1
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. Nat Commun 2025; 16:5149. [PMID: 40461502 PMCID: PMC12134268 DOI: 10.1038/s41467-025-60361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 05/21/2025] [Indexed: 06/11/2025] Open
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) display canonical properties and dynamic motile multiciliated phenotypes that interact with Aβ uptake. Single dCPEC transcriptomes over time correlate well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlight the direct CPEC origin from neuroepithelial cells. In addition, time series analyses define metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contract. These temporal patterns are then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest dynamic models of ChP support for the developing human brain.
Collapse
Affiliation(s)
- Haley Masters
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Shuxiong Wang
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Christina Tu
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Quy Nguyen
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Yutong Sha
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA, USA
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Matthew K Karikomi
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Pamela Shi Ru Fung
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Benjamin Tran
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Cristina Martel
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Nellie Kwang
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Michael Neel
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Olga G Jaime
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Victoria Espericueta
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Brett A Johnson
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Qing Nie
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA, USA
- Department of Mathematics, University of California Irvine, Irvine, CA, USA
| | - Edwin S Monuki
- Department of Pathology & Laboratory Medicine, University of California Irvine, Irvine, CA, USA.
- Department of Developmental & Cell Biology, University of California Irvine, Irvine, CA, USA.
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
2
|
Bagga AD, Johnson BP, Zhang Q. Spatially dependent tissue distribution of thyroid hormones by plasma thyroid hormone binding proteins. Pflugers Arch 2025; 477:453-478. [PMID: 39751918 DOI: 10.1007/s00424-024-03060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings. (1) Contrary to postulations that TTR and/or ALB are the major local T4 contributors, the three THBPs may unload comparable amounts of T4 in Liver, a rapidly perfused organ; however, their contributions in slowly perfused tissues follow the order of abundances of T4TBG, T4TTR, and T4ALB. The T3 amounts unloaded from or loaded onto THBPs in a tissue acting as a T3 sink or source respectively follow the order of abundance of T3TBG, T3ALB, and T3TTR regardless of perfusion rate. (2) Any THBP alone is sufficient to maintain spatially uniform TH tissue distributions. (3) The TH amounts unloaded by each THBP species are spatially dependent and nonlinear in a tissue, with ALB being the dominant contributor near the arterial end but conceding to TBG near the venous end. (4) Spatial gradients of TH transporters and metabolic enzymes may modulate these contributions, producing spatially invariant or heterogeneous TH tissue concentrations depending on whether the blood-tissue TH exchange operates in near-equilibrium mode. In summary, our modeling provides novel insights into the differential roles of THBPs in local TH tissue distribution.
Collapse
Affiliation(s)
- Anish D Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Brian P Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Eytcheson SA, Zosel AD, Olker JH, Hornung MW, Degitz SJ. In Vitro Screening for ToxCast Chemicals Binding to Thyroxine-Binding Globulin. Chem Res Toxicol 2024; 37:1660-1669. [PMID: 39268642 DOI: 10.1021/acs.chemrestox.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Thyroid hormone (TH) carrier proteins play an important role in distributing TH to target tissue as well as maintaining the balance of free versus bound TH in the blood. Interference with the TH carrier proteins has been identified as a potential mechanism of thyroid system disruption. To address the lack of data regarding chemicals binding to these carrier proteins and displacing TH, a fluorescence-based in vitro screening assay was utilized to screen over 1,400 chemicals from the U.S. EPA's ToxCast phase1_v2, phase 2, and e1k libraries for competitive binding to one of the carrier proteins, thyroxine-binding globulin. Initial screening at a single high concentration of 100 μM identified 714 chemicals that decreased signal of the bound fluorescent ligand by 20% or higher. Of these, 297 produced 50% or greater reduction in fluorescence and were further tested in concentration-response (0.004 to 150 μM) to determine relative potency. Ten chemicals were found to have EC50 values <1 μM, 63 < 10 μM, and 141 chemicals between 10 and 100 μM. Utilization of this assay contributes to expanding the number of in vitro assays available for identifying chemicals with the potential to disrupt TH homeostasis. These results support ranking and prioritization of chemicals to be tested in vivo to aid in the development of a framework for predicting in vivo effects from in vitro high-throughput data.
Collapse
Affiliation(s)
- Stephanie A Eytcheson
- Oak Ridge Institute for Science and Education Postdoctoral Fellow, Oak Ridge, Tennessee 37830, United States
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, United States
| | - Alexander D Zosel
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, United States
- Oak Ridge Associated Universities Student Services Contractor, Oak Ridge, Tennessee 37830, United States
| | - Jennifer H Olker
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, United States
| | - Michael W Hornung
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, United States
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, United States
| |
Collapse
|
4
|
Costa-E-Sousa RH, Brooks VL. The growing complexity of the control of the hypothalamic pituitary thyroid axis and brown adipose tissue by leptin. VITAMINS AND HORMONES 2024; 127:305-362. [PMID: 39864945 DOI: 10.1016/bs.vh.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The balance between food intake and energy expenditure is precisely regulated to maintain adipose stores. Leptin, which is produced in and released from adipose in direct proportion to its size, is a major contributor to this control and initiates its homeostatic responses largely via binding to leptin receptors (LepR) in the hypothalamus. Decreases in hypothalamic LepR binding signals starvation, leading to hunger and reduced energy expenditure, whereas increases in hypothalamic LepR binding can suppress food intake and increase energy expenditure. However, large gaps persist in the specific hypothalamic sites and detailed mechanisms by which leptin increases energy expenditure, via the parallel activation of the hypothalamic pituitary thyroid (HPT) axis and brown adipose tissue (BAT). The purpose of this review is to develop a framework for the complex mechanisms and neurocircuitry. The core circuitry begins with leptin binding to receptors in the arcuate nucleus, which then sends projections to the paraventricular nucleus (to regulate the HPT axis) and the dorsomedial hypothalamus (to regulate BAT). We build on this core by layering complexities, including the intricate and unsettled regulation of arcuate proopiomelanocortin neurons by leptin and the changes that occur as the regulation of the HPT axis and BAT is engaged or modified by challenges such as starvation, hypothermia, obesity, and pregnancy.
Collapse
Affiliation(s)
- Ricardo H Costa-E-Sousa
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
5
|
Masters H, Wang S, Tu C, Nguyen Q, Sha Y, Karikomi MK, Fung PSR, Tran B, Martel C, Kwang N, Neel M, Jaime OG, Espericueta V, Johnson BA, Kessenbrock K, Nie Q, Monuki ES. Sequential emergence and contraction of epithelial subtypes in the prenatal human choroid plexus revealed by a stem cell model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598747. [PMID: 38948782 PMCID: PMC11212933 DOI: 10.1101/2024.06.12.598747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) displayed canonical properties and dynamic multiciliated phenotypes that interacted with Aβ uptake. Single dCPEC transcriptomes over time correlated well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlighted the direct CPEC origin from neuroepithelial cells. In addition, time series analyses defined metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contracted. These temporal patterns were then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest new dynamic models of ChP support for the developing human brain.
Collapse
|
6
|
Bagga AD, Johnson BP, Zhang Q. Spatially Dependent Tissue Distribution of Thyroid Hormones by Plasma Thyroid Hormone Binding Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572629. [PMID: 38187691 PMCID: PMC10769377 DOI: 10.1101/2023.12.20.572629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings. (1) Contrary to postulations that TTR and/or ALB are the major local T4 contributors, the three THBPs may unload comparable amounts of T4 in Liver, a rapidly perfused organ; however, their contributions in slowly perfused tissues follow the order of abundances of T4TBG, T4TTR, and T4ALB. The T3 amounts unloaded from or loaded onto THBPs in a tissue acting as a T3 sink or source respectively follow the order of abundance of T3TBG, T3ALB, and T3TTR regardless of perfusion rate. (2) Any THBP alone is sufficient to maintain spatially uniform TH tissue distributions. (3) The TH amounts unloaded by each THBP species are spatially dependent and nonlinear in a tissue, with ALB being the dominant contributor near the arterial end but conceding to TBG near the venous end. (4) Spatial gradients of TH transporters and metabolic enzymes may modulate these contributions, producing spatially invariant or heterogeneous TH tissue concentrations depending on whether the blood-tissue TH exchange operates in near-equilibrium mode. In summary, our modeling provides novel insights into the differential roles of THBPs in local TH tissue distribution.
Collapse
Affiliation(s)
- Anish D. Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Brian P. Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA 30322, USA
| |
Collapse
|
7
|
Degitz SJ, Olker JH, Denny JS, Degoey PP, Hartig PC, Cardon MC, Eytcheson SA, Haselman JT, Mayasich SA, Hornung MW. In vitro screening of per- and polyfluorinated substances (PFAS) for interference with seven thyroid hormone system targets across nine assays. Toxicol In Vitro 2024; 95:105762. [PMID: 38072180 PMCID: PMC11081714 DOI: 10.1016/j.tiv.2023.105762] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The US Environmental Protection Agency is evaluating the ecological and toxicological effects of per- and polyfluorinated chemicals. A number of perfluorinated chemicals have been shown to impact the thyroid axis in vivo suggesting that the thyroid hormone system is a target of these chemicals. The objective of this study was to evaluate the activity of 136 perfluorinated chemicals at seven key molecular initiating events (MIE) within the thyroid axis using nine in vitro assays. The potential MIE targets investigated are Human Iodothyronine Deiodinase 1 (hDIO1), Human Iodothyronine Deiodinase 2 (hDIO2), Human Iodothyronine Deiodinase 3 (hDIO3), Xenopus Iodothyronine Deiodinase (xDIO3); Human Iodotyrosine Deiodinase (hIYD), Xenopus Iodotyrosine Deiodinase (xIYD), Human Thyroid Peroxidase (hTPO); and the serum binding proteins Human Transthyretin (hTTR) and Human Thyroxine Binding Globulin (hTBG). Of the 136 PFAS chemicals tested, 85 had sufficient activity to produce a half-maximal effect concentration (EC50) in at least one of the nine assays. In general, most of these PFAS chemicals did not have strong potency towards the seven MIEs examined, apart from transthyretin binding, for which several PFAS had potency similar to the respective model inhibitor. These data sets identify potentially active PFAS chemicals to prioritize for further testing in orthogonal in vitro assays and at higher levels of biological organization to evaluate their capacity for altering the thyroid hormone system and causing potential adverse health and ecological effects.
Collapse
Affiliation(s)
- Sigmund J Degitz
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA.
| | - Jennifer H Olker
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Jeffery S Denny
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Philip P Degoey
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Phillip C Hartig
- US Environmental Protection Agency, Office of Research and Development Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27709, USA
| | - Mary C Cardon
- US Environmental Protection Agency, Office of Research and Development Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27709, USA
| | - Stephanie A Eytcheson
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Jonathan T Haselman
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Sally A Mayasich
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Michael W Hornung
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| |
Collapse
|
8
|
Bagga AD, Johnson BP, Zhang Q. A minimal human physiologically based kinetic model of thyroid hormones and chemical disruption of plasma thyroid hormone binding proteins. Front Endocrinol (Lausanne) 2023; 14:1168663. [PMID: 37305053 PMCID: PMC10248451 DOI: 10.3389/fendo.2023.1168663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
The thyroid hormones (THs), thyroxine (T4) and triiodothyronine (T3), are under homeostatic control by the hypothalamic-pituitary-thyroid axis and plasma TH binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB). THBPs buffer free THs against transient perturbations and distribute THs to tissues. TH binding to THBPs can be perturbed by structurally similar endocrine-disrupting chemicals (EDCs), yet their impact on circulating THs and health risks are unclear. In the present study, we constructed a human physiologically based kinetic (PBK) model of THs and explored the potential effects of THBP-binding EDCs. The model describes the production, distribution, and metabolism of T4 and T3 in the Body Blood, Thyroid, Liver, and Rest-of-Body (RB) compartments, with explicit consideration of the reversible binding between plasma THs and THBPs. Rigorously parameterized based on literature data, the model recapitulates key quantitative TH kinetic characteristics, including free, THBP-bound, and total T4 and T3 concentrations, TH productions, distributions, metabolisms, clearance, and half-lives. Moreover, the model produces several novel findings. (1) The blood-tissue TH exchanges are fast and nearly at equilibrium especially for T4, providing intrinsic robustness against local metabolic perturbations. (2) Tissue influx is limiting for transient tissue uptake of THs when THBPs are present. (3) Continuous exposure to THBP-binding EDCs does not alter the steady-state levels of THs, while intermittent daily exposure to rapidly metabolized TBG-binding EDCs can cause much greater disruptions to plasma and tissue THs. In summary, the PBK model provides novel insights into TH kinetics and the homeostatic roles of THBPs against thyroid disrupting chemicals.
Collapse
Affiliation(s)
- Anish D. Bagga
- Emory College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Brian P. Johnson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, Atlanta, United States
| |
Collapse
|
9
|
Structural Analysis of the Complex of Human Transthyretin with 3′,5′-Dichlorophenylanthranilic Acid at 1.5 Å Resolution. Molecules 2022; 27:molecules27217206. [DOI: 10.3390/molecules27217206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Human transthyretin (hTTR) can form amyloid deposits that accumulate in nerves and organs, disrupting cellular function. Molecules such as tafamidis that bind to and stabilize the TTR tetramer can reduce such amyloid formation. Here, we studied the interaction of VCP-6 (2-((3,5-dichlorophenyl)amino)benzoic acid) with hTTR. VCP-6 binds to hTTR with 5 times the affinity of the cognate ligand, thyroxine (T4). The structure of the hTTR:VCP-6 complex was determined by X-ray crystallography at 1.52 Å resolution. VCP-6 binds deeper in the binding channel than T4 with the 3′,5′-dichlorophenyl ring binding in the ‘forward’ mode towards the channel centre. The dichlorophenyl ring lies along the 2-fold axis coincident with the channel centre, while the 2-carboxylatephenylamine ring of VCP-6 is symmetrically displaced from the 2-fold axis, allowing the 2-carboxylate group to form a tight intermolecular hydrogen bond with Nζ of Lys15 and an intramolecular hydrogen bond with the amine of VCP-6, stabilizing its conformation and explaining the greater affinity of VCP-6 compared to T4. This arrangement maintains optimal halogen bonding interactions in the binding sites, via chlorine atoms rather than iodine of the thyroid hormone, thereby explaining why the dichloro substitution pattern is a stronger binder than either the diiodo or dibromo analogues.
Collapse
|
10
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Deng C, Zhang Z, Xu F, Xu J, Ren Z, Godoy-Parejo C, Xiao X, Liu W, Zhou Z, Chen G. Thyroid hormone enhances stem cell maintenance and promotes lineage-specific differentiation in human embryonic stem cells. Stem Cell Res Ther 2022; 13:120. [PMID: 35313973 PMCID: PMC8935725 DOI: 10.1186/s13287-022-02799-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/13/2022] [Indexed: 11/11/2022] Open
Abstract
Background Thyroid hormone triiodothyronine (T3) is essential for embryogenesis and is commonly used during in vitro fertilization to ensure successful implantation. However, the regulatory mechanisms of T3 during early embryogenesis are largely unknown.
Method To study the impact of T3 on hPSCs, cell survival and growth were evaluated by measurement of cell growth curve, cloning efficiency, survival after passaging, cell apoptosis, and cell cycle status. Pluripotency was evaluated by RT-qPCR, immunostaining and FACS analysis of pluripotency markers. Metabolic status was analyzed using LC–MS/MS and Seahorse XF Cell Mito Stress Test. Global gene expression was analyzed using RNA-seq. To study the impact of T3 on lineage-specific differentiation, cells were subjected to T3 treatment during differentiation, and the outcome was evaluated using RT-qPCR, immunostaining and FACS analysis of lineage-specific markers. Results In this report, we use human pluripotent stem cells (hPSCs) to show that T3 is beneficial for stem cell maintenance and promotes trophoblast differentiation. T3 enhances culture consistency by improving cell survival and passaging efficiency. It also modulates cellular metabolism and promotes energy production through oxidative phosphorylation. T3 helps maintain pluripotency by promoting ERK and SMAD2 signaling and reduces FGF2 dependence in chemically defined culture. Under BMP4 induction, T3 significantly enhances trophoblast differentiation. Conclusion In summary, our study reveals the impact of T3 on stem cell culture through signal transduction and metabolism and highlights its potential role in improving stem cell applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02799-y.
Collapse
Affiliation(s)
- Chunhao Deng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhaoying Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Faxiang Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jiaqi Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Carlos Godoy-Parejo
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xia Xiao
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
12
|
Binding characteristics of hydroxylated polybrominated diphenyl ether with thyroid protein and its potential toxicity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Huang M, Huang X, Zuo Y, Yi Z, Liu H. Exploring the toxic effects and mechanism of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) on thyroxine-binding globulin (TBG): Synergy between spectroscopic and computations. LUMINESCENCE 2021; 36:1621-1631. [PMID: 34107557 DOI: 10.1002/bio.4103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023]
Abstract
The interaction mechanism between thyroxine-binding globulin (TBG) and three methoxylated polybrominated diphenyl ethers (MeO-PBDEs) was analyzed by steady-state fluorescence, ultraviolet-visible (UV-visible) spectroscopy, circular dichroism (CD), molecular docking and molecular dynamics simulation methods. The results of the molecular docking technique revealed that 2'-MeO-BDE-3, 5-MeO-BDE-47, and 3-MeO-BDE-100 combined with TBG at the active site. The steady-state fluorescence spectra displayed that MeO-PBDEs quenched the endogenous fluorescence of TBG through static quenching mechanism, and complex formation between MeO-PBDEs and TBG was further indicated by UV-vis spectroscopy. The thermodynamic quantities showed that the binding process is spontaneous, and the major forces responsible for the binding are hydrogen bonding and hydrophobic interactions, which are consistent with the results of molecular docking to a certain extent. The results of CD confirmed that the secondary structure of TBG was changed after combining with MeO-PBDEs. The dynamic simulation results illustrated that the protein structure is more compact and changes in the secondary structure of TBG after binding to MeO-PBDEs. Additionally, we also utilized the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) method to analyze the binding free energy of TBG and MeO-PBDEs. The results suggest that van der Waals force plays an essential role in the combination.
Collapse
Affiliation(s)
- Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xiaomei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yanqiu Zuo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hongyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
14
|
Schiera G, Di Liegro CM, Di Liegro I. Involvement of Thyroid Hormones in Brain Development and Cancer. Cancers (Basel) 2021; 13:2693. [PMID: 34070729 PMCID: PMC8197921 DOI: 10.3390/cancers13112693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
15
|
Yamauchi K. Evolution of thyroid hormone distributor proteins in fish. Gen Comp Endocrinol 2021; 305:113735. [PMID: 33549607 DOI: 10.1016/j.ygcen.2021.113735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/25/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
In plasma, thyroid hormone (TH) is bound to several TH distributor proteins (THDPs), constituting a TH delivery/distribution network. Extensive studies of THDPs from tetrapods has proposed an evolutionary scenario concerning structural and functional changes in THDPs, especially for transthyretin (TTR). When assessing, in an evolutionary context, the roles of THDPs as a component constituting part of the vertebrate thyroid system, the data from fish THDPs are critical. In this review the phylogenetic distributions, spatiotemporal expression patterns and binding properties of THDPs in fish are described, and the question of whether the evolutionary hypotheses proposed in tetrapod THDPs can be applied to fish THDPs is assessed. The phylogenetic distributions of THDPs are highly variable among fish groups. Analysis in this review reveals that the evolutionary hypotheses proposed in tetrapod THDPs cannot be applied to fish THDPs, and that the role of plasma lipoproteins as THDPs grows in importance in fish groups. In primitive fish, zinc is an import factor in TH binding to TTR, and high zinc content may facilitate the acquisition of high TH binding activity during the early evolution of TTR. Finally, the possible roles of THDPs in the vertebrate thyroid system are discussed.
Collapse
Affiliation(s)
- Kiyoshi Yamauchi
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan.
| |
Collapse
|
16
|
Giammanco M, Di Liegro CM, Schiera G, Di Liegro I. Genomic and Non-Genomic Mechanisms of Action of Thyroid Hormones and Their Catabolite 3,5-Diiodo-L-Thyronine in Mammals. Int J Mol Sci 2020; 21:ijms21114140. [PMID: 32532017 PMCID: PMC7312989 DOI: 10.3390/ijms21114140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.
Collapse
Affiliation(s)
- Marco Giammanco
- Department of Surgical, Oncological and Oral Sciences (Discipline Chirurgiche, Oncologiche e Stomatologiche), University of Palermo, 90127 Palermo, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata (Bi.N.D.)), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-2389-7415 or +39-091-2389-7446
| |
Collapse
|
17
|
Dong H, Godlewska M, Wade MG. A rapid assay of human thyroid peroxidase activity. Toxicol In Vitro 2020; 62:104662. [DOI: 10.1016/j.tiv.2019.104662] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
|
18
|
Transport of maternal transthyretin to the fetus in the viviparous teleost Neoditrema ransonnetii (Perciformes, Embiotocidae). J Comp Physiol B 2020; 190:231-241. [PMID: 31980892 DOI: 10.1007/s00360-020-01261-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
The molecular basis of viviparity in non-mammalian species has not been widely studied. Neoditrema ransonnetii, a surfperch, is a matrotrophic teleost whose fetuses grow by ovarian cavity fluid (OCF) ingestion and by nutrient absorption via their enlarged hindgut. We performed a proteomics analysis of N. ransonnetii plasma protein and found proteins specific to pregnant females; one of these was identified as transthyretin (TTR), a thyroid hormone distributor protein. We synthesized recombinant protein rNrTTR and raised an antibody, anti-rNrTTR, against it. Semi-quantitative analysis by western blotting using the antibody demonstrated that plasma TTR levels were significantly greater in pregnant fish than in non-pregnant fish. OCF and fetal plasma also contained high TTR levels. Immunohistochemical staining showed that large amounts of maternal TTR were taken up by fetal intestinal epithelial cells. These results indicate that maternal TTR is secreted into OCF and taken up by fetal enterocytes, presumably to deliver thyroid hormones to developing fetuses.
Collapse
|
19
|
Gender-specific effects of transthyretin on neural stem cell fate in the subventricular zone of the adult mouse. Sci Rep 2019; 9:19689. [PMID: 31873158 PMCID: PMC6927974 DOI: 10.1038/s41598-019-56156-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Choroid plexus epithelial cells produce and secrete transthyretin (TTR). TTR binds and distributes thyroid hormone (TH) to brain cells via the cerebrospinal fluid. The adult murine subventricular zone (SVZ) is in close proximity to the choroid plexus. In the SVZ, TH determines neural stem cell (NSC) fate towards a neuronal or a glial cell. We investigated whether the loss of TTR also disrupted NSC fate choice. Our results show a decreased neurogenic versus oligodendrogenic balance in the lateroventral SVZ of Ttr knockout mice. This balance was also decreased in the dorsal SVZ, but only in Ttr knockout male mice, concomitant with an increased oligodendrocyte precursor density in the corpus callosum. Quantitative RTqPCR analysis following FACS-dissected SVZs, or marked-coupled microbeads sorting of in vitro neurospheres, showed elevated Ttr mRNA levels in neuronal cells, as compared to uncommitted precursor and glial cells. However, TTR protein was undetectable in vivo using immunostaining, and this despite the presence of Ttr mRNA-expressing SVZ cells. Altogether, our data demonstrate that TTR is an important factor in SVZ neuro- and oligodendrogenesis. They also reveal important gender-specific differences and spatial heterogeneity, providing new avenues for stimulating endogenous repair in neurodegenerative diseases.
Collapse
|
20
|
Rabah SA, Gowan IL, Pagnin M, Osman N, Richardson SJ. Thyroid Hormone Distributor Proteins During Development in Vertebrates. Front Endocrinol (Lausanne) 2019; 10:506. [PMID: 31440205 PMCID: PMC6694296 DOI: 10.3389/fendo.2019.00506] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Thyroid hormones (THs) are ancient hormones that not only influence the growth, development and metabolism of vertebrates but also affect the metabolism of (at least some) bacteria. Synthesized in the thyroid gland (or follicular cells in fish not having a discrete thyroid gland), THs can act on target cells by genomic or non-genomic mechanisms. Either way, THs need to get from their site of synthesis to their target cells throughout the body. Despite being amphipathic in structure, THs are lipophilic and hence do not freely diffuse in the aqueous environments of blood or cerebrospinal fluid (in contrast to hydrophilic hormones). TH Distributor Proteins (THDPs) have evolved to enable the efficient distribution of THs in the blood and cerebrospinal fluid. In humans, the THDPs are albumin, transthyretin (TTR), and thyroxine-binding globulin (TBG). These three proteins have distinct patterns of regulation in both ontogeny and phylogeny. During development, an additional THDP with higher affinity than those in the adult, is present during the stage of peak TH concentrations in blood. Although TTR is the only THDP synthesized in the central nervous system (CNS), all THDPs from blood are present in the CSF (for each species). However, the ratio of albumin to TTR differs in the CSF compared to the blood. Humans lacking albumin or TBG have been reported and can be asymptomatic, however a human lacking TTR has not been documented. Conversely, there are many diseases either caused by TTR or that have altered levels of TTR in the blood or CSF associated with them. The first world-wide RNAi therapy has just been approved for TTR amyloidosis.
Collapse
|
21
|
Stepien BK, Huttner WB. Transport, Metabolism, and Function of Thyroid Hormones in the Developing Mammalian Brain. Front Endocrinol (Lausanne) 2019; 10:209. [PMID: 31001205 PMCID: PMC6456649 DOI: 10.3389/fendo.2019.00209] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 12/22/2022] Open
Abstract
Ever since the discovery of thyroid hormone deficiency as the primary cause of cretinism in the second half of the 19th century, the crucial role of thyroid hormone (TH) signaling in embryonic brain development has been established. However, the biological understanding of TH function in brain formation is far from complete, despite advances in treating thyroid function deficiency disorders. The pleiotropic nature of TH action makes it difficult to identify and study discrete roles of TH in various aspect of embryogenesis, including neurogenesis and brain maturation. These challenges notwithstanding, enormous progress has been achieved in understanding TH production and its regulation, their conversions and routes of entry into the developing mammalian brain. The endocrine environment has to adjust when an embryo ceases to rely solely on maternal source of hormones as its own thyroid gland develops and starts to produce endogenous TH. A number of mechanisms are in place to secure the proper delivery and action of TH with placenta, blood-brain interface, and choroid plexus as barriers of entry that need to selectively transport and modify these hormones thus controlling their active levels. Additionally, target cells also possess mechanisms to import, modify and bind TH to further fine-tune their action. A complex picture of a tightly regulated network of transport proteins, modifying enzymes, and receptors has emerged from the past studies. TH have been implicated in multiple processes related to brain formation in mammals-neuronal progenitor proliferation, neuronal migration, functional maturation, and survival-with their exact roles changing over developmental time. Given the plethora of effects thyroid hormones exert on various cell types at different developmental periods, the precise spatiotemporal regulation of their action is of crucial importance. In this review we summarize the current knowledge about TH delivery, conversions, and function in the developing mammalian brain. We also discuss their potential role in vertebrate brain evolution and offer future directions for research aimed at elucidating TH signaling in nervous system development.
Collapse
|
22
|
Opitz R, Köhrle J. Editorial: Get inspired - Lessons learned from evolution of thyroid hormone signaling in developmental processes. Mol Cell Endocrinol 2017; 459:1-4. [PMID: 29241682 DOI: 10.1016/j.mce.2017.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|