarcón M, González LG, Elrayess MA, Villalón-Mir M, Haro-López R, Agil A. Melatonin Ameliorates Organellar Calcium Homeostasis, Improving Endoplasmic Reticulum Stress-Mediated Apoptosis in the Vastus Lateralis Muscle of Both Sexes of Obese Diabetic Rats. Antioxidants (Basel) 2024; 14:16. [PMID: 39857351 PMCID: PMC11762543 DOI: 10.3390/antiox14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Endoplasmic reticulum (ER) stress is a crucial factor in the progression of obesity-related type 2 diabetes (diabesity), contributing to skeletal muscle (SKM) dysfunction, calcium imbalance, metabolic inflexibility, and muscle atrophy. The ER and mitochondria together regulate intracellular calcium levels, and melatonin, a natural compound with antioxidant properties, may alleviate these challenges. Our previous research showed that melatonin raises intracellular calcium and preserves muscle structure by enhancing mitochondrial function in obese diabetic rats. This study further explores melatonin's potential to reduce ER stress in the vastus lateralis (VL) muscle by modulating the unfolded protein response (UPR) and restoring calcium levels disrupted by diabesity. Five-week-old Zücker diabetic fatty (ZDF) rats and lean littermates of both sexes were divided into control and melatonin-treated groups (10 mg/kg/day for 12 weeks). Flame atomic absorption spectrometry results showed that melatonin restored VL intraorganellar calcium homeostasis, increasing calcium levels in mitochondria and reducing them in the ER by raising the activity and expression of calcium transporters in both sexes of ZDF rats. Melatonin also decreased ER stress markers (GRP78, ATF6, IRE1α, and PERK) and reduced pro-apoptosis markers (Bax, Bak, P-JNK, cleaved caspase 3 and 9) while increasing Bcl2 levels and melatonin receptor 2 (MT2) expression. These findings suggest that melatonin may protect against muscle atrophy in obese and diabetic conditions by mitigating ER stress and calcium imbalance, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
- Nutrition, Metabolism, Growth and Development Group, BioHealth Institute Granada (ibs.GRANADA), 18012 Granada, Spain
- Neuroscience Institute “Federico Olóriz”, Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.N.-A.); (M.V.-M.)
| | - Luis Gerardo González
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
- Bola de Oro Primary Care Health Center, Sanitary District of Granada, Andalusian Health Services (SAS), 18008 Granada, Spain
| | - Mohamed A. Elrayess
- Biomedical Research Center, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Marina Villalón-Mir
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.N.-A.); (M.V.-M.)
| | - Rocío Haro-López
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
| | - Ahmad Agil
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
- Nutrition, Metabolism, Growth and Development Group, BioHealth Institute Granada (ibs.GRANADA), 18012 Granada, Spain
- Neuroscience Institute “Federico Olóriz”, Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
He M, Guo X, Jia J, Zhang J, Zhou X, Wei L, Yu J, Wang S, Feng L. Regulatory mechanisms underlying endoplasmic reticulum stress involvement in the development of gestational diabetes mellitus entail the CHOP-PPARα-NF-κB pathway. Placenta 2023; 142:46-55. [PMID: 37639950 DOI: 10.1016/j.placenta.2023.08.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE We investigated the proinflammatory functions of endoplasmic reticulum stress and peroxisome proliferator-activated receptor α (PPARα) in the development of gestational diabetes mellitus (GDM) and their relationship in regulating inflammation in GDM. METHODS This study was performed on placentas of normal pregnant women, women with GDM, and HTR8 cells. Transmission electron microscopy, immunohistochemistry, Western blot analysis, and RT-PCR were performed to analyze ERS and PPARα expression on both normal and GDM pregnancy placentas. ELISA was performed to analyze inflammatory biomarkers. To generate models of the GDM-like state, placentas of normal pregnancy were treated with LPS and polyinosinic-polycytidylic acid (poly [I:C]). TG, CHOP plasmid, and CHOP siRNA were assessed as to their regulation of HTR8 cells to discern the relationship between ERS and PPARα in regulating the inflammation associated with GDM. RESULTS ERS was elevated in GDM placentas, induced the secretion of IL-6 and TNF-α, and attenuated the expression of GLUT-4. PPARα was diminished in GDM placentas and inhibited the inflammatory responses via the NF-κB nuclear-transport process. 4-PBA reduced CHOP and augmented PPARα, and it decreased IL-6 and TNF-α in our GDM-like explant. However, with both 4-PBA and MK886 treatment, we noted no significant difference in CHOP expression. The level of PPARα was reduced, and that of NF-κB p65 in the nucleus was elevated with TG treatment in the HTR8/Svneo. Knockdown of CHOP increased PPARα and reduced NF-κB p65, while expression of PPARα declined, and that of NF-κB p65 rose with the application of CHOP when HTR8 cells were treated with TG. CONCLUSIONS ERS contributes to the pathophysiology of GDM in pregnancy via the CHOP-PPARα-NF-κB-signalling pathway by inducing aberrant activation of inflammation and insulin resistance.
Collapse
Affiliation(s)
- Mengzhou He
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xijiao Guo
- Department of Gynecology and Obstetrics, Wuhan Maternal and Child Health Hospital, Wuhan, Hubei, PR China
| | - Jing Jia
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jingyi Zhang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xuan Zhou
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lijie Wei
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jun Yu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Shaoshuai Wang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Ling Feng
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
3
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Moyce Gruber BL, Dolinsky VW. The Role of Adiponectin during Pregnancy and Gestational Diabetes. Life (Basel) 2023; 13:301. [PMID: 36836658 PMCID: PMC9958871 DOI: 10.3390/life13020301] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Pregnancy involves a range of metabolic adaptations to supply adequate energy for fetal growth and development. Gestational diabetes (GDM) is defined as hyperglycemia with first onset during pregnancy. GDM is a recognized risk factor for both pregnancy complications and long-term maternal and offspring risk of cardiometabolic disease development. While pregnancy changes maternal metabolism, GDM can be viewed as a maladaptation by maternal systems to pregnancy, which may include mechanisms such as insufficient insulin secretion, dysregulated hepatic glucose output, mitochondrial dysfunction and lipotoxicity. Adiponectin is an adipose-tissue-derived adipokine that circulates in the body and regulates a diverse range of physiologic mechanisms including energy metabolism and insulin sensitivity. In pregnant women, circulating adiponectin levels decrease correspondingly with insulin sensitivity, and adiponectin levels are low in GDM. In this review, we summarize the current state of knowledge about metabolic adaptations to pregnancy and the role of adiponectin in these processes, with a focus on GDM. Recent studies from rodent model systems have clarified that adiponectin deficiency during pregnancy contributes to GDM development. The upregulation of adiponectin alleviates hyperglycemia in pregnant mice, although much remains to be understood for adiponectin to be utilized clinically for GDM.
Collapse
Affiliation(s)
- Brittany L. Moyce Gruber
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Vernon W. Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM), Research Theme of the Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
5
|
Tang Y, Zhou X, Cao T, Chen E, Li Y, Lei W, Hu Y, He B, Liu S. Endoplasmic Reticulum Stress and Oxidative Stress in Inflammatory Diseases. DNA Cell Biol 2022; 41:924-934. [PMID: 36356165 DOI: 10.1089/dna.2022.0353] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Nguyen-Ngo C, Perkins AV, Lappas M. Selenium Prevents Inflammation in Human Placenta and Adipose Tissue In Vitro: Implications for Metabolic Diseases of Pregnancy Associated with Inflammation. Nutrients 2022; 14:nu14163286. [PMID: 36014792 PMCID: PMC9416138 DOI: 10.3390/nu14163286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) and maternal obesity are significant metabolic complications increasingly prevalent in pregnancy. Of major concern, both GDM and maternal obesity can have long-term detrimental impacts on the health of both mother and offspring. Recent research has shown that increased inflammation and oxidative stress are two features central to the pathophysiology of these metabolic conditions. Evidence suggests selenium supplementation may be linked to disease prevention in pregnancy; however, the specific effects of selenium on inflammation and oxidative stress associated with GDM and maternal obesity are unknown. Therefore, this study aimed to investigate the effect of selenium supplementation on an in vitro model of GDM and maternal obesity. Human placental tissue, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were stimulated with either the bacterial product lipopolysaccharide (LPS) or the pro-inflammatory cytokine TNF-α. Selenium pre-treatment blocked LPS and TNF-α induced mRNA expression and secretion of pro-inflammatory cytokines and chemokines, while increasing anti-inflammatory cytokine and antioxidant mRNA expression in placenta, VAT and SAT. Selenium pre-treatment was also found to inhibit LPS- and TNF-α induced phosphorylation of ERK in placenta, VAT and SAT. These findings indicate that selenium may be able to prevent inflammation and oxidative stress associated with GDM and maternal obesity. Additional in vivo studies are required to identify the efficacy of selenium supplementation in preventing inflammatory pathways activated by GDM and maternal obesity and to elucidate the mechanism involved.
Collapse
Affiliation(s)
- Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville 3010, Australia
- Mercy Perinatal Research Centre, Melbourne 3084, Australia
| | - Anthony V. Perkins
- School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Adelaide 9726, Australia
- Correspondence:
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Parkville 3010, Australia
- Mercy Perinatal Research Centre, Melbourne 3084, Australia
| |
Collapse
|
7
|
Resolvin D3 improves the impairment of insulin signaling in skeletal muscle and nonalcoholic fatty liver disease through AMPK/autophagy-associated attenuation of ER stress. Biochem Pharmacol 2022; 203:115203. [DOI: 10.1016/j.bcp.2022.115203] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
|
8
|
Zhang L, Ding H, Shi Y, Zhang D, Yang X. CTRP9 decreases high glucose‑induced trophoblast cell damage by reducing endoplasmic reticulum stress. Mol Med Rep 2022; 25:185. [PMID: 35348185 PMCID: PMC8985207 DOI: 10.3892/mmr.2022.12701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
C1q/TNF-α-related protein 9 (CTRP9) is downregulated in gestational diabetes mellitus (GDM) and may exert a protective effect against GDM, although its mechanism of action is yet to be elucidated. To investigate the specific role of CTRP9 in GDM, the human placental trophoblast cell line HTR8/SVneo was treated with high glucose (HG) to simulate the environment of GDM in vitro. The effects of CTRP9 on the HTR8/SVneo cells and endoplasmic reticulum (ER) stress were analyzed before and after CTRP9 overexpression using reverse transcription-quantitative PCR and western blotting. The results obtained demonstrated that CTRP9 alleviated ER stress in the trophoblast cell line. After treating with the ER-stress inducer tunicamycin, cell viability was investigated by performing Cell Counting Kit-8, TUNEL and western blotting assays, which revealed that CTRP9 increased the activity of HTR8/SVneo cells induced by HG through the alleviation of ER stress. Subsequently, ELISA and western blotting assay results demonstrated that CTRP9 inhibited HG-induced inflammation of the HTR8/SVneo cells by the reduction in ER stress. Finally, the detection of reactive oxygen species, nitric oxide (NO) synthase and NO levels confirmed that CTRP9 inhibited the oxidative stress of HTR8/SVneo cells induced by HG through the reduction of ER stress. Collectively, the results of the present study suggested that CTRP9 may decrease trophoblast cell damage caused by HG through the suppression of ER stress, and therefore, CTRP9 may potentially be a therapeutic target in the treatment of GDM.
Collapse
Affiliation(s)
- Lianxiao Zhang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yubo Shi
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Duoyi Zhang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Xue Yang
- Department of Obstetrics and Gynecology, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
9
|
Zhang YP, Ye SZ, Li YX, Chen JL, Zhang YS. Research Advances in the Roles of Circular RNAs in Pathophysiology and Early Diagnosis of Gestational Diabetes Mellitus. Front Cell Dev Biol 2022; 9:739511. [PMID: 35059395 PMCID: PMC8764237 DOI: 10.3389/fcell.2021.739511] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) refers to different degrees of glucose tolerance abnormalities that occur during pregnancy or are discovered for the first time, which can have a serious impact on the mother and the offspring. The screening of GDM mainly relies on the oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. The early diagnosis and intervention of GDM can greatly improve adverse pregnancy outcomes. However, molecular markers for early prediction and diagnosis of GDM are currently lacking. Therefore, looking for GDM-specific early diagnostic markers has important clinical significance for the prevention and treatment of GDM and the management of subsequent maternal health. Circular RNA (circRNA) is a new type of non-coding RNA. Recent studies have found that circRNAs were involved in the occurrence and development of malignant tumors, metabolic diseases, cardiovascular and cerebrovascular diseases, etc., and could be used as the molecular marker for early diagnosis. Our previous research showed that circRNAs are differentially expressed in serum of GDM pregnant women in the second and third trimester, placental tissues during cesarean delivery, and cord blood. However, the mechanism of circular RNA in GDM still remains unclear. This article focuses on related circRNAs involved in insulin resistance and β-cell dysfunction, speculating on the possible role of circRNAs in the pathophysiology of GDM under the current research context, and has the potential to serve as early molecular markers for the diagnosis of GDM.
Collapse
Affiliation(s)
- Yan-Ping Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China.,Medical School, Ningbo University, Ningbo, China
| | - Sha-Zhou Ye
- Translational Research Laboratory for Urology, the Key Laboratory of Ningbo City, Ningbo First Hospital, Ningbo, China
| | - Ying-Xue Li
- Medical School, Ningbo University, Ningbo, China
| | - Jia-Li Chen
- Medical School, Ningbo University, Ningbo, China
| | - Yi-Sheng Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
LI A, SHEN P, LIU S, WANG J, ZENG J, DU C. Vitamin D alleviates skeletal muscle loss and insulin resistance by inducing vitamin D receptor expression and regulating the AMPK/SIRT1 signaling pathway in mice. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
11
|
Oh H, Cho W, Abd El-Aty AM, Jeong JH, Jung TW. Resolvin D3 Improves the Impairment of Insulin Signaling in Skeletal Muscle and Nonalcoholic Fatty Liver Disease Through AMPK/Autophagy-Associated Attenuation of ER Stress. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4149178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Passarelli M, Machado UF. AGEs-Induced and Endoplasmic Reticulum Stress/Inflammation-Mediated Regulation of GLUT4 Expression and Atherogenesis in Diabetes Mellitus. Cells 2021; 11:104. [PMID: 35011666 PMCID: PMC8750246 DOI: 10.3390/cells11010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
In recent decades, complex and exquisite pathways involved in the endoplasmic reticulum (ER) and inflammatory stress responses have been demonstrated to participate in the development and progression of numerous diseases, among them diabetes mellitus (DM). In those pathways, several players participate in both, reflecting a complicated interplay between ER and inflammatory stress. In DM, ER and inflammatory stress are involved in both the pathogenesis of the loss of glycemic control and the development of degenerative complications. Furthermore, hyperglycemia increases the generation of advanced glycation end products (AGEs), which in turn refeed ER and inflammatory stress, contributing to worsening glycemic homeostasis and to accelerating the development of DM complications. In this review, we present the current knowledge regarding AGEs-induced and ER/inflammation-mediated regulation of the expression of GLUT4 (solute carrier family 2, facilitated glucose transporter member 4), as a marker of glycemic homeostasis and of cardiovascular disease (CVD) development/progression, as a leading cause of morbidity and mortality in DM.
Collapse
Affiliation(s)
- Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil;
- Programa de Pos-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
13
|
Chen H, Ma J, Ma X. Administration of tauroursodeoxycholic acid attenuates dexamethasone-induced skeletal muscle atrophy. Biochem Biophys Res Commun 2021; 570:96-102. [PMID: 34274852 DOI: 10.1016/j.bbrc.2021.06.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Glucocorticoids are known to induce skeletal muscle atrophy by suppressing protein synthesis and promoting protein degradation. Tauroursodeoxycholic acid (TUDCA) has beneficial effects in several diseases, such as hepatobiliary disorders, hindlimb ischemia and glucocorticoid-induced osteoporosis. However, the effects of TUDCA on glucocorticoid -induced skeletal muscle atrophy remains unknown. Therefore, in the present research, we explored the effects of TUDCA on dexamethasone (DEX)-induced loss and the potential mechanisms involved. We found TUDCA alleviated DEX-induced muscle wasting in C2C12 myotubes, identified by improved myotube differentiation index and expression of myogenin and MHC. And it showed that TUDCA activated the Akt/mTOR/S6K signaling pathway and inhibited FoxO3a transcriptional activity to decreased expression of MuRF1 and Atrogin-1, while blocking Akt by MK2206 blocked these effects of TUDCA on myotubes. Besides, TUDCA also attenuated DEX-induced apoptosis of myotubes. Furthermore, TUDCA was administrated to the mouse model of DEX-induced skeletal muscle atrophy. The results showed that TUDCA improved DEX-induced skeletal muscle atrophy and weakness (identified by increased grip strength and prolonged running exhaustive time) in mice by suppression of apoptosis, reduction of protein degradation and promotion of protein synthesis. Taken together, our research proved for the first time that TUDCA protected against DEX-induced skeletal muscle atrophy not only by improving myogenic differentiation and protein synthesis, but also through decreasing protein degradation and apoptosis of skeletal muscle.
Collapse
Affiliation(s)
- Hengting Chen
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin, 300072, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
14
|
Cornejo M, Fuentes G, Valero P, Vega S, Grismaldo A, Toledo F, Pardo F, Moore‐Carrasco R, Subiabre M, Casanello P, Faas MM, Goor H, Sobrevia L. Gestational diabesity and foetoplacental vascular dysfunction. Acta Physiol (Oxf) 2021; 232:e13671. [PMID: 33942517 DOI: 10.1111/apha.13671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Gestational diabetes mellitus (GDM) shows a deficiency in the metabolism of D-glucose and other nutrients, thereby negatively affecting the foetoplacental vascular endothelium. Maternal hyperglycaemia and hyperinsulinemia play an important role in the aetiology of GDM. A combination of these and other factors predisposes women to developing GDM with pre-pregnancy normal weight, viz. classic GDM. However, women with GDM and prepregnancy obesity (gestational diabesity, GDty) or overweight (GDMow) show a different metabolic status than women with classic GDM. GDty and GDMow are associated with altered l-arginine/nitric oxide and insulin/adenosine axis signalling in the human foetoplacental microvascular and macrovascular endothelium. These alterations differ from those observed in classic GDM. Here, we have reviewed the consequences of GDty and GDMow in the modulation of foetoplacental endothelial cell function, highlighting studies describing the modulation of intracellular pH homeostasis and the potential implications of NO generation and adenosine signalling in GDty-associated foetal vascular insulin resistance. Moreover, with an increase in the rate of obesity in women of childbearing age worldwide, the prevalence of GDty is expected to increase in the next decades. Therefore, we emphasize that women with GDty and GDMow should be characterized with a different metabolic state from that of women with classic GDM to develop a more specific therapeutic approach for protecting the mother and foetus.
Collapse
Affiliation(s)
- Marcelo Cornejo
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Faculty of Health Sciences Universidad de Talca Talca Chile
- Faculty of Health Sciences Universidad de Antofagasta Antofagasta Chile
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Faculty of Health Sciences Universidad de Talca Talca Chile
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
| | - Paola Valero
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Faculty of Health Sciences Universidad de Talca Talca Chile
| | - Sofía Vega
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Medical School (Faculty of Medicine) Sao Paulo State University (UNESP) Sao Paulo Brazil
| | - Adriana Grismaldo
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Department of Nutrition and Biochemistry Faculty of Sciences Pontificia Universidad Javeriana Bogotá D.C. Colombia
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Department of Basic Sciences Faculty of Sciences Universidad del Bío‐Bío Chillán Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Metabolic Diseases Research Laboratory Interdisciplinary Centre of Territorial Health Research (CIISTe) Biomedical Research Center (CIB) School of Medicine Faculty of Medicine Universidad de Valparaíso San Felipe Chile
| | | | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - Paola Casanello
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
- Department of Obstetrics Division of Obstetrics and Gynaecology, and Department of Neonatology Division of Pediatrics School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
| | - Marijke M Faas
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
| | - Harry Goor
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory Department of Obstetrics Division of Obstetrics and Gynaecology School of Medicine Faculty of Medicine Pontificia Universidad Católica de Chile Santiago Chile
- Department of Pathology and Medical Biology University of GroningenUniversity Medical Center Groningen Groningen The Netherlands
- Medical School (Faculty of Medicine) Sao Paulo State University (UNESP) Sao Paulo Brazil
- Department of Physiology Faculty of Pharmacy Universidad de Sevilla Seville Spain
- University of Queensland Centre for Clinical Research (UQCCR) Faculty of Medicine and Biomedical Sciences University of Queensland Herston QLD Australia
| |
Collapse
|
15
|
Sartorão Filho CI, Pinheiro FA, Prudencio CB, Nunes SK, Takano L, Enriquez EMA, Orlandi MIG, Junginger B, Hallur RLS, Rudge MVC, Barbosa AMP. Impact of gestational diabetes on pelvic floor: A prospective cohort study with three-dimensional ultrasound during two-time points in pregnancy. Neurourol Urodyn 2020; 39:2329-2337. [PMID: 32857893 DOI: 10.1002/nau.24491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023]
Abstract
AIM To evaluate the pelvic floor (PF) biometry using three-dimensional ultrasound (US) at two-time points of gestational in pregnant women with gestational diabetes mellitus (GDM). METHODS A prospective cohort study conducted at the Perinatal Diabetes Research Center including 44 pregnant women with GDM and 66 pregnant women without GDM at 24 to 28 weeks of gestation. Three-dimensional transperineal US was performed at 24 to 28 and 34 to 38 weeks of gestation in the lithotomy position at rest. The axial plane of the minimal Levator hiatal dimensions was used to determine Levator ani muscle and Hiatal area (HA) biometry at 24 to 28 and 34 to 38 weeks of gestation. RESULTS Of the 110 pregnant women, 100 (90.9%) completed the follow-up at 34 to 38 weeks of gestation. The evaluation by US showed a negative biometric change between the two-time points, during pregnancy in women with GDM; in the HA (β coefficient: estimative of effect in biometric progression according to GDM diagnosis, using the non-GDM group as reference = -6.76; P = .020), anteroposterior diameter (β = -5.07; P = .019), and Levator ani thickness (β = -12.34; P = .005). CONCLUSIONS Pregnant women with GDM had a significantly lower than expected percentage of changes in biometry of Levator ani thickness and HA from 24 to 28 to 34 to 38 weeks of gestation when compared with the group of pregnant women without GDM. GDM alters the morphology of PF structures assessed by three-dimension US. This reported complication may be implicated in adverse birth outcomes and may play a role in the development of PF dysfunction.
Collapse
Affiliation(s)
- Carlos I Sartorão Filho
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Department of Medicine, Assis Municipality Educational Foundation (FEMA), Medical School, Fundação Educacional do Município de Assis (FEMA), Assis, São Paulo, Brazil
| | - Fabiane A Pinheiro
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Caroline B Prudencio
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Sthefanie K Nunes
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luiz Takano
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Eusebio M A Enriquez
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maiara I G Orlandi
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Baerbel Junginger
- Department of Gynecology, Pelvic Floor Center Charité, Charité University Hospital, Berlin, Germany
| | - Raghavendra L S Hallur
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marilza V C Rudge
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Angélica M P Barbosa
- Department of Gynecology and Obstetrics, Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University (UNESP), Marilia, São Paulo, Brazil
| |
Collapse
|
16
|
Nguyen-Ngo C, Willcox JC, Lappas M. Anti-inflammatory effects of phenolic acids punicalagin and curcumin in human placenta and adipose tissue. Placenta 2020; 100:1-12. [PMID: 32814232 DOI: 10.1016/j.placenta.2020.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The world is witnessing a steady rise in the prevalence of gestational diabetes mellitus (GDM), correlated with the current obesity epidemic. Both GDM and obesity negatively impact both the health of women but also that of the next generation. GDM and maternal obesity are associated with increased maternal and fetal inflammation and oxidative stress. A safe and effective intervention that can prevent these pathological features, and reduce the intergenerational burden, is required. Phenolic acids, such as punicalagin and curcumin, possess anti-inflammatory and antioxidant properties. Thus, the aim of this study was to examine the effects of punicalagin and curcumin on pro-inflammatory cytokines and chemokines, and antioxidant expression in an in vitro model of inflammation. METHODS Human placenta, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) explants were obtained at term elective Caesarean section and stimulated with TNF alpha (TNF). RESULTS We found that punicalagin and curcumin significantly supressed TNF-induced pro-inflammatory cytokine (IL1A, IL1B, and IL6) and chemokine (CCL2-4, CXCL1, CXCL5 and CXCL8) expression in human placenta, VAT and SAT. Anti-inflammatory cytokine IL4 and IL13 mRNA expression was also upregulated by punicalagin and curcumin treatment in placenta, VAT and SAT. Punicalagin and curcumin also altered antioxidant (SOD2 and catalase) mRNA expression in placenta, VAT and SAT, with minimal effect on hydrogen peroxide concentrations in tissue lysates. CONCLUSION These findings suggest that the phenolic acids punicalagin and curcumin possess potent anti-inflammatory capabilities in in vitro human models of inflammation. Further studies are warranted to determine their suitability as therapeutic interventions for pro-inflammatory gestational complications, including GDM and maternal obesity.
Collapse
Affiliation(s)
- Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Jane C Willcox
- Dietetics and Human Nutrition, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia; Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|
17
|
Vesentini G, Barbosa AMP, Floriano JF, Felisbino SL, Costa SMB, Piculo F, Marini G, Nunes SK, Reyes DRA, Marcondes JPC, Hallur RLS, Rozza AL, Magalhães CG, Costa R, Abbade JF, Corrente JE, Calderon IMP, Matheus SMM, Rudge MVC. Deleterious effects of gestational diabetes mellitus on the characteristics of the rectus abdominis muscle associated with pregnancy-specific urinary incontinence. Diabetes Res Clin Pract 2020; 166:108315. [PMID: 32679058 DOI: 10.1016/j.diabres.2020.108315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/05/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
AIMS To evaluate the effects of gestational diabetes mellitus (GDM) on the structural characteristics of the rectus abdominis muscle (RAM) and its indirect effects on pregnancy-specific urinary incontinence (PSUI). METHODS A total of 92 pregnant women were divided into four groups, according to their clinical conditions: non-GDM continent, non-GDM associated PSUI, GDM continent and GDM associated PSUI. The muscle morphometry (histochemistry and immunohistochemistry) for the fiber types and collagen fiber distribution, the ultrastructural analysis (transmission electron microscopy), the protein expression of fiber types and calcium signaling (Western blotting), and the content of types I and III collagen fiber (ELISA) in RAM collected at delivery were assessed. RESULTS The GDM groups presented a significantly increased number of slow fibers and slow-twitch oxidative fiber expression; decreased fiber area, number of fast fibers, and area of collagen; an increase in central nuclei; ultrastructural alterations with focal lesion areas such as myeloid structures, sarcomere disorganization, and mitochondrial alteration. The PSUI groups presented a considerable decrease in types I and III collagen contents and the localization of collagen fiber. CONCLUSIONS Our data reveal that GDM causes morphological, biochemical and physiological changes in the RAM, and this might predispose women to PSUI.
Collapse
Affiliation(s)
- Giovana Vesentini
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - Angélica M P Barbosa
- São Paulo State University (UNESP), School of Philosophy and Sciences, Department of Physical Therapy and Occupational Therapy, Marilia, São Paulo State, Brazil
| | - Juliana F Floriano
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - Sérgio L Felisbino
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, São Paulo State, Brazil
| | - Sarah M B Costa
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - Fernanda Piculo
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - Gabriela Marini
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil; Universidade Sagrado Coração, Department of Health Sciences, Bauru, São Paulo, Brazil
| | - Sthefanie K Nunes
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - David R A Reyes
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - João P C Marcondes
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - Raghavendra L S Hallur
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - Ariane L Rozza
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, São Paulo State, Brazil
| | - Cláudia G Magalhães
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - Roberto Costa
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - Joelcio F Abbade
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - José E Corrente
- São Paulo State University (UNESP), Institute of Biosciences, Biostatistics Department, Botucatu, São Paulo, Brazil
| | - Iracema M P Calderon
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil
| | - Selma M M Matheus
- São Paulo State University (UNESP), Institute of Biosciences, Department of Anatomy, Botucatu, São Paulo State, Brazil
| | - Marilza V C Rudge
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, São Paulo State, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Department of Gynecology and Obstetrics, Botucatu, Sao Paulo, Brazil.
| |
Collapse
|
18
|
Nobiletin exerts anti-diabetic and anti-inflammatory effects in an in vitro human model and in vivo murine model of gestational diabetes. Clin Sci (Lond) 2020; 134:571-592. [PMID: 32129440 DOI: 10.1042/cs20191099] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
Gestational diabetes mellitus (GDM) is a global health issue, whereby pregnant women are afflicted with carbohydrate intolerance with first onset during pregnancy. GDM is characterized by maternal peripheral insulin resistance, thought to be driven by low-grade maternal inflammation. Nobiletin, a polymethoxylated flavonoid, possesses potent glucose-sensitizing and anti-inflammatory properties; however, its effects in GDM have not been assessed. The present study aimed to determine the effects of nobiletin on glucose metabolism and inflammation associated with GDM in both in vitro human tissues and an in vivo animal model of GDM. In vitro, treatment with nobiletin significantly improved TNF-impaired glucose uptake in human skeletal muscle, and suppressed mRNA expression and protein secretion of pro-inflammatory cytokines and chemokines in human placenta and visceral adipose tissue (VAT). Mechanistically, nobiletin significantly inhibited Akt and Erk activation in placenta, and NF-κB activation in VAT. In vivo, GDM mice treated with 50 mg/kg nobiletin daily via oral gavage from gestational day (gd) 1-17 or via i.p. injections from gd 10-17 significantly improved glucose tolerance. Pregnant GDM mice treated with nobiletin from either gd 1-17 or gd 10-17 exhibited significantly suppressed mRNA expression of pro-inflammatory cytokines and chemokines in placenta, VAT and subcutaneous adipose tissue (SAT). Using a quantitative mass spectrometry approach, we identified differentially abundant proteins associated with the effect of nobiletin in vivo. Together, these studies demonstrate that nobiletin improves glucose metabolism and reduces inflammation associated with GDM and may be a novel therapeutic for the prevention of GDM.
Collapse
|
19
|
Marciniak C, Duhem C, Boulinguiez A, Raverdy V, Baud G, Verkindt H, Caiazzo R, Staels B, Duez H, Pattou F, Lancel S. Differential unfolded protein response in skeletal muscle from non-diabetic glucose tolerant or intolerant patients with obesity before and after bariatric surgery. Acta Diabetol 2020; 57:819-826. [PMID: 32086613 DOI: 10.1007/s00592-020-01490-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 01/08/2023]
Abstract
AIMS Not all people with obesity become glucose intolerant, suggesting differential activation of cellular pathways. The unfolded protein response (UPR) may contribute to the development of insulin resistance in several organs, but its role in skeletal muscle remains debated. Therefore, we explored the UPR activation in muscle from non-diabetic glucose tolerant or intolerant patients with obesity and the impact of bariatric procedures. METHODS Muscle biopsies from 22 normoglycemic (NG, blood glucose measured 120 min after an oral glucose tolerance test, G120 < 7.8 mM) and 22 glucose intolerant (GI, G120 between 7.8 and 11.1 mM) patients with obesity were used to measure UPR activation by RTqPCR and western blot. Then, UPR was studied in biopsies from 7 NG and 7 GI patients before and 1 year after bariatric surgery. RESULTS Binding immunoglobulin protein (BIP) protein was ~ 40% higher in the GI compared to NG subjects. Contrastingly, expression of the UPR-related genes BIP, activating transcription factor 6 (ATF6) and unspliced X-box binding protein 1 (XBP1u) were significantly lower and C/EBP homologous protein (CHOP) tended to decrease (p = 0.08) in GI individuals. While BIP protein positively correlated with fasting blood glucose (r = 0.38, p = 0.01), ATF6 and CHOP were associated with G120 (r = - 0.38 and r = - 0.41, p < 0.05) and the Matsuda index (r = 0.37 and r = 0.38, p < 0.05). Bariatric surgery improved metabolic parameters, associated with higher CHOP expression in GI patients, while ATF6 tended to increase (p = 0.08). CONCLUSIONS CHOP and ATF6 expression decreased in non-diabetic GI patients with obesity and was modified by bariatric surgery. These genes may contribute to glucose homeostasis in human skeletal muscle.
Collapse
Affiliation(s)
- Camille Marciniak
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Christian Duhem
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Alexis Boulinguiez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Violeta Raverdy
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Gregory Baud
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Hélène Verkindt
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Robert Caiazzo
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - Hélène Duez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France
| | - François Pattou
- Univ. Lille, Inserm, CHU Lille, U1190 - EGID, F-59000, Lille, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| |
Collapse
|
20
|
Feng W, Wang Y, Guo N, Huang P, Mi Y. Effects of Astaxanthin on Inflammation and Insulin Resistance in a Mouse Model of Gestational Diabetes Mellitus. Dose Response 2020; 18:1559325820926765. [PMID: 32501299 PMCID: PMC7241269 DOI: 10.1177/1559325820926765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/18/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a condition in which a hormone made by the placenta prevents the body from using insulin effectively. It is important to find an effective treatment. A mouse model of GDM was used to testify the effects of astaxanthin on glucose tolerance and insulin sensitivity. Production of inflammatory cytokines, reactive oxygen species (ROS), and glucose transporter type 4 (GLUT4) translocation and insulin-related signaling were measured in the presence of astaxanthin both in vivo and in vitro. It was found that astaxanthin improved insulin sensitivity, glucose tolerance, and litter size of offspring and reduced birth weight of offspring and inflammation in GDM mouse. Moreover, astaxanthin increased GLUT4 translocating to membrane without altering its secretion/expression and glucose uptake and consumption in C2C12 skeletal muscle cells. Furthermore, ROS generation and insulin-related signaling inhibited by tumor necrosis factor α was restored by astaxanthin. It is concluded that astaxanthin has the potential to attenuate GDM symptoms by regulating inflammation and insulin resistance in skeletal muscle of pregnant mice. Our findings suggest that astaxanthin could be a promising and effective molecule to treat GDM.
Collapse
Affiliation(s)
- Weihong Feng
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Yanxia Wang
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Na Guo
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Pu Huang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Vesentini G, Barbosa AMP, Damasceno DC, Marini G, Piculo F, Matheus SMM, Hallur RLS, Nunes SK, Catinelli BB, Magalhães CG, Costa R, Abbade JF, Corrente JE, Calderon IMP, Rudge MVC, The DIAMATER Study Group. Alterations in the structural characteristics of rectus abdominis muscles caused by diabetes and pregnancy: A comparative study of the rat model and women. PLoS One 2020; 15:e0231096. [PMID: 32243473 PMCID: PMC7122752 DOI: 10.1371/journal.pone.0231096] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVE In the present study, we compared the effect of diabetic pregnancy on the rectus abdominis muscle (RAM) in humans and rats. We hypothesized that our animal model could provide valuable information about alterations in the RAM of women with Gestational Diabetes (GDM). METHOD Newborns female rats (n = 10/group) were administered streptozotocin (100 mg/kg body weight) subcutaneously and were mated on reaching adulthood, to develop the mild hyperglycemic pregnant (MHP) rat model. At the end of pregnancy, the mothers were sacrificed, and the RAM tissue was collected. Pregnant women without GDM (non-GDM group; n = 10) and those diagnosed with GDM (GDM group; n = 8) and undergoing treatment were recruited, and RAM samples were obtained at C-section. The RAM architecture and the distribution of the fast and slow fibers and collagen were studied by immunohistochemistry. RESULTS No statistically significant differences in the maternal and fetal characters were observed between the groups in both rats and women. However, significant changes in RAM architecture were observed. Diabetes in pregnancy increased the abundance of slow fibers and decreased fast fiber number and area in both rats and women. A decrease in collagen distribution was observed in GDM women; however, a similar change was not observed in the MHP rats. CONCLUSION Our results indicated that pregnancy- associated diabetes- induced similar structural adaptations in the RAM of women and rats with slight alterations in fiber type number and area. These findings suggest that the MHP rat model can be used for studying the effects of pregnancy-associated diabetes on the fiber structure of RAM.
Collapse
Affiliation(s)
- Giovana Vesentini
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Angélica M. P. Barbosa
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Physiotherapy and Occupational Therapy, São Paulo State University (UNESP), School of Philosophy and Sciences, Marilia, São Paulo, Brazil
| | - Débora C. Damasceno
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Gabriela Marini
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
- Department of Health Sciences, Universidade Sagrado Coração, Bauru, São Paulo, Brazil
| | - Fernanda Piculo
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Selma M. M. Matheus
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Anatomy, São Paulo State University (UNESP), Institute of Biosciences, Botucatu, São Paulo, Brazil
| | - Raghavendra L. S. Hallur
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Sthefanie K. Nunes
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Bruna B. Catinelli
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Claudia G. Magalhães
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Roberto Costa
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Joelcio F. Abbade
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - José E. Corrente
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Biostatistics, São Paulo State University (UNESP), Bioscience Institute, Botucatu, São Paulo, Brazil
| | - Iracema M. P. Calderon
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | - Marilza V. C. Rudge
- Perinatal Diabetes Research Center, University Hospital, Botucatu Medical School, Univ Estadual Paulista_UNESP, Botucatu, São Paulo, Brazil
- Department of Gynecology and Obstetrics, São Paulo State University (UNESP), Botucatu Medical School, Botucatu, São Paulo, Brazil
| | | |
Collapse
|
22
|
DEL-1 ameliorates high-fat diet-induced insulin resistance in mouse skeletal muscle through SIRT1/SERCA2-mediated ER stress suppression. Biochem Pharmacol 2020; 171:113730. [DOI: 10.1016/j.bcp.2019.113730] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
|
23
|
Nguyen-Ngo C, Willcox JC, Lappas M. Anti-Diabetic, Anti-Inflammatory, and Anti-Oxidant Effects of Naringenin in an In Vitro Human Model and an In Vivo Murine Model of Gestational Diabetes Mellitus. Mol Nutr Food Res 2019; 63:e1900224. [PMID: 31343820 DOI: 10.1002/mnfr.201900224] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/25/2019] [Indexed: 11/11/2022]
Abstract
SCOPE Gestational diabetes mellitus (GDM), which affects up to 20% of pregnant women, is associated with maternal peripheral insulin resistance, low-grade inflammation, and oxidative stress. The flavonoid naringenin has potent anti-diabetic, anti-inflammatory, and anti-oxidative properties; however, its effects in GDM remain unknown. The study aimed to determine the effects of naringenin on glucose metabolism, inflammation, and oxidative stress associated with GDM both in vitro and in vivo. METHODS AND RESULTS In vitro, human tissue samples obtained at term elective Caesarean section are stimulated with tumour necrosis factor alpha (TNF) to develop a GDM-like environment. Naringenin treatment significantly improves TNF-impaired glucose uptake in skeletal muscle. In placenta and visceral adipose tissue (VAT), naringenin significantly reduces expression of pro-inflammatory cytokines and chemokines and increases antioxidant mRNA expression. Mechanistically, naringenin suppresses nuclear factor κB activation. In vivo, pregnant heterozygous db/+ mice are used to model GDM. Daily intraperitoneal injections of GDM mice with naringenin from gestational day 10-17 significantly improve glucose tolerance, reduces IL1A mRNA expression, and increases antioxidant mRNA expression in placenta, VAT, and subcutaneous adipose tissue. CONCLUSION Naringenin is shown to improve insulin sensitivity, inflammation, and oxidative stress associated with GDM and shows promise as a novel preventive therapeutic.
Collapse
Affiliation(s)
- Caitlyn Nguyen-Ngo
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, 3084, Victoria, Australia
| | - Jane C Willcox
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, 3086, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, 3084, Victoria, Australia
| |
Collapse
|
24
|
Minchenko OH, Viletska YM, Minchenko DO, Davydov VV. Insulin resistance in obese adolescents and adult men modifies the expression of proliferation related genes. UKRAINIAN BIOCHEMICAL JOURNAL 2019. [DOI: 10.15407/ubj91.03.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
25
|
Yeo YH, Lai YC. Redox Regulation of Metabolic Syndrome: Recent Developments in Skeletal Muscle Insulin Resistance and Non-alcoholic Fatty Liver Disease (NAFLD). CURRENT OPINION IN PHYSIOLOGY 2019; 9:79-86. [PMID: 32818162 DOI: 10.1016/j.cophys.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several new discoveries over the past decade have shown that metabolic syndrome, a cluster of metabolic disorders, including increased visceral obesity, hyperglycemia, hypertension, dyslipidemia and low HDL-cholesterol, is commonly associated with skeletal muscle insulin resistance. More recently, non-alcoholic fatty liver disease (NAFLD) was recognized as an additional condition that is strongly associated with features of metabolic syndrome. While the pathogenesis of skeletal muscle insulin resistance and fatty liver is multifactorial, the role of dysregulated redox signaling has been clearly demonstrated in the regulation of skeletal muscle insulin resistance and NAFLD. In this review, we aim to provide recent updates on redox regulation with respect to (a) pro-oxidant enzymes (e.g. NAPDH oxidase and xanthine oxidase); (b) mitochondrial dysfunction; (c) endoplasmic reticulum (ER) stress; (d) iron metabolism derangements; and (e) gut-skeletal muscle or gut-liver connection in the development of skeletal muscle insulin resistance and NAFLD. Furthermore, we discuss promising new therapeutic strategies targeting redox regulation currently under investigation for the treatment of skeletal muscle insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Yee-Hui Yeo
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, California, USA
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University School of Medicine; Indianapolis, IN, USA
| |
Collapse
|
26
|
Glucosamine induces increased musclin gene expression through endoplasmic reticulum stress-induced unfolding protein response signaling pathways in mouse skeletal muscle cells. Food Chem Toxicol 2018; 125:95-105. [PMID: 30602124 DOI: 10.1016/j.fct.2018.12.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022]
Abstract
Glucosamine (GlcN) is a dietary supplement that is widely used to promote joint health. Reports have demonstrated that oral GlcN adversely affects glucose metabolism. Here, we found that oral administration of GlcN induced insulin resistance (IR) and increased plasma glucose levels in mice. Musclin is a muscle-secreted cytokine that participates in the development and aggravation of diabetes. In this study, we found that increased expression of the musclin plays a pathogenic role in GlcN-induced IR in mice. Additional in vivo and in vitro studies showed that 4-PBA inhibited GlcN-induced endoplasmic reticulum (ER) stress and reduced musclin expression, indicating that ER stress might be closely linked to musclin expression. Moreover, the inhibition of musclin gene expression was also observed when sh-RNAs and small molecular compound inhibitors inhibited ER stress-induced PERK and IRE1-associated unfolding protein response (UPR) signaling pathways, and the CRISPR/Cas9 genome editing technology knockout the ATF6-associated UPR pathway in C2C12 myotubes cells. Silencing of the expression of musclin effectively relieved GlcN-affected phosphorylation of Akt, glucose intake and glycogen synthesis. These results suggest that GlcN increased musclin gene expression though UPR, and musclin represents an important mechanism underlying GlcN-induced IR in mice.
Collapse
|
27
|
Villalobos-Labra R, Subiabre M, Toledo F, Pardo F, Sobrevia L. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med 2018; 66:49-61. [PMID: 30472165 DOI: 10.1016/j.mam.2018.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Diabesity is an abnormal metabolic condition shown by patients with obesity that develop type 2 diabetes mellitus. Patients with diabesity present with insulin resistance, reduced vascular response to insulin, and vascular endothelial dysfunction. Along with the several well-described mechanisms of insulin resistance, a state of endoplasmic reticulum (ER) stress, where the primary human targets are the adipose tissue, liver, skeletal muscle, and the foetoplacental vasculature, is apparent. ER stress characterises by the activation of the unfolded protein response via three canonical ER stress sensors, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6. Slightly different cell signalling mechanisms preferentially enable in diabesity in the ER stress-associated insulin resistance for adipose tissue (IRE1α/X-box binding protein 1 mRNA splicing/c-jun N-terminal kinase 1 activation), skeletal muscle (tribbles-like protein 3 (TRB3)/proinflammatory cytokines activation), and liver (PERK/activating transcription factor 4/TRB3 activation). There is no information in human subjects with diabesity in the foetoplacental vasculature. However, the available literature shows that pregnant women with pre-pregnancy obesity or overweight that develop gestational diabetes mellitus (GDM) and their newborn show insulin resistance. ER stress is recently reported to be triggered in endothelial cells from the human umbilical vein from mothers with pre-pregnancy obesity. However, whether a different metabolic alteration to obesity in pregnancy or GDM is present in women with pre-pregnancy obesity that develop GDM, is unknown. In this review, we summarised the findings on diabesity-associated mechanisms of insulin resistance with emphasis in the primary targets adipose, skeletal muscle, liver, and foetoplacental tissues. We also give evidence on the possibility of a new GDM-associated metabolic condition triggered in pregnancy by maternal obesity, i.e. gestational diabesity, leading to ER stress-associated insulin resistance in the human foetoplacental vasculature.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile.
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, 3780000, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Metabolic Diseases Research Laboratory, Interdisciplinary Center of Territorial Health Research (CIISTe), San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, 2172972, San Felipe, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia.
| |
Collapse
|
28
|
Moyce BL, Dolinsky VW. Maternal β-Cell Adaptations in Pregnancy and Placental Signalling: Implications for Gestational Diabetes. Int J Mol Sci 2018; 19:ijms19113467. [PMID: 30400566 PMCID: PMC6274918 DOI: 10.3390/ijms19113467] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Rates of gestational diabetes mellitus (GDM) are on the rise worldwide, and the number of pregnancies impacted by GDM and resulting complications are also increasing. Pregnancy is a period of unique metabolic plasticity, during which mild insulin resistance is a physiological adaptation to prioritize fetal growth. To compensate for this, the pancreatic β-cell utilizes a variety of adaptive mechanisms, including increasing mass, number and insulin-secretory capacity to maintain glucose homeostasis. When insufficient insulin production does not overcome insulin resistance, hyperglycemia can occur. Changes in the maternal system that occur in GDM such as lipotoxicity, inflammation and oxidative stress, as well as impairments in adipokine and placental signalling, are associated with impaired β-cell adaptation. Understanding these pathways, as well as mechanisms of β-cell dysfunction in pregnancy, can identify novel therapeutic targets beyond diet and lifestyle interventions, insulin and antihyperglycemic agents currently used for treating GDM.
Collapse
Affiliation(s)
- Brittany L Moyce
- Department of Pharmacology & Therapeutics and the Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba and the Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics and the Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba and the Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
29
|
Skórzyńska-Dziduszko KE, Kimber-Trojnar Ż, Patro-Małysza J, Stenzel-Bembenek A, Oleszczuk J, Leszczyńska-Gorzelak B. Heat Shock Proteins as a Potential Therapeutic Target in the Treatment of Gestational Diabetes Mellitus: What We Know so Far. Int J Mol Sci 2018; 19:ijms19103205. [PMID: 30336561 PMCID: PMC6213996 DOI: 10.3390/ijms19103205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a complex condition that involves a variety of pathological mechanisms, including pancreatic β-cell failure, insulin resistance, and inflammation. There is an increasing body of literature suggesting that these interrelated phenomena may arise from the common mechanism of endoplasmic reticulum (ER) stress. Both obesity-associated nutrient excess and hyperglycemia disturb ER function in protein folding and transport. This results in the accumulation of polypeptides in the ER lumen and impairs insulin secretion and signaling. Exercise elicits metabolic adaptive responses, which may help to restore normal chaperone expression in insulin-resistant tissues. Pharmacological induction of chaperones, mimicking the metabolic effect of exercise, is a promising therapeutic tool for preventing GDM by maintaining the body's natural stress response. Metformin, a commonly used diabetes medication, has recently been identified as a modulator of ER-stress-associated inflammation. The results of recent studies suggest the potential use of chemical ER chaperones and antioxidant vitamins as therapeutic interventions that can prevent glucose-induced ER stress in GDM placentas. In this review, we discuss whether chaperones may significantly contribute to the pathogenesis of GDM, as well as whether they can be a potential therapeutic target in GDM treatment.
Collapse
Affiliation(s)
| | - Żaneta Kimber-Trojnar
- Department of Obstetrics and Perinatology, Medical University of Lublin, K. Jaczewskiego 8 Street, 20-954 Lublin, Poland.
| | - Jolanta Patro-Małysza
- Department of Obstetrics and Perinatology, Medical University of Lublin, K. Jaczewskiego 8 Street, 20-954 Lublin, Poland.
| | - Agnieszka Stenzel-Bembenek
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, W. Chodźki 1 Street, 20-093 Lublin, Poland.
| | - Jan Oleszczuk
- Department of Obstetrics and Perinatology, Medical University of Lublin, K. Jaczewskiego 8 Street, 20-954 Lublin, Poland.
| | - Bożena Leszczyńska-Gorzelak
- Department of Obstetrics and Perinatology, Medical University of Lublin, K. Jaczewskiego 8 Street, 20-954 Lublin, Poland.
| |
Collapse
|
30
|
Chen J, Zhang M, Zhu M, Gu J, Song J, Cui L, Liu D, Ning Q, Jia X, Feng L. Paeoniflorin prevents endoplasmic reticulum stress-associated inflammation in lipopolysaccharide-stimulated human umbilical vein endothelial cells via the IRE1α/NF-κB signaling pathway. Food Funct 2018; 9:2386-2397. [PMID: 29594285 DOI: 10.1039/c7fo01406f] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum (ER) stress-associated inflammation is a critical molecular mechanism involved in the pathogenesis of endothelial dysfunction (ED). Hence, strategies for alleviating ER stress-induced inflammation may be essential for the prevention of cardiovascular diseases. Paeoniflorin (PF), a bioactive compound from Paeonia lactiflora Pallas is known for its functional properties against vascular inflammation. However, to date, PF-mediated protection against ER stress-dependent inflammation has not been identified. Herein, we investigate the protective effect of PF on lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cell (HUVEC) injury and explore its underlying mechanism. The result of the cell viability assay indicates that PF promotes the cell survival rate in LPS-stimulated HUVECs. In addition, the LPS-induced over-production of inflammatory cytokines (interleukin-6 (IL-6) and monocyte chemotactic protein 1 (MCP-1)) and ER stress markers (78 kDa glucose regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)) are significantly decreased by PF and the ER stress inhibitor 4-phenylbutric acid (4-PBA). The transmission electron microscopy (TEM) assay implies that the ultrastructural abnormalities in ER are reversed by PF treatment, which is similar to the protective effect of 4-PBA. Impressively, we find that the inositol-requiring enzyme 1α (IRE1α)/nuclear factor-kappa B (NF-κB) pathway is significantly activated and contributes to the progress of LPS-induced HUVEC injury by promoting inflammatory cytokine production. IRE1α siRNA, AEBSF (ATF6 inhibitor), GSK2656157 (PERK inhibitor), PDTC (NF-κB inhibitor) and thapsigargin (TG, IRE1 activator) are used to confirm the role of the IRE1α/NF-κB pathway in PF-mediated protection against LPS-induced HUVEC injury. Our findings indicate that PF has an inhibitory effect on endothelial injury. To summarize, PF might be a potential therapeutic agent to inhibit ER stress-associated vascular inflammation.
Collapse
Affiliation(s)
- Juan Chen
- School of Life Sciences, Anhui University, Hefei 230601, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Villalobos-Labra R, Sáez PJ, Subiabre M, Silva L, Toledo F, Westermeier F, Pardo F, Farías M, Sobrevia L. Pre-pregnancy maternal obesity associates with endoplasmic reticulum stress in human umbilical vein endothelium. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3195-3210. [PMID: 30006153 DOI: 10.1016/j.bbadis.2018.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/23/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Obesity associates with the endoplasmic reticulum (ER) stress-induced endothelial dysfunction. Pregnant women with pre-pregnancy maternal obesity (PGMO) may transfer this potential risk to their offspring; however, whether ER stress occurs and associates with foetoplacental endothelial dysfunction in PGMO is unknown. We studied the l-arginine transport and nitric oxide (NO) synthesis in human umbilical vein endothelial cells (HUVECs) from women with PGMO or with a normal pre-pregnancy weight. We analysed the expression and activation of the ER stress sensors protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). PGMO associated with lower endothelial NO synthase activity due to increased Thr495-inhibitor and decreased Ser1177-stimulator phosphorylation. However, higher expression and activity of the human cationic amino acid transporter 1 was found. PGMO caused activation of PERK and its downstream targets eukaryotic initiation factor 2 (eIF2α), C/EBP homologous protein 10 (CHOP), and tribbles-like protein 3 (TRB3). Increased IRE1α protein abundance (but not its phosphorylation or X-box binding protein 1-mRNA splicing) and increased c-Jun N-terminal kinase 1 phosphorylation was seen in PGMO. A preferential nuclear location of the activating transcription factor 6 (ATF6) was found in HUVECs from PGMO. All the changes seen in PGMO were blocked by TUDCA but unaltered by tunicamycin. Thus, PGMO may determine a state of ER stress via upregulation of the PERK-eIF2α-CHOP-TRB3 axis signalling in HUVECs. This phenomenon results in foetoplacental vascular endothelial dysfunction at birth.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Pablo J Sáez
- Institut Curie, Paris Sciences & Lettres Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Groningen 9700, RB, the Netherlands
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Francisco Westermeier
- FH JOANNEUM Gesellschaft mbH University of Applied Sciences, Institute of Biomedical Science, Eggenberger Allee 13, 8020 Graz, Austria
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Metabolic Diseases Research Laboratory, Center of Research, Development and Innovation in Health - Aconcagua Valley, San Felipe Campus, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe 2172972, Chile
| | - Marcelo Farías
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia.
| |
Collapse
|
32
|
Ye Z, Liu G, Guo J, Su Z. Hypothalamic endoplasmic reticulum stress as a key mediator of obesity-induced leptin resistance. Obes Rev 2018. [PMID: 29514392 DOI: 10.1111/obr.12673] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is an epidemic disease that is increasing worldwide and is a major risk factor for many metabolic diseases. However, effective agents for the prevention or treatment of obesity remain limited. Therefore, it is urgent to clarify the pathophysiological mechanisms underlying the development and progression of obesity and exploit potential agents to cure and prevent this disease. According to a recent study series, obesity is associated with the development of endoplasmic reticulum stress and the activation of its stress responses (unfolded protein response) in metabolically active tissues, which contribute to the development of obesity-related insulin and leptin resistance, inflammation and energy imbalance. Hypothalamic endoplasmic reticulum stress is the central mechanism underlying the development of obesity-associated leptin resistance and disruption of energy homeostasis; thus, targeting endoplasmic reticulum stress offers a promising therapeutic strategy for improving leptin sensitivity, increasing energy expenditure and ultimately combating obesity. In this review, we highlight the relationship between and mechanism underlying hypothalamic endoplasmic reticulum stress and obesity-associated leptin resistance and energy imbalance and provide new insight regarding strategies for the treatment of obesity.
Collapse
Affiliation(s)
- Z Ye
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| | - G Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - J Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China
| | - Z Su
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
33
|
Ahlstrom P, Rai E, Chakma S, Cho HH, Rengasamy P, Sweeney G. Adiponectin improves insulin sensitivity via activation of autophagic flux. J Mol Endocrinol 2017; 59:339-350. [PMID: 28954814 DOI: 10.1530/jme-17-0096] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/04/2017] [Indexed: 12/26/2022]
Abstract
Skeletal muscle insulin resistance is known to play an important role in the pathogenesis of diabetes, and one potential causative cellular mechanism is endoplasmic reticulum (ER) stress. Adiponectin mediates anti-diabetic effects via direct metabolic actions and by improving insulin sensitivity, and we recently demonstrated an important role in stimulation of autophagy by adiponectin. However, there is limited knowledge on crosstalk between autophagy and ER stress in skeletal muscle and in particular how they are regulated by adiponectin. Here, we utilized the model of high insulin/glucose (HIHG)-induced insulin resistance, determined by measuring Akt phosphorylation (T308 and S473) and glucose uptake in L6 skeletal muscle cells. HIHG reduced autophagic flux measured by LC3 and p62 Western blotting and tandem fluorescent RFP/GFP-LC3 immunofluorescence (IF). HIHG also induced ER stress assessed by thioflavin T/KDEL IF, pIRE1, pPERK, peIF2α and ATF6 Western blotting and induction of a GRP78-mCherry reporter. Induction of autophagy by adiponectin or rapamycin attenuated HIHG-induced ER stress and improved insulin sensitivity. The functional significance of enhanced autophagy was validated by demonstrating a lack of improved insulin sensitivity in response to adiponectin in autophagy-deficient cells generated by overexpression of dominant negative mutant of Atg5. In summary, adiponectin-induced autophagy in skeletal muscle cells alleviated HIHG-induced ER stress and insulin resistance.
Collapse
Affiliation(s)
| | - Esther Rai
- Department of BiologyYork University, Toronto, Canada
| | | | - Hee Ho Cho
- Department of BiologyYork University, Toronto, Canada
| | | | - Gary Sweeney
- Department of BiologyYork University, Toronto, Canada
| |
Collapse
|
34
|
Boulinguiez A, Staels B, Duez H, Lancel S. Mitochondria and endoplasmic reticulum: Targets for a better insulin sensitivity in skeletal muscle? Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:901-916. [PMID: 28529179 DOI: 10.1016/j.bbalip.2017.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022]
Abstract
Obesity and its associated metabolic disorders represent a major health burden, with economic and social consequences. Although adapted lifestyle and bariatric surgery are effective in reducing body weight, obesity prevalence is still rising. Obese individuals often become insulin-resistant. Obesity impacts on insulin responsive organs, such as the liver, adipose tissue and skeletal muscle, and increases the risk of cardiovascular diseases, type 2 diabetes and cancer. In this review, we discuss the effects of obesity and insulin resistance on skeletal muscle, an important organ for the control of postprandial glucose. The roles of mitochondria and the endoplasmic reticulum in insulin signaling are highlighted and potential innovative research and treatment perspectives are proposed.
Collapse
Affiliation(s)
- Alexis Boulinguiez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Hélène Duez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000, Lille, France.
| |
Collapse
|
35
|
Tran HT, Liong S, Lim R, Barker G, Lappas M. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle. PLoS One 2017; 12:e0173373. [PMID: 28278187 PMCID: PMC5344491 DOI: 10.1371/journal.pone.0173373] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/20/2017] [Indexed: 01/07/2023] Open
Abstract
Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM.
Collapse
Affiliation(s)
- Ha T. Tran
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Stella Liong
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- * E-mail:
| |
Collapse
|
36
|
Lipopolysaccharide and double stranded viral RNA mediate insulin resistance and increase system a amino acid transport in human trophoblast cells in vitro. Placenta 2017; 51:18-27. [PMID: 28292465 DOI: 10.1016/j.placenta.2017.01.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Inflammation and underlying low-grade maternal infection can impair insulin signalling and upregulate nutrient transport in the placenta which contribute to fetal overgrowth associated with GDM and/or obese pregnancies. There are, however, no studies on the role of infection on placental nutrient transport in pregnancies complicated by GDM and/or obesity. Thus, the aims of this study were to determine the effect of the bacterial product lipopolysaccharide (LPS) or the viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on the insulin signalling pathway and amino acid transport in primary human trophoblast cells. METHODS Human primary villous trophoblast cells were treated with LPS or poly(I:C). Protein expression of insulin signalling pathway proteins, insulin receptor (IR)-β, insulin receptor substrate (IRS)-1 and protein kinase B (also known as Akt), and phosphatidylinositol-4,5-bisphosphate 3-kinase p85α subunit (PI3K-p85α) protein were assessed by Western blotting. Glucose and amino acid uptake were assessed by radiolabelled assay. Western blotting and qRT-PCR were used to determine amino acid transporter protein and mRNA expression, respectively. RESULTS LPS and poly(I:C) significantly decreased phosphorylation of IR-β, IRS-1, Akt, total PI3K-p85α protein expression and glucose uptake. LPS and poly(I:C) also significantly increased expression of System A amino acid transporters SNAT1 and SNAT2, and System A-mediated uptake of amino acids. DISCUSSION LPS and poly(I:C) induces insulin resistance and increases amino acid uptake in human primary trophoblast cells. This suggests that the presence of low-grade maternal infection can contribute to excess placental nutrient availability and promote fetal overgrowth in pregnancies complicated by GDM and/or obesity.
Collapse
|
37
|
Chen J, Hou XF, Wang G, Zhong QX, Liu Y, Qiu HH, Yang N, Gu JF, Wang CF, Zhang L, Song J, Huang LQ, Jia XB, Zhang MH, Feng L. Terpene glycoside component from Moutan Cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:433-444. [PMID: 27664441 DOI: 10.1016/j.jep.2016.09.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multiple lines of evidences have suggested that endoplasmic reticulum (ER) stress-related inflammatory responses play a critical role in the pathogenesis of diabetic nephropathy (DN). Moutan Cortex (MC), the root bark of Paeonia suffruticosa Andr., is a well-known traditional Chinese medicine (TCM), which has been used clinically for treating inflammatory diseases in China. The findings from our previous research suggested that terpene glycoside (TG) component of MC possessed favorable anti-inflammatory properties in curing DN. However, the underlying mechanisms of MC-TG for treating DN are still unknown. AIM OF THE STUDY To explore the role of ER stress-related inflammatory responses in the progression of DN, and to investigate the underlying protective mechanisms of MC-TG in kidney damage. MATERIALS AND METHODS DN rats and advanced glycation end-products (AGEs) induced HBZY-1 cell dysfunction were established to evaluate the protective effect of MC-TG on ameliorating renal injury. Evaluation of pathological lesions was performed by Masson staining and transmission electron microscopy (TEM). Interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), glucose regulated protein 78 (GRP78/Bip), as well as spliced X box binding protein 1(XBP-1(s)) levels in rat serum were detected by an enzyme-linked immunosorbent assay (ELISA). Furthermore, western blotting (WB) was applied to detect the protein expressions including IL-6, MCP-1, intercellular cell adhesion molecule-1 (ICAM-1), GRP78/Bip, XBP-1 (s), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), cleaved activating transcription factor 6 (ATF6), phosphorylated PKR-like endoplasmic reticulum kinase (p-PERK), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in vivo and in vitro. Immunohistochemistry (IHC) was carried out to determine the phosphorylation of IRE1α and NF-κB p65 in kidney tissues. RESULTS Pretreatment with MC-TG could markedly improve renal insufficiency and pathologic changes. It could down-regulate ER stress-related factors GRP78/Bip, XBP-1(s) levels, and also reduce the pro-inflammatory molecules IL-6, MCP-1, and ICAM-1 expressions. Furthermore, a significant decrease in phosphorylation of IRE1α and NF-κB p65 by the treatment of MC-TG. CONCLUSIONS These findings indicated that MC-TG ameliorated ER stress-related inflammation in the pathogenesis of DN, wherein the protective mechanism might be associated with the inhibition of IRE1/NF-κB activation. Thus, MC-TG might be a potential therapeutic candidate for the prevention and treatment of DN.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Cell Line
- Chromatography, High Pressure Liquid
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/prevention & control
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Endoplasmic Reticulum Stress/drug effects
- Glycation End Products, Advanced/metabolism
- Glycosides/chemistry
- Glycosides/isolation & purification
- Glycosides/pharmacology
- Inflammation Mediators/metabolism
- Male
- Membrane Proteins/metabolism
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Mesangial Cells/ultrastructure
- Paeonia/chemistry
- Phosphorylation
- Phytotherapy
- Plants, Medicinal
- Protein Serine-Threonine Kinases/metabolism
- Rats, Sprague-Dawley
- Renal Insufficiency/etiology
- Renal Insufficiency/metabolism
- Renal Insufficiency/pathology
- Renal Insufficiency/prevention & control
- Signal Transduction/drug effects
- Streptozocin
- Terpenes/chemistry
- Terpenes/isolation & purification
- Terpenes/pharmacology
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng 100700, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Xue-Feng Hou
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230012, PR China
| | - Gang Wang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Qing-Xiang Zhong
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Ying Liu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Hui-Hui Qiu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Nan Yang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Jun-Fei Gu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Chun-Fei Wang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Li Zhang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Jie Song
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng 100700, PR China
| | - Xiao-Bin Jia
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210028, PR China.
| | - Ming-Hua Zhang
- Department of Pharmacy, Wuxi Xishan People's Hospital, Jiangsu, Wuxi 214011, PR China.
| | - Liang Feng
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210028, PR China.
| |
Collapse
|
38
|
Hu S, Wang J, Wang J, Xue C, Wang Y. Long-chain bases from sea cucumber mitigate endoplasmic reticulum stress and inflammation in obesity mice. J Food Drug Anal 2016; 25:628-636. [PMID: 28911649 PMCID: PMC9328807 DOI: 10.1016/j.jfda.2016.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/09/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and inflammation can induce hyperglycemia. Long-chain bases (LCBs) from sea cucumber exhibit antihyperglycemic activities. However, their effects on ER stress and inflammation are unknown. We investigated the effects of LCBs on ER stress and inflammatory response in high-fat, fructose diet-induced obesity mice. Reactive oxygen species and free fatty acids were measured. Inflammatory cytokines in serum and their mRNA expressions in epididymal adipose tissues were investigated. Hepatic ER stress-related key genes were detected. c-Jun NH2-terminal kinase and nuclear factor κB inflammatory pathways were also evaluated in the liver. Results showed that LCBs reduced serum and hepatic reactive oxygen species and free fatty acids concentrations. LCBs decreased serum proinflammatory cytokines levels, namely interleukin (IL)-1β, tumor necrosis factor-α, IL-6, macrophage inflammatory protein 1, and c-reactive protein, and increased anti-inflammatory cytokine IL-10 concentration. The mRNA and protein expressions of these cytokines in epididymal adipose tissues were regulated by LCBs as similar to their circulatory contents. LCBs inhibited phosphorylated c-Jun NH2-terminal kinase and inhibitor κ kinase β, and nuclear factor κB nuclear translocation. LCBs also inhibited mRNA expression of ER stress markers glucose regulated protein, activating transcription factor 6, double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase, and X-box binding protein 1, and phosphorylation of eukaryotic initiation factor-α and inositol requiring enzyme 1α. These results indicate that LCBs can alleviate ER stress and inflammatory response. Nutritional supplementation with LCBs may offer an adjunctive therapy for RE stress-associated inflammation.
Collapse
Affiliation(s)
- Shiwei Hu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China; College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China.
| | - Jinhui Wang
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhejiang Province, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|