1
|
Ueda Y, Iwakura H, Ensho T, Bando‐Shimizu M, Doi A, Matsutani N, Morita S, Inaba H, Ariyasu H, Fukuda N, Hayata K, Ojima T, Nishi M, Matsuoka T, Yamaue H, Akamizu T. Tryptophan-sensing receptor GPR142 expression levels are directly regulated by proinflammatory cytokines in ghrelin-producing cells. FEBS Open Bio 2025; 15:763-772. [PMID: 39888273 PMCID: PMC12051013 DOI: 10.1002/2211-5463.13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
GPR142 is a tryptophan-sensing receptor that has been implicated in the regulation of inflammation. In this study, we investigated the relationships between inflammatory cytokine and GPR142 expression by using cellular, animal models, and human stomach samples. We found that addition of TNF-α, IL-6, and IL-1β into the culture of ghrelin-producing cell line, MGN3-1 cells, increased GPR142 mRNA expression levels. Lipopolysaccharide (LPS) injection to mice significantly increased GPR142 expression in the stomach, confirming the results observed in the cellular model. GPR142 mRNA expression levels in the stomach samples of morbidly obese patients were positively correlated with TNF-α, IL-6, and IL-1β mRNA levels. Taken together our results suggest that GPR142 expression is under the direct control of proinflammatory cytokines and support further investigation of GPR142 potential roles in inflammation.
Collapse
Affiliation(s)
- Yoko Ueda
- Department of PharmacotherapeuticsSchool of Pharmaceutical Science, Wakayama Medical UniversityWakayamaJapan
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroshi Iwakura
- Department of PharmacotherapeuticsSchool of Pharmaceutical Science, Wakayama Medical UniversityWakayamaJapan
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Takuya Ensho
- Department of PharmacotherapeuticsSchool of Pharmaceutical Science, Wakayama Medical UniversityWakayamaJapan
| | - Mika Bando‐Shimizu
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Asako Doi
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Norihiko Matsutani
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shuhei Morita
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hidefumi Inaba
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroyuki Ariyasu
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Naoki Fukuda
- Second Department of SurgeryWakayama Medical UniversityWakayamaJapan
| | - Keiji Hayata
- Second Department of SurgeryWakayama Medical UniversityWakayamaJapan
| | - Toshiyasu Ojima
- Second Department of SurgeryWakayama Medical UniversityWakayamaJapan
| | - Masahiro Nishi
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
- Department of Medical Technology, Faculty of Health SciencesKansai University of Medical SciencesOsakaJapan
| | - Taka‐aki Matsuoka
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hiroki Yamaue
- Second Department of SurgeryWakayama Medical UniversityWakayamaJapan
| | - Takashi Akamizu
- The First Department of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
2
|
O'Connor KM, Ashoori M, Dias ML, Dempsey EM, O'Halloran KD, McDonald FB. Influence of innate immune activation on endocrine and metabolic pathways in infancy. Am J Physiol Endocrinol Metab 2021; 321:E24-E46. [PMID: 33900849 DOI: 10.1152/ajpendo.00542.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prematurity is the leading cause of neonatal morbidity and mortality worldwide. Premature infants often require extended hospital stays, with increased risk of developing infection compared with term infants. A picture is emerging of wide-ranging deleterious consequences resulting from innate immune system activation in the newborn infant. Those who survive infection have been exposed to a stimulus that can impose long-lasting alterations into later life. In this review, we discuss sepsis-driven alterations in integrated neuroendocrine and metabolic pathways and highlight current knowledge gaps in respect of neonatal sepsis. We review established biomarkers for sepsis and extend the discussion to examine emerging findings from human and animal models of neonatal sepsis that propose novel biomarkers for early identification of sepsis. Future research in this area is required to establish a greater understanding of the distinct neonatal signature of early and late-stage infection, to improve diagnosis, curtail inappropriate antibiotic use, and promote precision medicine through a biomarker-guided empirical and adjunctive treatment approach for neonatal sepsis. There is an unmet clinical need to decrease sepsis-induced morbidity in neonates, to limit and prevent adverse consequences in later life and decrease mortality.
Collapse
Affiliation(s)
- K M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - M Ashoori
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - M L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - E M Dempsey
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, School of Medicine, College of Medicine and Health, Cork University Hospital, Wilton, Cork, Ireland
| | - K D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| | - F B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
- Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Ghrelin was discovered in 1999; extensive research and clinical studies on ghrelin have been published in the last 20 years. Physiological research on ghrelin ranges from its appetite-stimulating effects to its association with energy homeostasis. The physiological effects of ghrelin in the gastrointestinal tract and its relevance in the pathological conditions of the gastrointestinal tract have gradually become clearer. The purpose of the review is to provide current information on ghrelin cell biology and physiology, particularly in the gastrointestinal tract. RECENT FINDINGS Ghrelin-producing cells in the stomach are characterized as X/A-like cells, but immunohistochemical analyses have revealed co-expression of several secreted proteins and hormones in ghrelin-producing cells such as nesfatin-1, somatostatin, and pancreastatin. Furthermore, the local physiological roles and/or mechanisms of ghrelin in gastrointestinal functions such as gastric motility and inflammation are discussed. SUMMARY Ghrelin is a brain-gut hormone with a wide range of physiological actions; hence, it is important to understand its effects on the physiological functions of the gastrointestinal tract to elucidate the biological significance of ghrelin.
Collapse
Affiliation(s)
- Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | |
Collapse
|
4
|
Zhang H, Li Q, Teng Y, Lin Y, Li S, Qin T, Chen L, Huang J, Zhai H, Yu Q, Xu G. Interleukin-27 decreases ghrelin production through signal transducer and activator of transcription 3-mechanistic target of rapamycin signaling. Acta Pharm Sin B 2020; 10:837-849. [PMID: 32528831 PMCID: PMC7280146 DOI: 10.1016/j.apsb.2019.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023] Open
Abstract
Interleukin-27 (IL-27), a heterodimeric cytokine, plays a protective role in diabetes. Ghrelin, a gastric hormone, provides a hunger signal to the central nervous system to stimulate food intake. The relationship between IL-27 and ghrelin is still unexplored. Here we investigated that signal transducer and activator of transcription 3 (STAT3)—mechanistic target of rapamycin (mTOR) signaling mediates the suppression of ghrelin induced by IL-27. Co-localization of interleukin 27 receptor subunit alpha (WSX-1) and ghrelin was observed in mouse and human gastric mucosa. Intracerebroventricular injection of IL-27 markedly suppressed ghrelin synthesis and secretion while stimulating STAT3–mTOR signaling in both C57BL/6J mice and high-fat diet-induced-obese mice. IL-27 inhibited the production of ghrelin in mHypoE-N42 cells. Inhibition of mTOR activity induced by mTOR siRNA or rapamycin blocked the suppression of ghrelin production induced by IL-27 in mHypoE-N42 cells. Stat 3 siRNA also abolished the inhibitory effect of IL-27 on ghrelin. IL-27 increased the interaction between STAT3 and mTOR in mHypoE-N42 cells. In conclusion, IL-27 suppresses ghrelin production through the STAT3-mTOR dependent mechanism.
Collapse
|
5
|
Varda NM, Medved M, Ojsteršek L. The associations between some biological markers, obesity, and cardiovascular risk in Slovenian children and adolescents. BMC Pediatr 2020; 20:81. [PMID: 32085704 PMCID: PMC7033855 DOI: 10.1186/s12887-020-1978-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION The occurrence of cardiovascular diseases and metabolic disorders steadily increases with the body mass index (BMI). Since the latter is not the best and earliest indicator of obesity and cardiovascular risk, the aim of the study was to evaluate some potential biological markers that would allow us to detect children and adolescents at higher risk at an early stage. METHODS A sample of 330 children and adolescents were included in the study and divided into four groups: obese patients with hypertension, normal-weight patients with hypertension, patients with mildly elevated lipids and a control group of healthy children and adolescents. Some clinical parameters (age, body weight, body height, BMI, waist circumference, hip circumference, blood pressure), biochemical parameters (glucose, total cholesterol, triglycerides, HDL, LDL, apolipoprotein A1, homocysteine) and biological markers of obesity (ghrelin, adiponectin, leptin) were evaluated. RESULTS Ghrelin and adiponectin were found to have a strong negative statistically significant correlation with BMI in all three observed groups (p < 0.001), but not in the control group (p = 0.053 and p = 0.316, respectively). In addition, leptin had a strong positive statistically significant correlation with BMI in all four groups (p < 0.001 for the research groups, p = 0.009 for the controls). In the group of obese patients with hypertension, statistically significant differences in all three markers of obesity were found in comparison to the control group (p < 0.001 for all markers). In the group of patients with mildly elevated lipids, ghrelin and leptin were significantly different (p = 0.002 and p < 0.001, respectively). In the group of normal-weight hypertensive patients, only values of ghrelin were different compared to the control group (p = 0.001). CONCLUSION In the research groups, significant differences were found in clinical, biochemical and biological parameters compared to the control group. The observed biological markers of obesity are useful early markers for identifying groups of patients that are at cardiovascular risk.
Collapse
Affiliation(s)
- Nataša Marčun Varda
- Department of Pediatrics, University Medical Center Maribor, Ljubljanska 5, 2000, Maribor, Slovenia.
| | - Martina Medved
- University Medical Center Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
| | - Laura Ojsteršek
- University Medical Center Maribor, Ljubljanska ulica 5, 2000, Maribor, Slovenia
| |
Collapse
|
6
|
SAĞKAN ÖZTÜRK A, ARPACI A. Obezite ve Ghrelin/Leptin İlişkisi. MUSTAFA KEMAL ÜNIVERSITESI TIP DERGISI 2018. [DOI: 10.17944/mkutfd.328412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Holubová M, Blechová M, Kákonová A, Kuneš J, Železná B, Maletínská L. In Vitro and In Vivo Characterization of Novel Stable Peptidic Ghrelin Analogs: Beneficial Effects in the Settings of Lipopolysaccharide-Induced Anorexia in Mice. J Pharmacol Exp Ther 2018; 366:422-432. [PMID: 29914876 DOI: 10.1124/jpet.118.249086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/08/2018] [Indexed: 01/08/2023] Open
Abstract
Ghrelin, the only known orexigenic gut hormone produced primarily in the stomach, has lately gained attention as a potential treatment of anorexia and cachexia. However, its biologic stability is highly limited; therefore, a number of both peptide and nonpeptide ghrelin analogs have been synthesized. In this study, we provide in vitro and in vivo characterization of a series of novel peptide growth hormone secretagogue receptor (GHS-R1a) agonists, both under nonpathologic conditions and in the context of lipopolysaccharide (LPS)-induced anorexia. These analogs were based on our previous series modified by replacing the Ser3 with diaminopropionic acid (Dpr), the N-terminal Gly with sarcosine, and Phe4 with various noncoded amino acids. New analogs were further modified by replacing the n-octanoyl bound to Dpr3 with longer or unsaturated fatty acid residues, by incorporation of the second fatty acid residue into the molecule, or by shortening the peptide chain. These modifications preserved the ability of ghrelin analogs to bind to the membranes of cells transfected with GHS-R1a, as well as the GHS-R1a signaling activation. The selected analogs exhibited long-lasting and potent orexigenic effects after a single s.c. administration in mice. The stability of new ghrelin analogs in mice after s.c. administration was significantly higher when compared with ghrelin and [Dpr3]ghrelin, with half-lives of approximately 2 hours. A single s.c. injection of the selected ghrelin analogs in mice with LPS-induced anorexia significantly increased food intake via the activation of orexigenic pathways and normalized blood levels of proinflammatory cytokines, demonstrating the anti-inflammatory potential of the analogs.
Collapse
Affiliation(s)
- Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Anna Kákonová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic (M.H., M.B., A.K., J.K., B.Ž., L.M.) and Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic (J.K.)
| |
Collapse
|
8
|
Abstract
In the current study, we examined the effects of LPS and inflammatory cytokines including IL-1β, TNF-α, and IL-6 on the expression of ghrelin in MGN3-1 cells. We found that IL-1β, and TNF-α with lesser extent, significantly suppressed ghrelin mRNA expression in the cells. MGN3-1 cells expressed IL-1β receptor and IL-1β significantly stimulated NF-κB, p38, JNK, and ERK pathways. Knockdown of IKK2 by siRNA significantly attenuated the suppression of ghrelin mRNA by IL-1β. These results indicate that IL-1β directly suppressed ghrelin mRNA via NF-κB pathway at least partially, which may have a role in the regulation of appetite during inflammation.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- The First Department of Medicine, Wakayama Medical University, Wakayama 841-8509, Japan
| | - Mika Bando
- The First Department of Medicine, Wakayama Medical University, Wakayama 841-8509, Japan
| | - Yoko Ueda
- The First Department of Medicine, Wakayama Medical University, Wakayama 841-8509, Japan
| | - Takashi Akamizu
- The First Department of Medicine, Wakayama Medical University, Wakayama 841-8509, Japan
| |
Collapse
|